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Abstract

Semantic inference is often modeled as ap-
plication of entailment rules, which specify
generation of entailed sentences from a source
sentence. Efficient generation and representa-
tion of entailed consequents is a fundamental
problem common to such inference methods.
We present a new data structure, termed com-
pact forest, which allows efficient generation
and representation of entailed consequents,
each represented as a parse tree. Rule-based
inference is complemented with a new ap-
proximate matching measure inspired by tree
kernels, which is computed efficiently over
compact forests. Our system also makes use
of novel large-scale entailment rule bases, de-
rived from Wikipedia as well as from informa-
tion about predicates and their argument map-
ping, gathered from available lexicons and
complemented by unsupervised learning.

1 Introduction

Textual entailment is concerned with inferring one
textual form (the hypothesis) from another (the text).
Most commonly, such inferences are made by ap-
plying some kind of transformations or substitu-
tions to the text representation. Transformations
are often represented as entailment rules (or in-
ference rules), which capture semantic knowledge
about paraphrases, synonyms, syntactic variations
etc., e.g. (Lin and Pantel, 2001; de Salvo Braz et
al., 2005; Romano et al., 2006).

While many text understanding applications em-
ploy transformations and inference rules, their use
is typically limited, application-specific, and quite

heuristic. Such practices lack a clear formalism
specifying how inference knowledge should be rep-
resented and applied. Our long term research goal is
development of generic, robust semantic inference
engines, based on principled and clear formulation
of knowledge representation and inference mecha-
nisms. Such inference engines could be plugged into
the various text understanding applications, encap-
sulating all the required inferences. In (Bar-Haim et
al., 2007a) we made a step in this direction by intro-
ducing a generic formalism for semantic inference
over parse trees. We defined a proof system, based
on application of entailment rules, which provides a
principled and uniform mechanism for incorporating
a wide variety of inference knowledge.

Formally, application of an entailment rule cor-
responds to generation of a new sentence, a conse-
quent, semantically entailed by the source sentence.
The inferred consequent itself may be the source of
further rule applications and so on. However, ex-
plicitly generating a new sentence (or parse tree) for
each rule application (as in (Bar-Haim et al., 2007a))
may quickly lead to exponential explosion. Con-
sider, for example, a sentence containing five con-
tent words, each one having two synonyms. The
number of derivable sentences would be 35 (includ-
ing the source sentence). Thus, representing each
entailed sentence explicitly leads to severe efficiency
problems. Intuitively, we would like to add for each
rule application just the entailed part (e.g. the syn-
onymous words) to the source sentence representa-
tion. However, we still want the inference process to
be formulated over individual sentences, rather than
over some superposition of sentences whose seman-



tics is unclear.
The current work proposes a solution to this in-

herent problem. We present a novel data structure,
termed compact forest, which allows efficient gen-
eration and representation of entailed consequents,
where each consequent is represented by a depen-
dency tree. We show how all inference operations
defined in our framework, including an extension to
handle co-reference, can be implemented over com-
pact forests.

In addition to knowledge-based deduction, textual
entailment systems usually employ some form of ap-
proximate matching mechanisms aiming to bridge
over inevitable knowledge gaps. We present a novel
approximate matching measure inspired by tree ker-
nels, and show how it can be efficiently calculated
over compact forests.

With the compact forest, large-scale rule applica-
tion based on massive rule bases becomes feasible.
We present two novel sources for entailment rules,
each containing millions of rules: one is a resource
of lexical rules, derived from Wikipedia. The other
is a resource for entailment between predicates (both
verbal and nominal), including mapping of their ar-
guments. This resource is derived by integrating in-
formation from WordNet and Nomlex-plus, which
is complemented by corpus-based unsupervised rule
learning.

