
IIIT Hyderabad at TAC 2008

Vasudeva Varma
Sai Krishna

Harish Garapati
Kranthi Reddy

Prasad Pingali
Surya Ganesh

Hareen Gopisetty
Praveen Bysani

Contact: vv@iiit.ac.in

Search and Information Extraction Lab.
IIIT Hyderabad, India.

Rahul Katragadda
Kiran Sarvabhotla

Vijay Bharath Reddy
Rohit Bharadwaj

Abstract

This paper describes our participation at TAC
2008 in all the three tracks. For the Summa-
rization Track we introduced two major fea-
tures. First, a feature based on Information
Loss if we don’t pick a particular sentence. Sec-
ond, a language modeling extension that boosts
novel terms and penalizes stale terms. Dur-
ing our post-TAC analysis we observed that
a simple sentence position based summarizer
leads to better short summaries than most of-
ficial runs submitted this year. In the Opin-
ion QA and Summarization Track for the rigid
list questions, we have added some additional
features to handle opinion expressed in the
question. and for the squishy list questions
in Opinion QA and Summarization Track, we
leveraged on our existing Summarization en-
gine and used a classification based approach
to both finding opinionated sentences and also
the polarity of the opinions. Finally, for the
RTE track we explored a simple graph parti-
tion matching based approach.

Part I

Summarization Track

1 Update Summarization

The key to update Summarization is a real world set-
ting where a user needs to keep track of a hot topic,
continuously at random intervals of time. There are
a lot of hits on the hot topic and lots of documents
are generated within a short span. The updates on
the topic need to filter out redundant information,
while preserving the informativeness of the content.
In the current work, we approach sentence extractive
Summarization under the assumption that user has
already gone through previous document cluster(s).

In this paper, we see the update task as an additional
redundancy module within the overall Summariza-
tion problem.

2 Language Modeling Approaches to
Summarization

A statistical language model, or more simply a lan-
guage model, is a probabilistic mechanism for gen-
erating text. Language modeling based approaches
have been famous in text Summarization literature
since the early work by Luhn (Luhn, 1958). Recently,
(Nenkova et al., 2006) has shown reasonable success
in multi-document text Summarization using ‘just’
unigram language models. We use the Probabilistic
Hyperspace Analogue to Language (pHAL) as the
language modeling mechanism.

2.1 Probabilistic Hyperspace Analogue to
Language (pHAL)

From the model of (J et al., 2005) a Hyperspace Ana-
logue to Language model constructs dependencies of
a word w on other words based on their occurrence
in the context of w in window size k, in a sufficiently
large corpus. We use the pHAL model, and use the
relevance based Language Modeling approach as fol-
lowed by (J et al., 2005) for sentence scoring. The
pHAL, probabilistic HAL is a natural extension to
HAL spaces, as term co-occurrence counts can be
used to define conditional probabilities. The pHAL
can be interpreted as, “given a word w what is the
probability of observing another word w′ with w in
a window of size K”.
pHAL (w′|w) = c× HAL(w′|w)

n(w)×K

The sentence scoring mechanism is based on
this model that has been built. Assuming word
independence, the relevance of a sentence S can be
expressed as,

P (S|R) =
∏

wi∈S

P (wi|R) ≈
∏

wi∈S

P (wi|Q)

P (S|R) =
∏

wi∈S

P (wi)
P (Q)

∏
qj

pHAL (qj |wi)

≈
∏

wi∈S

P (wi)
∏
qj

pHAL (qj |wi) (1)

2.2 Language Modeling Extension

While generating update summaries, whether in the
case of Single Document Summarization or in Multi-
Document Summarization the idea is to be able to
present information that the reader has not already
seen. Looking at it the other way, it could be consid-
ered as suppression of information that the user has
already seen. In the context of language modeling, if
we construct models that represent the document(or
document collections) then the corresponding mod-
els for the new stream of data should be modified
based on the information that has already been seen,
and known to be of importance. It is interesting to
note that, query relevance doesn’t change. However,
a considerable topical shift might occur in the new
stream. To accommodate this topical shift and to
avoid redundancy in the update-summary, we build
a background aware language model that penalizes
thematic features that occur more frequently in the
background than in the new stream.

