
AUEB at TAC 2008

Dimitrios Galanis and Prodromos Malakasiotis
Department of Informatics

Athens University of Economics and Business
Patission 76, GR-104 34 Athens, Greece

Abstract

This paper describes aueb’s participation in tac
2008. Specifically, we participated in the summa-
rization and textual entailment recognition tracks.
For the former we trained a Support Vector Regres-
sion model that is used to rank the summary’s can-
didate sentences; and for the latter we used a Max-
imum Entropy classifier along with string similarity
measures applied to several abstractions of the orig-
inal texts.

1 Introduction

Over the past years, several challenges and work-
shops concerning subareas of Natural Language Pro-
cessing (e.g. question answering, textual entailment
recognition, summarization etc.) have been orga-
nized. This year the National Institute of Stan-
dards and Technology (nist) organized the Text
Analysis Conference (tac) 2008, which is a series
of workshops providing the infrastructure for large-
scale evaluation of nlp technology. The confer-
ence consists of three main tracks, namely question
answering, summarization, and textual entailment
recognition. Summarization is further split into two
tasks: update summarization and opinion summa-
rization, which is a pilot task. In this paper we
present aueb’s1 participation in the update summa-
rization and textual entailment recognition tracks.
In section 2 we present our submission for the up-
date summarization track, while section 3 describes
our participation in the recognizing textual entail-
ment track.

2 Update Summarization

Query-Focused Summarization (qfs) is the task of
synthesizing a coherent well structured answer to a
complex question from a set of documents [Dang,
2005, 2006]. Today’s qfs systems produce sum-
maries by extracting the most salient sentences of
the original documents.

Until recently, the salience of each sentence was
usually calculated using a weighted linear combina-

1http://pages.cs.aueb.gr/nlp

tion of features, where the weights were either as-
signed by experience or by a trial and error process.
Recently, Support Vector Regression (svr) has been
used to combine these features yielding very satisfac-
tory results in duc 2007. Li et al. [2007] trained their
svr model on past duc data documents. In particu-
lar, for every sentence of the documents one training
vector was constructed by calculating: a) some pre-
determined features and b) a label (a score) which
indicates the similarity of the sentence to sentences
in the model summaries that were constructed by
the duc judges. The trained model is used to deter-
mine the relevance of a sentence to a given complex
query. In duc 2007, Li et al. [2007] ’s system ranked
5th in rouge-2 and rouge-su4 and 15th in respon-
siveness

Schilder and Ravikumar [2008] adopt a very simi-
lar approach with simple features and a score which
is calculated as the word overlap between the sen-
tence that was extracted from a document and the
sentences in duc model summaries. Their results
are very satisfactory as they ranked in 6th and 2nd
in rouge-2 in duc 2007 and 2006 respectively.

We propose a different way to assign the score to
each training example. We use a combination of the
rouge-2 and rouge-su4 score [Lin, 2004], because
these scores have strong correlation with the content
responsiveness score which is assigned by the human
judges and measures the information coverage of the
summaries. In this way we believe that our system
will select more relevant sentences. We also experi-
ment with different sizes of training sets.

2.1 SVR Training

In our system the following features were used:

• Sentence position SP (c):

SP (c) =
position(c)
length(c)

where c is a sentence, position(c) is the position
of c in its document and length(c) is the length
of c.

• Named entities NE(c):

NE(c) =
n(c)

length(c)

where n(c) is the number of named entities in
c.

• Levenstein distance LD(c,q): The Levenstein
Distance between the query (q) and the sen-
tence (c)

• Word overlap WO(c, q): The word overlap be-
tween the query (q) and the sentence (c). Stop
words and duplicate words have been removed.

• Content word frequency CF (c) and document
frequency DF (c) as defined in [Schilder and
Ravikumar, 2008].

In order to train the svr, the duc 2006 docu-
ments were used. All sentences of all the documents
were extracted and a training vector was constructed
for each one of them, using the aforementioned fea-
tures. The score which was assigned to each vector
was calculated as the average of the rouge-2 and
rouge-su4 of the sentence with the corresponding
four model summaries.