2 System Overview

Our system consists of three stages: (a) Preprocess-
ing of text and hypothesis (b) Knowledge-based in-
ference, and (c) Feature extraction and entailment
classification. Preprocessing includes dependency
parsing using Minipar (Lin, 1998), named-entity
recognition using the Stanford NER (Finkel et al.,
2005) and co-reference resolution using OpenNLP1.
In addition, we have developed a normalization
module for numbers, which is applied first. The re-
sult is a set of dependency trees for the text (and
a single tree for the hypothesis) with additional an-
notations of co-reference and named-entities. Next,
our inference engine applies to the text trees entail-
ment rules derived from diverse knowledge sources,
aiming to bring it closer to the hypothesis. The
set of inferred trees is efficiently represented as a

1http://opennlp.sourceforge.net/

compact forest (see next section). A small set of
‘canonization’ entailment rules (such as passive-to-
active transformation) is also applied to the hypoth-
esis. The resulting pair (F ,H) of the compact forest
inferred from the text and the transformed hypothe-
sis tree is passed to the final stage - feature extraction
and entailment classification. The features measure
coverage ofH byF , and detect various types of mis-
matches betweenH and F .

3 Inference

This section starts with briefly (and somewhat in-
formally) reviewing the inference formalism intro-
duced in (Bar-Haim et al., 2007a) (Section 3.1), con-
tinues with presenting its new efficient implemen-
tation using compact forests (Section 3.2) and con-
cludes with additional enhancements for handling
co-reference (Section 3.3).

3.1 Inference Framework Review

Given two syntactically parsed text fragments,
termed text and hypothesis, the inference system
tries to generate the hypothesis from the text by ap-
plying a sequence of entailment rules. Entailment
rules represent tree transformations, and the infer-
ence system aims to transform the text into the hy-
pothesis through a sequence of intermediate parse
trees, similar to a proof process in logic.

More specifically, text and hypothesis are repre-
sented as dependency trees, where nodes are anno-
tated with lemma and part-of-speech, and edges are
annotated with dependency relation. A rule ‘L →
R’ is primarily composed of two templates, termed
left-hand-side (L), and right-hand-side (R). Tem-
plates are dependency subtrees which may contain
variables, matching any lemma. Figure 1(a) shows
a sample rule, representing passive-to-active trans-
formation. Applying this rule to the sentence ‘Beau-
tiful Mary was seen by John yesterday’ generates the
sentence ‘John saw beautiful Mary yesterday’.

Rule application first matches L in the source
tree s. A successful match binds L’s variables to
nodes or subtrees in s. In our example, the vari-
able V binds to the verb see, N1 binds to Beautiful
Mary and N2 binds to John. Based on this bind-
ing, R’s variables are instantiated. In addition, a
rule may specify alignments between nodes in L and



R, indicating that any modifiers of the source node
which are not part of the rule structure should also be
copied to the target node. In our example, the align-
ment between the V nodes indicates that yesterday
(modifying see) should be copied to the generated
sentence.

The final step in rule application is generation of
the derived tree d. Let r be the instantiated R, and
l be the subtree matched by L. Our formalism has
two methods for generating the derived tree: substi-
tution and introduction, as specified by the rule type.
With substitution rules, the derived tree d is obtained
by making a local modification to the source tree s.
Except for this modification s and d are identical (a
typical example is a lexical rule, such as buy→ pur-
chase). For this rule type, d is formed by copying s
while replacing l (and the descendants of l’s nodes)
with r. This is the case for the passive rule. By
contrast, introduction rules are used to make infer-
ences from a subtree of s, while the other parts of s
are ignored and do not affect d. A typical example
is inference of a proposition embedded as a relative
clause in s. In this case, the derived tree d is simply
taken to be r.

3.2 Efficient Inference over Compact Forests

Generating explicitly a new dependency tree at each
inference step provides an intuitively clear formula-
tion for inference at the lexical-syntactic level. How-
ever, as shown in the introduction, it leads to expo-
nential explosion. Thus, while we would like to keep
our inference formalism, it is crucial to improve its
implementation efficiency.