2.2.1 Signature Terms
Topic signatures as defined by Lin and Hovy

(2000) are a set of related terms that describe a topic.
Lin and Hovy achieve their purpose by collecting a
set of terms that are typically highly correlated with
a target concept from a preclassified corpus such as
TREC collections. We try to approximate the same
using the dataset at hand. For each topic, if we con-
sider cluster A as irrelevant set(R̃) and cluster B as
relevant set(R) we obtain terms that are relatively
more important for cluster B than for cluster A. In
this work we report on the utility of this method for
term selection to aid context adjustment for Update
Summarization.

The document set is pre-classified into two sets A
and B. Assuming the following two hypotheses:

Hypothesis 1 (H1) : P (B|ti) = p = P (B|t̃i)
(2)

Hypothesis 2 (H2) : P (B|ti) = p1 6= p2 = P (B|t̃i)
(3)

H1 implies that relevancy of a document is inde-
pendent of ti, while H2 implies that the presence of
ti indicates strong relevancy assuming p1 � p2. And
the following 2-by-2 contingency table:

R R̃
ti O11 O12

t̃i O21 O22

Where O11 is the frequency of term ti occurring in
cluster B, O12 is the frequency of term ti occurring
in cluster A, O21 is the frequency of term t̃i 6= ti
occurring in cluster B, O22 is the frequency of term
t̃i 6= ti occurring in cluster A.

Assuming a binomial distribution:

b(k;n, x) =
(

n
r

)
xk (1− x)(n−k)

then the likelihood for H1 is:

L(H1) = b(O11;O11 + O12, p) b(O21;O21 + O22, p)

and for H2 is:

L(H2) = b(O11;O11 + O12, p1) b(O21;O21 + O22, p2)

The log λ value is then computed as follows:

= log L(H1)
LH2

= log b(O11;O11+O12,p) b(O21;O21+O22,p)
b(O11;O11+O12,p1) b(O21;O21+O22,p2)

=((O11 + O21) log p + (O12 + O22) log(1− p)) −
(O11 log p1 + O12 log(1− p1) + O21 log p2 +
O22 log(1− p2))) (4)

This term λ is called Dunning’s likelihood ratio
(Dunning, 1993). Dunning suggests that λ is more
appropriate for sparse data than χ2 for hypothesis
testing and the quantity −2 log λ is asymptotically
χ2 distributed. And hence we can use χ2 distribution
table to look up −2 log λ value at specific confidence
level.

2.2.2 Approach
Our approach is motivated by the fact that the

necessary update may be seen as giving more weight
to important sentences. Since, importance is now
a factor that is also dependent on the previous ut-
terances on the topic, we should either increase the
weight of important terms in this cluster or decrease
the weights of the words that are more important
in the previous clusters. In any of the approaches
we first need to identify signature terms (Lin and
Hovy, 2000) of the respective cluster with respect to
previous clusters. It may be observed that Summa-
rization for the first cluster is a simple query-focused
Summarization problem, and we do not consider it
here.

The primary algorithm consists of the following
steps:

1. For the first cluster, generate summary using the
actual Summarization algorithm, say S(x).

2. For each of the next clusters

(a) Compute Language model of previous clus-
ters, say LM(A).

(b) Compute Language model of current clus-
ter, say LM(B).

(c) Generate Signature terms of previous clus-
ter and current cluster, say TA and TB re-
spectively.

(d) Modify the Language model of current clus-
ter, LM(B), by reducing the importance of
co-locations of TA and/or boosting the im-
portance of co-locations of TB .

(e) Generate summary based on the modified
Language Model.

2.3 Context Adjustment

Let T be a set of Signature terms extracted as de-
scribed earlier. Signature terms could be utilized in
adjusting the language model as follows.
∀ wi ∈ T,

∀wj pHAL (wj |wi, B) =
pHAL (wj |wi, B) + pHAL (wj |wi, A) (5)

∀wj pHAL (wj |wi, B) =
pHAL (wj |wi, B)− pHAL (wj |wi, A) (6)

The update based on Eq. (5) is used to boost
co-occurrences of novel terms in Cluster B, while up-
date based on Eq. (6) penalizes co-occurrences of
signature terms of previous clusters.

3 Query Independent Scoring

We used two scoring mechanisms for Query Indepen-
dent Scoring, one QIScore and the other a feature
based on Information Loss (explained in 3.2).