2.2 Summarizer
To evaluate our system we used it to construct sum-
maries of the duc 2007 documents. In particular,
the svr was used to assign relevance scores to all
sentences of the duc 2007 data, and according to the
scores a sorted list of sentences was created for each
query. Starting from the sentence with the highest
score, the system added to the summary every sen-
tence whose similarilty to the sentences already con-
tained in the summary did not exceed a threshold.
The similarity was measured using cosine similarity
and the threshold was determined by experiments
on duc 2006 corpus.

Furthermore, before a sentence was added to the
summary it was simplified through simple heuristics.
Specifically, the strings “However ,” , “In fact” , “At
this point ,” , “As a matter of fact ,” , “, however ,”
and , “also ,” were deleted and the same was done for
some temporal phrases like “here today” and “To-
day”. Finally, the summaries were truncated to form
summaries of 250 words, which is the upper limit in
duc 2007.

The system achieved 0.113 in rouge-2 and 0.165
in rouge-su4, being 5th in both categories, having
slightly higher scores from the other svr based sys-
tems [Li et al., 2007; Schilder and Ravikumar, 2008]
that have been evaluated on duc 2007 data.

Also, we experimented with different sizes of the
training set. In these experiments, we didn’t use all
the trimming heuristics, which is why the rouge
scores are slightly worse that those reported in the

previous section. The results are presented in ta-
ble 1 which shows that the summarizer achieves the
best results when it is trained with all of the avail-
able training examples. In addition, the results show
that sentence simplification affects significantly the
rouge scores.

training vectors rouge-2 rouge-su4
35000 0.10916 (6th) 0.15959 (10th)
22000 0.10769 (9th) 0.15892 (10th)
11000 0.10807 (8th) 0.15835 (12th)
1000 0.10077 (16th) 0.15017 (18th)
10 0.10329 (13th) 0.15313 (16th)
2 0.06508 (30th) 0.11731 (31th)

Table 1: Our system’s rouge scores for different
training sizes. The system is trained on duc 2006
data and it tested on duc 2007 data.

2.3 Official results and discussion

The Update Task in tac 2008 was to produce sum-
maries for 48 complex queries provided by the or-
ganizers. For each query, two sets of documents,
namely A and B, were also provided and the task
was to produce two summaries, each one containing
maximum of 100 words. The first summary should
summarize the documents contained in set A, and
the second summary the documents contained in B
given that the reader has already read the A.

The summaries for the set A were produced using
the summarizer that was described in the previous
section. For the the summaries of set B, we used
the same algorithm, but we filtered out the sentences
having high similarity to any of the sentences of set
A. We used the same cosine similarity and threshold
as before.

Each team was able to submit up to three runs
of its system, however, we submitted only one run.
The system’s results (team id 2) in tac 2008 are
presented in table 2.2 The system was trained with
all sentences of duc 2006.

evaluation rank score
rouge-2 4th / 72 runs 0.09623
rouge-su4 4th / 72 runs 0.13435
be 19th / 72 runs 0.05199
modified pyramid 17th / 58 runs 0.28000
overall responsiveness 18th / 58 runs 2.38500
linguistic quality 31th / 58 runs 2.35400

Table 2: System’s results in tac 2008

Given that the system does not employ sophisti-
cated sentence simplification algorithms its rankings

2In human evaluations only two runs for each team were
evaluated.

especially in the automatic evaluations, are very sat-
isfactory. In human evaluations, and more specif-
ically in the linguistic quality score the system, as
expected, did not achieve a good ranking because it
does not employ algorithms for ordering and rewrit-
ing of the selected sentences. We believe that the
low linguistic quality score affects also the overall
responsiveness score of the system, something that
is also observed in [Conroy and Dang, 2008].

In future work we will try to use other meth-
ods to train the svr.For example, in [Giannakopou-
los et al., 2008, to appear] an alternative method
of rouge is presented for content evaluation which
achieves high correlation with human judges. In ad-
dition, we want to improve the linguistic quality of
our summaries by employing rewriting and sentence
ordering algorithms.