In our new implementation, each rule applica-
tion generates only the right-hand side, R. In this
respect, we follow the general idea of Braz et al.
(2005), who “augmented” the text representation
only with the right-hand-side of the applied entail-
ment rule. However, in their work, both rule ap-
plication and the semantics of the resulting “aug-
mented” structure were not fully specified. By con-
trast, our method is fully formalized, and the seman-
tics of the resulting structure, termed compact forest
is the same as before: it represents a collection of
trees, including the original text trees as well as in-
ferred trees (consequents). Although common sub-
trees are shared, the distinction between individual
consequents is kept. Matching a subtree against the

forest only succeeds if the subtree is fully matched
within a particular consequent (rather than spread
over multiple consequents). Independent rules are
applied in parallel, reducing complexity from expo-
nential to linear.

The Compact Forest data structure. A compact
forest F represents a set of dependency trees. Fig-
ure 1(b) shows an example of a compact forest, con-
taining both the source sentence and the derived sen-
tence, after applying the passive-to-active transfor-
mation. Formally, F = (N , E) is composed of a set
N of nodes, and a set E of disjunction edges (d-
edges in short), an extension of dependency edges.

d-edges specify choice among multiple source
nodes, as well as choice among multiple target
nodes. In our example, we may choose to connect
the root to the left see, resulting in the source pas-
sive sentence, or to the right see, resulting in the
derived active sentence. Similarly, since John ap-
pears in both sentences, its incoming edge specifies
a choice between two possible parents. It is impor-
tant to note that in both cases the alternatives are
disjoint, namely, belong to different trees in the for-
est. More formally, A d-edge d has a set of source
nodes, Sd and a set of target nodes, Td. Each source
node n within d is annotated with a dependency re-
lation, reld(n). A disjunction edge represents a set
of disjoint dependency edges, whose endpoints are
given by the cartesian product Sd × Td, and the de-
pendency relation of each edge is determined by the
source node (given by the rel function).
F is assumed to be acyclic, and has an (artificial)

root node with a single outgoing d-edge, where the
target nodes are the roots of the forest trees. Except
for the root node, all nodes have a single incoming
d-edge. These properties are guaranteed by the ini-
tialization of the compact forest, and maintained by
the inference operations applied to it, as we discuss
next.

Since a dependency edge is a special case of a
d-edge (with a single source and target), transform-
ing a dependency tree into a compact forest is triv-
ial. The set of individual trees encoded by the forest
can be recovered by traversing F starting from the
root, and for each outgoing d-edge d choosing one
of the target nodes in Td. Since the compact forest
is acyclic, this procedure is guaranteed to terminate,
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(b) A compact forest containing both the source sentence “beautiful Mary was seen by John yesterday”, and the inferred sentence
“John saw beautiful Mary yesterday” resulting from the application of the rule in (a). d-edges are shown as point nodes, connected
by incoming edges to source nodes and by outgoing edges to target nodes. Nodes and d-edge parts added to the compact forest by
this rule application are shown in gray. Parts of speech are omitted.

Figure 1: Applying an entailment rule to a compact forest.

and each resulting extracted structure will be a tree.
Each such sequence of choices leads to a different
tree, and the set of all derivable trees makes up the
forest. As mentioned above, the choice between the
two “see” nodes leads to two different trees.

Forest initialization F is initialized with the set
of dependency trees generated from the text at pre-
processing, with their roots connected to the forest
root.

Rule application Application of a rule ‘L → R’
to F begins by matching L in F . A match m of a
tree (L in this case) in a compact forest is a 1-1 func-
tion mapping each node in the tree to a compatible
node in the forest, so that for each edge s→ t in the
tree with dependency relation dep , there is a d-edge
d in the forest such that m(s) ∈ Sd, m(t) ∈ Td and

reld(m(s)) = dep. As noted above, a tree should be
matched only as a subtree of a particular tree in the
forest. In other words, the match must not include
disjoint edges. This requirement is realized by not
allowing multiple edges to be matched in the same
d-edge. We denote by l the subtree in F matched by
L.