3.1 QIScore

We also used the query independent scoring mecha-
nism(QIScore) (Pingali et al., 2007). The query in-
dependent scoring is based on a contrastive analysis
of the given document set D with a randomly chosen
document set.

3.2 Sentence Representation Capability

We use information loss as a feature to measure sen-
tence representation capability. We consider sen-
tence and document cluster as different text units
and Represent them with probabilistic distribution of

terms. We then measure how bad a sentence proba-
bility distribution is in modeling the documents dis-
tribution using relative entropy. By doing this we
are able to capture the amount of information loss
in picking a sentence as a representative of whole
document cluster.

S(D) =
∑
w

P (w|S)log
P (w|S)
P (w|D)

S(D) is amount of information loss when we pick a
sentence S as a Representative of document cluster
D. The contribution of any term w in sentence in-
formation loss can be defined as how much we lose
information by assuming the term is drawn from the
sentence model instead of the document model.

The sentences with minimum information loss are
considered to be more capable in presenting the con-
tent of document set.

For generic summary, a sentence importance is
measured in terms of its capability to represent the
relevant document set D as compare to a random
document collection D̂.

Sentencescore =
S(D̂)
S(D)

In case of update summary we consider the sen-
tence important if it is more capable in presenting
the content of current document set as compare to a
set of previously read documents.
When D = A, D̂ = 100 random news articles.
Otherwise if D = B, D̂ = A.

4 Post Sentence Ranking

Following simple features were used after sentences
are obtained in ranked order.

Date Anaphora Once sentences are ranked and
the best sentences are identified after eliminating re-
dundancy, we perform a shallow Date Anaphora for
relative years and months. Eg., ‘last year’ would
be annotated with 2004, assuming the document is
dated 2005. Such simple heuristic seems to be im-
prove readability.

Information Filter and Redundancy Filter A
simple information filter that eliminates sentences
that contain too many stopwords was implemented.
A ratio of number of content words to total number
of words needed to be above a predetermined thresh-
old, for the sentence to be include in summary. For
summary of cluster B a set of ‘n’ top ranked sentences
from cluster A were used for comparison. Relative
Entropy of a sentence with already picked sentences
was also used as redundancy measure.

ROUGE-2 ROUGE-SU4 pyramid score linguistic responsiveness overall responsiveness
RUN 1 0.08122 0.11777 0.287 2.396 2.438
RUN 2 0.09520 0.13387 0.331 2.375 2.604
RUN 3 0.07156 0.11295 —— —— ——

Table 1: Official TAC Results for cluster A

ROUGE-2 ROUGE-SU4 pyramid score linguistic responsiveness overall responsiveness
RUN 1 0.07219 0.11312 0.246 2.333 1.979
RUN 2 0.79110 0.11999 0.245 2.667 2.167
RUN 3 0.06019 0.10317 —— —— ——

Table 2: Official TAC Results for cluster B

Sentence Length Filter Sentences over a thresh-
old number of words were eliminated. This would
help remove all the errors due to sentence boundary
identification and also eliminate highly descriptive
sentences. This could be done in two ways:

1. Thresholding on the total number of words.

2. Thresholding on content words.

5 Experiments

This section describes each of the submitted run and
their performance. Results are reported separately
for cluster A and cluster B, in tables 1 and 2.

Run 1 Run 1 uses two features, the HAL feature
used in (Pingali et al., 2007) and the feature based on
Information Loss(Section 3.2). For cluster A, a lin-
ear combination of the two features were used while
for cluster B only the Information Loss based metric
was used in generating the summary. Date Anaphora
and Information Filtering was applied along with a
sentence length threshold of 30 total words was ap-
plied for this run.

Run 2 Run 2 used two features, the HAL feature
used in (Pingali et al., 2007) extended as shown
in Section 2.3 and the Query Independent Scor-
ing(QIScore) shown in Section 3.1. Following ta-
ble illustrates the impact of context adjustment on
PHAL feature.

ROUGE-2 ROUGE-SU4
PHAL 0.08190 0.12208

PHAL+ Adjustment 0.08369 0.12395

Table 3: Impact of Context Adjustment on PHAL

Run 3 Run 3 is same as Run 1, except the sentence
length threshold being set to 18 words.