3 Recognizing textual entailment

Textual Entailment is of significant importance in
many natural language processing areas, such as
question answering, information extraction, infor-
mation retrieval, and multi-document summariza-
tion. In the tac Recognizing Textual Entailment
Challenge (rte), it is defined as the task of decid-
ing whether or not the meaning of a hypothesis text
(H) can be inferred from the meaning of another
text (T).3 For instance, the following is a correct
entailment pair:

T : A bus collision with a truck in Uganda has resulted
in at least 30 fatalities and has left a further 21
injured.

H: 30 die in a bus collision in Uganda.

If the meaning of H cannot be inferred from the
meaning of T , either T contradicts H (contradiction
pair) or the truth of H cannot be judged on the
basis of T (unknown pair). The first pair bellow is
“contradiction pair”, whereas the second one is an
“unknown pair”:

T : Gastrointestinal bleeding can happen as an adverse
effect of non-steroidal anti-inflammatory drugs such
as aspirin or ibuprofen.

H: Aspirin prevents gastrointestinal bleeding.

T : Blue Mountain Lumber said today it may have to
relocate a $30 million project offshore in the wake of
an Environment Court decision that blocked it from
a planned development site on the Coromandel.

H: Blue Mountain Lumber will locate a development
site on the Coromandel.

So, this year’s challenge was a three-way classifi-
cation task, but the original two-way task was also
preserved. Each team could submit up to three runs
per task (three-way or two-way).

3See http://www.pascal-network.org/.

In the following section, we describe our partici-
pation in the tac 2008 rte track. We used a super-
vised machine learning algorithm with string similar-
ity measures as features. We also employed feature
selection techniques and used WordNet [Fellbaum,
1998] at a preprocessing step.

3.1 System overview
Our system uses a Maximum Entropy (me) [Jaynes,
1957; Good, 1963] classifier4 to distinguish between
the three different categories (namely entailment,
contradiction, and unknown) that a T–H pair can
be classified in. The classifier is trained with vec-
tors having as features string similarity measures,
under the assumption that similarities at various
shallow abstractions of the input (e.g., the original
sentences, the stems of their words, their pos tags)
can be used to recognize textual entailment reason-
ably well. This approach attempts to improve our
previous system [Malakasiotis and Androutsopoulos,
2007] that participated in the 3rd rte challenge [Gi-
ampiccolo et al., 2007]. We now try to exploit Word-
Net as well, as already mentioned, and we also use
more advanced feature selection techniques, to be
discussed later on.

We employ 9 string similarity measures that are
applied to the following 10 pairs of strings, which
correspond to 10 different levels of abstraction of T
and H. These pairs are:

pair 1: two strings consisting of the original tokens of
T and H, respectively, with the original order of the
tokens maintained;5

pair 2: as in the previous case, but now the tokens are
replaced by their stems;

pair 3: as in the previous case, but now the tokens are
replaced by their part-of-speech (pos) tags;

pair 4: as in the previous case, but now the tokens are
replaced by their soundex codes;6

pair 5: two strings consisting of only the nouns of T and
H, as identified by a pos-tagger, with the original
order of the nouns maintained;

pair 6: as in the previous case, but now with nouns
replaced by their stems;

pair 7: as in the previous case, but now with nouns
replaced by their soundex codes;

pair 8: two strings consisting of only the verbs of T and
H, as identified by a pos-tagger, with the original
order of the verbs maintained;

pair 9: as in the previous case, but now with verbs re-
placed by their stems;

4We use Stanford University’s implementation; see
http://nlp.stanford.edu/.

5We use Stanford University’s tokenizer and pos-tagger,
and our own implementation of Porter’s stemmer.

6Soundex is an algorithm intended to map English names
to alphanumeric codes, so that names with the same pronun-
ciations receive the same codes, despite spelling differences;
see http://en.wikipedia.org/wiki/Soundex.

pair 10: as in the previous case, but now with verbs
replaced by their soundex codes.

A common problem in textual entailment is that
T may be much longer than H, which may mislead
the string similarity measures. Consider, for exam-
ple, the following T–H pair where H appears almost
verbatim in T , but the length difference yields low
similarity.

T : Anna Politkovskaya was found shot dead on Satur-
day in a lift at her block of flats in the Russian
capital, Moscow.

H: Anna Politkovskaya was murdered.