Next, a copy r of R is added to F . We now need
to instantiate each variable X in r. For leaf vari-
ables, defined as variables which are leaf nodes in
both L and R, the subtree they bind to can simply be
shared with r. Let t be the subtree we would like to
share, and d be the incoming d-edge of its root. Then
we simply add the parent p of X in r to set of source
nodes in d, and set reld(p) to the relation between p
and X (in r). Then X itself can be removed from r.
In our example, since N1 and N2 are leaf variables,



beautiful Mary and John are shared this way. Mod-
ifiers of aligned nodes such as yesterday are shared
in an analogous fashion.

If X is not a leaf variable (e.g. V in the exam-
ple), it cannot be shared this way, because it would
typically have different modifiers in L and R. There-
fore, X is instantiated with a copy of the source node
(as with the duplication of see). However, defining
alignment between the X’s occurrences in L and R
allows sharing of modifiers which are not part of the
rule structure, such as yesterday. Such alignments
are implicitly assumed for non-leaf variables.

Finally, r is set as an alternative to either l (for
substitution rules), or to the other trees in the forest
(for introduction rules). In the former case, r’s root
is added to the target node set of l’s root incoming
d-edge. In the latter case, it is added to the target
node set of the forest root outgoing d-edge.

It can be verified that if the forest is acyclic (as
with our initialization), it will remain acyclic after
each rule application. Applying the rule in our ex-
ample added only a single node and linked it to four
d-edges, compared to duplicating the whole tree if
all trees are represented explicitly, as in our RTE-3
system.

3.3 Handling Co-Reference

We extended our framework to handle co-reference.
Co-reference is defined as an equivalence relation
between complete subtrees, which corresponds to
a co-reference chain. Each subtree is represented
by its root node. To allow inference based on co-
reference relation, we introduced co-reference sub-
stitution, an inference mechanism similar to our sub-
stitution rules, which allows for each pair of co-
referring subtrees to replace each other. Given co-
reference information obtained from preprocessing,
all substitutions in which the substituting subtree is
not a pronoun are performed prior to any rule appli-
cation. Similar to application of substitution rules,
in co-reference substitution the substituting subtree
is cloned and its root is added as a target node of the
incoming d-edge of the replaced tree.

4 Entailment Rules

Our inference engine applies diverse types of entail-
ment rules, derived from various sources. After a

brief review of rule types retained from our RTE-3
system, this section describes three novel types of
entailment rules added to this year’s system: lexical
rules from Wikipedia, lexical-syntactic rules from
WordNet, and new annotation rules for polarity.

4.1 RTE-3 Rules
The following rule types were retained from our
RTE-3 system (Bar-Haim et al., 2007b): (a) Syn-
tactic rules: These rules capture entailment in-
ferences associated with common syntactic struc-
tures, such as conjunction, relative clause, apposi-
tion, etc. (b) WordNet lexical rules: Lexical rules
were derived from WordNet2 using the synonym, hy-
ponym, hyponym instance and derivation relations.
(c) DIRT rules: The DIRT algorithm (Lin and Pan-
tel, 2001) learns entailment rules between binary
predicates, e.g. ‘X explain to Y→X talk to Y’. We
used the version described in (Szpektor and Dagan,
2007), which learns canonical rule forms.

4.2 Lexical Entailment Rules from Wikipedia
Wikipedia is becoming a popular resource for
extraction of semantic relationships. Recently,
Shnarch (2008) created an extensive resource of lex-
ical entailment rules from Wikipedia, using several
extraction methods. This resource consists of 8
million rules, and was found to be fairly accurate.
We used rules extracted by the following methods,
which were found to be the most accurate: (a) Be-
Complement: as the first sentence in Wikipedia typ-
ically consists of a definition of the title, this ex-
traction method creates a rule between noun com-
plements of the verb be in the sentence and the
article title, e.g. ‘Adi Shamir is an Israeli Cryp-
tographer’; (b) Title Parenthesis: a common con-
vention in Wikipedia for ambiguous titles is adding
a descriptive term in parenthesis at the end of the
title, like Graph (Mathematics). In such cases a
rule is created between the main part of the title
and its parenthesized description; (c) Redirect: a
bidirectional rule based on Wikipedia’s redirections
between user queries and the title they are redi-
rected to (e.g. Yankee land is redirected to United
States); (d) Link: a rule between a link in the
text and the article title it links to. For example,