6 Evaluation and Results

The results based on the intrinsic and extrinsic eval-
uations performed at TAC are shown in Tables 1
and 2. Our Run 2 performed well above the median
performance based on content evaluations, while per-
forming around the median for linguistic and overall
responsiveness. During Post TAC experiments with
a little bit of parameter tuning, we obtained a better
performance shown as Run 2*1 in Table 4.

ROUGE-2 ROUGE-SU4
RUN 2* 0.09310 0.13122

Table 4: Post-TAC RUN 2

7 Post-TAC Experiments

Sentence Position. Sentence Position has been
well studied in Summarization research since its in-
ception, early in edmundson’s work (Edmundson,
1969). Recently, it has been widely used in learn-
ing based approaches (Toutanova et al., 2007; Shen
et al., 2007). The University of Ottawa has orga-
nized the pyramid annotation data such that for
some of the sentences in the original document col-
lection(those that were picked by systems participat-
ing in pyramid evaluation), a list of corresponding
content units is known (Copeck et al., 2006). We
utilized this data to analyze which portions of doc-
uments were most sentences being picked-up from,
and which of those portions were being most content
responsive.

Approach Based on our analysis on the data from
DUC 2005, DUC 2006 and DUC 2007 we created a
simple heuristic feature. The feature gives most im-
portance to all the lead sentences, more so for first
sentence in a document. For large documents(total

1RUN 2* : RUN 2 with a little bit of parameter tweaking.

ROUGE-2 ROUGE-SU4 pyramid score
cluster A 0.08987 0.1213 0.3432
cluster B 0.09319 0.1283 0.3576

Table 5: ROUGE 2, SU4 Recall and modified Pyramid Scores for Sentence Position based feature.

sentences greater than 15), trailing sentences are
scored better than the rest in middle. However, trail-
ing sentences for short documents get higher scores
than those of larger documents.

As can be observed, only the first sentence of all
documents could end up comprising the summary.
This is OK until we don’t get redundant information
in the summary. Hence we also used a simple uni-
gram match based redundancy measure that doesn’t
allow a sentence to be appended to the summary if
the sentence matches any of the already selected sen-
tence in at least 40% of content words in it. We also
dis-allow sentences greater than 25 content words.

It could be seen that the algorithm is very simple.
It uses a very näıve approach that has been used for
decades of Summarization research. There could be
datasets that could be generated where this approach
fails. However, for newswire data that we currently
use for Summarization Test sets, this approach is
more than promising. This is especially the case for
short summaries and a special case would be update
Summarization where it genuinely outperforms most
other systems that participated in the task.

Table 5 reports Average ROUGE recall and pyra-
mid scores2 of the proposed algorithm. Data has
been presented separately for each cluster.

8 conclusions

In this part we report on our experiments for the
Summarization track’s update Summarization task.
We used a feature based on Information Loss and
a language modeling extension to PHAL and have
shown that these features perform reasonably well
compared to the state-of-the-art. We also show
some results from our preliminary post-TAC anal-
ysis, where we find that a simple heuristic feature
based on Sentence Position is able to generate sum-
maries on par with the state-of-the-art update Sum-
marization systems.

2Pyramid Annotations for this experiment were done by
one of the authors, who volunteered for pyramid annotations
during DUC 2007.

Part II

Opinion Track

1 Introduction

TAC 2008 opinion task focuses on Question Answer-
ing (QA) and Summarization tracks. The task aims
at mining opinions from blog posts for rigid list and
squishy list questions. In opinion QA, each target
contains both rigid list and squishy list questions.
Our goal here is to provide precise answers from the
Blog06 corpus. In opinion summarization task, each
target contains squishy list question(s) and a set of
relevant blog posts . Our goal here is to extract opin-
ions from this relevant document set and produce
summaries for each squishy list question.

In general, rigid list questions (Ex : Which coun-
tries would like to build nuclear power plants?) have
named entities as answers. Current QA systems typ-
ically include four major steps: 1) Question Classi-
fier, 2) Passage Retrieval, 3) Answer Extraction and
4) Answer Ranking. Question Classifier analyzes the
question to determine the answer type. Passage Re-
trieval searches for paragraphs in the document col-
lection that are likely to contain the answer. Answer
extraction extracts a list of candidate answers from
the retrieved passages. Answer Ranking ranks the
list of candidate answers to determine the final an-
swer. We have used the same architecture for rigid
list questions with some additional features to handle
the opinion expressed in the question in each step.