To address this problem, when we consider a pair
of strings (s1, s2), if s1 is longer than s2, we also
compute the nine values fi(s′1, s2), where fi (1 ≤
i ≤ 9) are the string similarity measures, for every
s′1 that is a substring of s1 of the same length as
s2. We then locate the s′1 with the best average
similarity to s2, shown below as s′∗1 :

s′∗1 = arg max
s′
1

9∑
i=1

fi(s′1, s2)

and we keep the nine fi(s′∗1 , s2) values and their av-
erage as 10 additional measurements. Similarly, if
s2 is longer than s1, we keep the nine fi(s1, s

′∗
2) val-

ues and their average. This process is applied only
to pairs 1–4; hence, there is a total of 40 additional
measurements in each T–H case.

The measurements discussed above provide 130
numeric features that can be used by the induced
classifier.7 To those, we add two Boolean features
indicating the existence or absence of negation in T
or H, respectively; negation is detected by looking
for words like “not”, “won’t” etc. Finally, we add
a length ratio feature, defined as min(LT ,LH)

max(LT ,LH) , where
LT and LH are the lengths, in tokens, of T and H.
Hence, there is a total of 133 available features.
3.1.1 String similarity measures
We now describe the nine string similarity measures
that we use. The reader is reminded that the mea-
sures are applied to string pairs (s1, s2), where s1

and s2 correspond to the ten aforementioned ab-
stractions of T and H, respectively.
Levenshtein distance: This is the minimum
number of operations (edit distance) needed to
transform one string (in our case, s1) into the other
one (s2), where an operation is an insertion, dele-
tion, or substitution of a single character. In pairs
of strings that contain pos tags and soundex codes,
we consider operations that insert, delete, or substi-
tute entire tags, instead of characters.

7All feature values are normalized in [−1, 1]. We use our
own implementation of the string similarity measures.

Jaro-Winkler distance: The Jaro-Winkler dis-
tance [Winkler, 1999] is a variation of the Jaro dis-
tance [Jaro, 1995], which we describe first. The Jaro
distance dj of s1 and s2 is defined as:

dj(s1, s2) =
m

3 · l1
+

m

3 · l2
+

m− t

3 ·m
,

where l1 and l2 are the lengths (in characters) of s1

and s2, respectively. The value m is the number of
characters of s1 that match characters of s2. Two
characters from s1 and s2, respectively, are consid-
ered to match if they are identical and the differ-
ence in their positions does not exceed max(l1,l2)

2 −1.
Finally, to compute t (‘transpositions’), we remove
from s1 and s2 all characters that do not have match-
ing characters in the other string, and we count the
number of positions in the resulting two strings that
do not contain the same character; t is half that
number.

The Jaro-Winkler distance dw emphasizes prefix
similarity between the two strings. It is defined as:

dw(s1, s2) = dj(s1, s2) + l · p · [1− dj(s1, s2)],

where l is the length of the longest common prefix
of s1 and s2, and p is a constant scaling factor that
also controls the emphasis placed on prefix similar-
ity. The implementation we used considers prefixes
up to 6 characters long, and sets p = 0.1.

Again, in pairs of strings (s1, s2) that contain pos
tags or soundex codes, we apply this measure to the
corresponding lists of tags in s1 and s2, instead of
treating s1 and s2 as strings of characters.

Manhattan distance: Also known as City Block
distance or L1, this is defined for any two vectors
~x = 〈x1, . . . , xn〉 and ~y = 〈y1, . . . , yn〉 in an n-
dimensional vector space as:

L1(~x, ~y) =
n∑

i=1

|xi − yi|.

In our case, n is the number of distinct words (or
pos tags or soundex codes) that occur in s1 and s2

(in any of the two); and xi, yi show how many times
each one of these distinct words occurs in s1 and s2,
respectively.

Euclidean distance: This is defined as follows:

L2(~x, ~y) =

√√√√ n∑
i=1

(xi − yi)2.

In our case, ~x and ~y correspond to s1 and s2, respec-
tively, as in the previous measure.

Cosine similarity: The definition follows:

cos(~x, ~y) =
~x · ~y
‖~x‖ · ‖~y‖

.