2We used the MIT Java WordNet Interface,
http://projects.csail.mit.edu/jwi/



Gestaltist ⇒ Gestalt psychology. These methods
extracted about 5.5 million rules, with precision of
about 80%.

4.3 Lexical Syntactic Rules from WordNet
WordNet (Fellbaum, 1998) is commonly used for in-
ducing lexical entailment rules from relations such
as hypernyms and synonyms. However, for rules
between predicates, e.g. between verbs, there are
benefits to using lexical-syntactic rules instead of
lexical rules. First, some rules need also argu-
ment mapping (not just lexical substitution), e.g.
‘buy Y for Z ⇒ pay Z for Y’. Second, verbs con-
nected by WordNet may have different allowed sub-
categorization frames, which may result in incorrect
inferences due to changes of the argument roles. For
example, from the text “The car crashed the wooden
fence” we can incorrectly infer that “The car broke”
using WordNet lexical rule ‘crash⇒ break’.

Thus, where possible, we want to consider in-
formation about arguments as well when inducing
rules between predicates from WordNet. We ex-
tract argument mapping between verbs from auto-
matically generated corpus-based rule-set of entail-
ment rules between templates. We use unary-DIRT
as our learning method for such a rule-set (Szpektor
and Dagan, 2008).

Predicates can be expressed not only by verbs,
but also by nouns (nominalizations), e.g. acquisi-
tion and employment. WordNet contains relations
between verbs and their related nominalizations, e.g.
‘acquire↔ acquisition’. However, to use these rela-
tions we need argument mapping between the verb
and its nominalizations. We extract these mappings
from Nomlex-plus (Meyers et al., 2004), a database
of about 6000 English nominalizations, together
with the allowed sub-categorization frames for each
nominalization. We thus generate rules from nouns
to verbs and vice versa, e.g. ‘X acquire Y ⇔ X’s ac-
quisition of Y’. We also use hypernym relations be-
tween nouns to generate more rules between nouns
and verbs and between verbs and verbs, e.g. ‘homi-
cide of X by Y ⇒ killing of X by Y ⇔ Y kill X’.

Finally, we add allowed sub-categorization
frames for each verb and nominalization, and re-
quire for lexical substitution rules between verbs or
between a verb and its nominalization that both have
the same frame. For example, ‘break’ can substitute

‘crash’ only when either both appear as transitive or
both are intransitive. We obtain allowed subcatego-
rization frames for verbs from WordNet frames and
allowed frames for nominalizations from Nomlex-
plus.

4.4 Annotation Rules for Polarity
In addition to inference rules, our framework in-
cludes annotation rules, which do not generate new
consequents, but add features to parse tree nodes.
Annotation rules do not have an R, but rather each
node of L may contain annotation features. If L is
matched in a tree then the annotations are copied to
the matched nodes. We use annotation rules to han-
dle negation and modality phenomena. We achieve
this by marking the polarity status on verbs and
nouns, which may take the value of positive(+), neg-
ative(-) or unknown(?). As section 6.1 explains fur-
ther, we utilize polarity mismatch betweenH and F
to detect non-entailment. Some examples of polarity
annotation are shown below:

John called(+) Mary.
John didn’t call(−) Mary.
John forgot to call(−) Mary.
John wanted to call(?) Mary.

Annotation rules capture negative polarity that is ex-
pressed by verbal negation in its full or contracted
form, as well as implied by certain determiners and
nouns. In addition, based on the PARC polarity lex-
icon (Nairn et al., 2006), we created rules for special
classes of verbs such as forget which induce negative
polarity context, as in the example. Unknown polar-
ity is expressed by the use of modal verbs, as well as
conditional sentences and modal adverbials. We also
compiled from VerbNet a list of verbs such as want,
suspect, and attempt which indicate unknown polar-
ity of their complement predicate, as in the above
example. Annotation rules are applied to both H
and the initial F prior to any inference rule applica-
tion, and the polarity feature is copied through the
application of inference rules either as part of node
copying or due to node alignment.

5 Search

Finding a sequence of entailment rules that derives
the hypothesis from the text is a search problem,
which we addressed in our system as follows. Sev-



eral iterations of rule application are performed,
where at each iteration we first find all rule matches,
and then apply all matched rules. To avoid re-
peated applications, we mark newly added nodes at
each iteration, and in the next iteration consider only
matches containing new nodes. We define two types
of rule matches: L-match, where L is matched in
F and LR-match, where L is matched in F and R
is matched in H. LR-matches attempt to bridge be-
tween F and H in a single step, while L-matches
allow chaining of rule applications, but substantially
increase the search space. For our RTE-4 submis-
sion we first applied three iterations of L-matches
using only syntactic rules3, followed by one itera-
tion of LR-matches using all other rule types. In
the future we plan to further experiment with other
search strategies.

6 Feature Extraction and Classification

After entailment rules from various knowledge
sources have been applied to F , features are ex-
tracted from the resulting (F ,H) pair. Features can
be broadly categorized into two subsets: (a) lexical
features that solely depend on the lexical items in
F andH, and (b) lexical-syntactic features that also
take into account coverage of dependency relations
inH.

6.1 Lexical Features

Coverage Features The following features check
if the words in H are present in F . We assume that
good lexical coverage should correlate well with en-
tailment. The first five features measure the propor-
tion of uncovered distinct verbs4/nouns/adjectives
and adverbs/Named Entities/numbers inH. The last
coverage feature measures the proportion of covered
distinct words5 inH.

Polarity Features We conjecture that mismatched
polarity is indicative of non-entailment. Three bi-
nary features are thus extracted: (1) Whether there
exists a noun/verb in H such that all its matches
in F have mismatching polarity. (2) Whether there
exists a noun/verb in H, which has a match in F

3cf. section 4.1
4The verb ’be’ is discarded during features extarction
5Only the following Minipar parts-of-speech are taken into

account: Verb, Noun, Adverb, Adjective and Other

with opposite polarity (i.e. positive vs. negative),
but doesn’t have a match with the same polarity. (3)
Whether there exists a noun/verb in H, which has a
match in F with incompatible but non-opposite po-
larity (i.e. the polarity of one of the nouns/verbs is
unkonwn), but doesn’t have a match with the same
polarity. Note that the first feature is the disjunction
of the second and third features.

6.2 Local Lexical-Syntactic Features
Two types of local lexical-syntactic features are ex-
tracted: (a) predicate-argument features (b) edge
coverage features.

Predicate-argument features If F entails H,
then the predicates in H should be matched in F
along with their arguments. Predicates include verbs
(aside for the verb “be”) or subject complements in
copular sentences (For example, smart in Joseph is
smart). Arguments are the daughters of the pred-
icate node in H.6 Four features are computed for
each (F ,H) pair. We categorize every predicate in
H that has a match in F to one or more of four pos-
sible categories:

1. complete match - a matching predicate exists
in F with matching arguments and dependency
relations.

2. partial match - a matching predicate exists in
F with some matching arguments and depen-
dency relations.

3. opposite match - a matching predicate exists in
F with some matching arguments but incorrect
dependency relations.

4. no match - no matching predicate in F has any
matching arguments.

If some predicate is categorized as a complete match
it will not be in any other category. Finally, we
compute the four features for the (F ,H) pair: the
proportion of predicates in H that have a complete
match in F , and three binary features checking if
there is any predicate in H categorized as a par-
tial match/opposite match/no match. Since the sub-
ject and object arguments are crucial for textual en-
tailment, we compute four similar features only for
the subset of predicates which have these arguments
(while ignoring other arguments).