In our system ~x and ~y are as above, except that they
are binary, i.e., xi and yi are 1 or 0, depending on
whether or not the corresponding word (or pos tag
or soundex code) occurs in s1 or s2, respectively.
N-gram distance: This is the same as L1, but
instead of words we use all the (distinct) character
n-grams in s1 and s2; we used n = 3.
Matching coefficient: This is |X ∩ Y |, where X
and Y are the sets of (unique) words (or tags) of s1

and s2, respectively; i.e., it counts how many com-
mon words s1 and s2 have.
Dice coefficient: This is the following quantity;
in our case, X and Y are as in the previous measure.

2 · |X ∩ Y |
|X|+ |Y |

Jaccard coefficient: This is defined as |X∩Y |
|X∪Y | ;

again X and Y are as in the matching coefficient.
3.1.2 WordNet preprocessing
Using only string similarity measures has the risk of
missing true entailment relationships that are due to
the existence of synonyms. Therefore, before we ap-
ply the similarity measures discussed earlier, we em-
ploy a preprocessing step during which every word of
H that has a synonym in T is replaced by that syn-
onym. We use WordNet [Fellbaum, 1998] to locate
synonyms.

3.2 Feature selection
Larger feature sets do not necessarily lead to im-
proved classification performance. Despite seeming
useful, some features may in fact be too noisy or ir-
relevant, increasing the risk of overfitting the train-
ing data. Some features may also be redundant,
given other features; thus, feature selection meth-
ods that consider the value of each feature on its
own (e.g., information gain) may lead to suboptimal
feature sets.

Finding the best subset of a set of available fea-
tures is a search space problem for which several
methods have been proposed [Guyon et al., 2006].
We used a wrapper approach, whereby each feature
subset is evaluated according to the predictive power
of a me classifier (treated as a black box). More pre-
cisely, during feature selection we conducted 10-fold
cross validation on the training data to evaluate the
predictive power, measured as accuracy (i.e., correct
decisions over all decisions) of each feature subset.

With large feature sets, an exhaustive search over
all subsets is intractable. Instead, we experimented

with forward hill-climbing and beam search [Guyon
et al., 2006]. Forward hill-climbing starts with an
empty feature set, to which it adds features, one at
a time, by preferring to add at each step the feature
that leads to the highest predictive power. Forward
hill climbing has a high risk of being trapped in lo-
cal maxima. Therefore, we have also experimented
with forward beam search, which is similar, except
that the search frontier contains the k best examined
feature subsets at each time.

3.3 Official results and discussion

We submitted a total of six runs, three for the three-
way classification task and three for the two-way
classification task. The three runs were produced
in the same way for both tasks. For the first run we
trained our system using all the features described
in section 3.1. In the second run, the classifier was
trained with the best features selected by forward
hill climbing. Finally, in the third run we used for-
ward beam search with k = 10 to select the best
features. The runs for the three-way task were also
evaluated as two-way runs, simply by merging “con-
tradiction” and “unknown” pairs to “no entailment”
pairs.

As training data we used the development and
evaluation data of the third rte challenge. Pre-
liminary experiments indicated that the use of ad-
ditional data from other challenges (e.g., including
training data from the second rte challenge) reduces
the predictive power of the classifier. This might be
due to differences in the ways the datasets were con-
structed. Tables 3 and 4 present the results of our
runs. The scores in brackets are the corresponding
cross validation scores we had obtained on the train-
ing data during feature selection.

The cross validation scores were much higher,
which is most probably due to differences in the
manner that the two datasets we used were con-
structed. Moreover, we observe that feature selec-
tion can lead to similar or slightly better results,
compared to using the full set of available features,
which is an indication of redundancy in the complete
feature set. A possible improvement could be to use
a dependency parser, but we deliberately avoided
using one, since we are interested in less spoken lan-
guages, for which such tools are difficult to obtain.

4 Conclusion

We presented aueb’s participation in two tac 2008
tracks, namely summarization and rte. For the
former, we used Support Vector Regression and as-
signed to each training example a score equal to the
average of rouge-2 and rouge-su4. As expected,
our system ranked high when the evaluation mea-
sure was either of these two scores. However, since
we do not employ ordering and rewriting techniques

Two-way runs
Run 1 (0.6425) Run 2 (0.6831) Run 3 (0.6875)

Accuracy Average precision Accuracy Average precision Accuracy Average precision
0.5660 0.5464 0.5780 0.5632 0.5660 0.5465

Table 3: rte two-way runs.