6When the dependent is a preposition or a clause we take the
complement of the preposition or the head of the clause respec-
tively as the dependent.



Edge coverage features We say that an edge inH
is matched in F if there is an edge in F with match-
ing relation, source node and target node. We say an
edge inH is loosely-matched if there is some path in
F from a matching source node to a matching tar-
get node. Based on these definitions we extract two
features: the proportion ofH edges matched/loosely
matched in F .7

6.3 Tree-Kernel Inspired Global Feature

All the lexical-syntactic features hitherto presented
focus on local syntactic dependencies. We would
like to compute the coverage of H by F for larger
and more complex substructures. Kernel func-
tions are often used to compute the similarity be-
tween complex structures such as dependency trees.
Collins and Duffy (2001) introduced a dependency
tree kernel, which measures the similarity between
two trees by counting their common subtrees.

While the general idea of finding common sub-
trees seems attractive as an approximate syntactic
measure, applying the dependency tree kernel mea-
sure as-is for textual entailment has several draw-
backs: First, this measure, like any kernel function,
is symmetric, while entailment is a directional rela-
tion: we want all H subtrees to be matched in F ,
but the opposite is not required. Second, the depen-
dency tree kernel counts the number of times each
H subtree appears in F while we only wish to know
if it appears in F or not. This is important since F
may contain redundant structures resulting from rule
application. Third, Collins and Duffy assign equal
weight to all nodes in the dependency tree, while it
is likely that the closer the node to the root, the more
significant it is for entailment. Finally, we need to
adapt the tree kernel measure to operate on a com-
pact forest and a tree, rather than on a tree pair.

To address these issues, we have adapted the de-
pendency tree kernel to our needs. We measure how
well the subtrees in H are covered by F , weighted
according to the proximity to the root ofH. The fea-
ture is computed in two steps. First, we find for each
pair of nodes nH ∈ H and nF ∈ F the maximal-
weight subtree rooted at nH and nF , with respect to
some node weighting function, and store its weight

7We only look at a subset of the edges labeled with relevant
dependency relations.

in a table. Note that unlike tree kernels, we do not
count the number of common substructures8, but
only consider the maximal-weight subtree. In the
second step, we compute an overall structural cover-
age score based on these weights.

Table Construction For each node pair nH ∈
H and nF ∈ F , we would like to compute
MaxWght(nH , nF ), the maximal weight of a com-
mon subtree rooted at nH and nF . The weight of a
subtree is the sum of its node weights, given by some
node weighting function wght(n). Specifically, we
define wght(n) as 1+the height of H minus the dis-
tance of n from the root.

MaxWght can be defined recursively as:

MaxWght(nH , nF ) =


0 if nH 6= nF

wght(nH)+
BM(nH , nF ) otherwise

where BM(nH , nF ) is the weight of the best match
of nH daughter subrees in the daughter subtrees of
nF , formally defined as:

BM(nH , nF ) =

max
m∈matches(nH ,nF )

∑
(h,f):m(h)=f,h 6=nH

MaxWght(h, f)

matches(nH , nF ) is the set of all matches9 in F
of any subtree composed of nH and some subset
(possibly empty) of its daughters, where nH iteslf
is mapped to nF .

We efficiently compute MaxWght for each pair
of nodes nH ∈ H and nF ∈ F bottom-up using
dynamic programming. Notice that finding the best
match cannot be done independently for each out-
going edge of nH , otherwise multiple edges in H
could be mapped to the same d-edge in F . Never-
theless, computing the best match can still be done
efficiently since this is an instance of the assignment
problem: we look for a match from edges inH to d-
edges in F that maximizes the weight of the match.