Three-way runs
Three-way results

Run 1 (0.6288) Run 2 (0.6650) Run 3 (0.6744)
Accuracy Accuracy Accuracy

0.5460 0.5470 0.5540
Two-way results

Run 1 Run 2 Run 3
Accuracy Average precision Accuracy Average precision Accuracy Average precision

0.5800 0.5654 0.5790 0.5620 0.5840 0.5220

Table 4: rte three-way runs.

our system does not achieve good results in human
evaluations, and especially in the linguistic quality
score. This also affects the overall responsiveness
score of the system. We plan to improve the lin-
guistic quality of the summaries we produce and to
experiment with other content selection techniques.
We hope that these enhancements will also improve
the overall responsiveness of our system.

In the rte track, we attempted to improve the sys-
tem with which we participated in the 3rd rte chal-
lenge. Therefore, apart from employing a supervised
learning algorithm and string similarity measures,
we also exploited WordNet and used more sophis-
ticated feature selection techniques. We observed a
large difference between the predictive power of the
feature set, measured via 10-fold cross validation on
the training data, and the corresponding evaluation
results. This is most likely due to differences in the
way the datasets we used were constructed. More-
over, the feature selection techniques lead to similar
or slightly better results, which indicates possible
redundancy in the complete feature set.

References
J. Conroy and H. T. Dang. Mind the gap: dan-

gers of divorcing evaluations of summary content
from linguistic quality. In Proceedings of COL-
ING, 2008.

Hoa Trang Dang. Overview of DUC 2005. In Pro-
ceedings of DUC, 2005.

Hoa Trang Dang. Overview of DUC 2006. In Pro-
ceedings of DUC, 2006.

C. Fellbaum, editor. WordNet: an electronic lexical
database. MIT Press, 1998.

D. Giampiccolo, B. Magnini, I. Dagan, and
B. Dolan. The 3rd PASCAL recognizing textual

entailment challenge. In Proceedings of the ACL-
PASCAL Workshop on Textual Entailment and
Paraphrasing, pages 1–9, Prague, Czech Repub-
lic, 2007.

G. Giannakopoulos, V. Karkaletsis, G. Vouros, and
P. Stamatopoulos. Summarization system evalua-
tion revisited: N-gram graphs. ACM Transactions
on Speech and Language Processing, 2008, to ap-
pear.

I. J. Good. Maximum entropy for hypothesis formu-
lation, especially for multidimentional contigency
tables. Annals of Mathem. Statistics, 34:911–934,
1963.

I.M. Guyon, S.R. Gunn, M. Nikravesh, and
L. Zadeh, editors. Feature Extraction, Founda-
tions and Applications. Springer, 2006. URL
http://eprints.ecs.soton.ac.uk/11922/.

M.A. Jaro. Probabilistic linkage of large public
health data file. Statistics in Medicine, 14:491–
498, 1995.

E. T. Jaynes. Information theory and statistical me-
chanics. Physical Review, 106:620–630, 1957.

S. Li, Y. Ouyang, W. Wang, and B. Sun. Multi-
document summarization using support vector re-
gression. In Proceedings of DUC, 2007.

C.W. Lin. ROUGE: A package for automatic eval-
uation of summaries. In Proceedings of ACL-04
Workshop: Text Summarization Branches Out,
pages 74–81, 2004.

P. Malakasiotis and I. Androutsopoulos. Learning
textual entailment using SVMs and string similar-
ity measures. In Proceedings of the ACL-PASCAL
Workshop on Textual Entailment and Paraphras-
ing, pages 42–47, Prague, Czech Republic, 2007.

F. Schilder and K. Ravikumar. Fastsum: Fast and
accurate query-based multi-document summariza-
tion. In Proceedings of ACL, 2008.

W.E. Winkler. The state of record linkage and cur-
rent research problems. Statistical Research Re-
port RR99/04, us Bureau of the Census, Wash-
ington, dc, 1999.