Feature Computation After computing the table,
the global similarity GS can be computed. For each
node nH in H, we compute the maximal weight of
a subtree rooted in nH that is matched in F . GS is
obtained by summing these weights over nH nodes:

GS(H,F) =
∑

nH∈H
max
nF∈F

MaxWght(nH , nF )

8Though this could be easily computed.
9cf. match definition in section 3.2



and the final feature is simply the normalized simi-
larity GS(H,F)

GS(H,H) .

6.4 Feature Selection and Classification

We used 10-fold cross validation for feature selec-
tion and omitted the following four features from
the final training set: We omitted the feature record-
ing the proportion of uncovered distinct verbs from
the coverage features. We omitted feature (1) and
(3) from the polarity features. From the predicate-
argument features we omitted the binary feature
recording no match instances. We used the SVMperf
package (Joachims, 2005; Joachims, 2006) to train a
linear kernel SVM and the WEKA package (Witten
and Frank, 2005) to train a decision tree (J48) on the
training set.

7 Evaluation and Analysis

Our system accuracy results for two-way entailment
classification are summarized in Table 1. The first
three rows correspond to the submitted runs. The
rest of the results reported in this section were ob-
tained with our current version of the system, which
includes some minor fixes and improvements, us-
ing all the features (no feature selection). The re-
sults show that adding more training data does not
improve accuracy. The best results were obtained
when training only on the RTE-3 development set
(row 4), improving over our best submitted run by
2.1%. SVM was found to perform a little better than
the J48 decision tree.

In order to better understand the impact of each
inference type, including the entailment rule bases
and co-reference substitution, we conducted addi-
tional experiments, summarized in Table 2. The
results for ablation tests in which we excluded each
of the inference types and measured accuracy loss
are shown in rows 1-7. Each of the entailment rule
bases contributed to the overall accuracy, while co-
reference substitution somewhat degraded the accu-
racy, probably because the quality of the NP co-
reference resolution tool we used is not sufficient
yet. Without co-reference, accuracy is improved
to 61.1%. Row 8 shows the accuracy drop re-
sulting from skipping inference altogether, that is,
classification is performed right after preprocessing.
Thus, the overall contribution of rule-based infer-

ence (without co-reference) is 3.4%. Furthermore,
we found that inference increased the average node
coverage of H in F from 68% to 76%, and aver-
age edge coverage from 26% to 35%. Overall, the
contribution of knowledge-based inference is sub-
stantial. We also tested our system on RTE-3, and
obtained quite competitive results: compared to our
66.6%, only 3 teams out of the 26 who participated
in RTE-3 scored higher than 67%, and three more
systems scored around 67%.

Compared to our RTE-3 system, the RTE-4 sys-
tem works faster by an order of magnitude, while
applying substantially more entailment rules. In fu-
ture work we plan to conduct further experiments to
quantify the impact of the compact forest data struc-
ture on inference efficiency in terms of execution
time and memory consumption.

# Classifier Training Set Accuracy
1 SVM D2+D3+T2+T3 58.3%
2 J48 D2+D3+T2+T3 57.3%
3 SVM D3+T3 58.4%
4 SVM D3 60.5%

Table 1: Results on RTE-4 test set (2-way entailment
classification). D2 denotes RTE-2 development set, T3
is RTE-3 test set, etc.

# Inference Type ∆Accuracy
1 WordNet (Lexical) 0.8%
2 WordNet (Lex. Syn.) 0.7%
3 Wikipedia 1.0%
4 DIRT 0.9%
5 Syntactic 0.4%
6 Polarity 0.9%
7 Co-reference -0.6%
8 All 2.8%

Table 2: Contribution of various inference types. Rows
1-7 show accuracy loss obtained for removing each in-
ference type (ablation tests). Row 8 shows accuracy loss
obtained for skipping inference altogether.

8 Conclusion

The main contribution of the current work is a new
data structure for inference over parse trees, which
is both efficient and semantically sound. Using this
data structure, we were able to integrate many en-
tailment rules from diverse sources, and show their



contribution to overall performance. In future work,
we plan in-depth analysis of our system and its vari-
ous rule sources, as well as adding new rule sources
and experimenting with various search strategies.
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