Squishy list questions (Ex : What features do peo-
ple like in vista?)ask for strings containing the an-
swer. Answering Squishy list in TAC08 QA track
is some what similar to descriptive type of ques-
tion answering, So we have decided to use the sum-
marization system we designed for ”DUC 07 multi-
document summarization task” which perform well
while answering descriptive types of questions on
news articles. Our approach to handle these ques-
tions involves the following three steps: 1) Question
Analysis, 2) Sentence Classification, and 3) Summa-
rization. Question Analysis determines the polarity
(positive/negative) of the question. Sentence clas-
sification extracts the sentences which are opinions
with the same polarity as that of the question. Fi-
nally summarization, the system we are using has
two features, one being query independent feature
and the other being query dependent feature. We
added one more feature to handle opinions. For this
we made use of Senti Wordnet (Attardi and Simi,
2006), an online lexical source for opinion words.

This part consists of six sections. First we intro-

duce the task, then we describe our work on pro-
cessing the blog corpus in section 2. Section 3 de-
scribes our approach for rigid list questions and sec-
tion 4 describes our approach for squishy list ques-
tions. Section 5 describes the submitted runs for
both the tasks. Section 6 discusses the results ob-
tained for each task. We conclude in section 7.

2 Preprocessing the data

In opinion QA track answers must be retrieved from
Blog06 corpus. Though we have used only top 50
documents for each target (Blog data in this paper
refers to the top 50 document set but not the to-
tal Blog06 corpus) there are a significant number of
challenges to extract required content from each doc-
ument such as encoding issues, posts from different
blog domains, identifying post author etc.

In the blog data different character encodings were
used. As the first step we converted all characters to
UTF-8 encoding. Posts from different blog domains
are present in the blog data. Each domain uses a
template to generate blog HTML pages. So, we ex-
tracted the required content from these blog posts
by reverse engineering the templates used to gener-
ate these pages. There are fifty targets in TAC08
QA test data. For each target they provided fifty
most relevant documents. So, on the whole there
are 2,500 posts which were processed to extract re-
quired content. Majority of the posts are from Blog-
ger, WordPress, Typepad, Movable Type domains.
Their respective numbers in the blog data are shown
in table 6.

Some of the rigid list questions ask for authors
of the posts who expressed positive/negative opinion
about a target. So, to handle this type of questions
we extracted authors of the posts using different reg-
ular expressions for different domains listed in table
6. For the remaining 500 blog posts, only content ex-
traction by removing HTML tags and author extrac-
tion was performed. For author extraction, we have
used a generalized regular expression to handle most
of the remaining blog posts. Among the remaining
500 blog posts we were able to extract author from
290 posts.

The test data given for opinion summarization also
belongs to Blog06 corpus, so we used the same ap-
proach for cleaning the blogs for opinion summariza-
tion as we did for opinion QA.

3 Approach for Rigid List Questions

Our system architecture includes the following steps
: question classification, post retrieval, answer ex-
traction and answer ranking. Question classifier de-

Domain No of Documents
Blogger 1160

WordPress 337
TypePad 210

Movable Type 96

Table 6: Distribution of documents in some of the blog domains.

termines the answer type and polarity for the given
question. Support Vector Machines (SVM) (Zhang
and Lee, 2003) and naive Bayes classifiers (Yang and
Liu, 1999) are used to determine the answer type
and polarity of the given question respectively. From
the sample questions, we have observed that for the
questions having answer type as PERSON, some of
them are referring to the person names in the posts
and the rest are referring to the authors of the posts.
To handle both the cases, we mapped the answer
type PERSON to a new answer type ”AUTHOR-
PERSON”.

In traditional QA systems where passage is consid-
ered as a retrieval unit on which answer extraction
techniques are performed. But in the case of blog
data, author conveys his opinion through the entire
post and his opinion cannot be determined from a
single passage within the post. So, we considered
post as a unit of retrieval. We used Lucene for both
indexing the posts and searching for relevant posts.
All the relevant passages returned by Lucene are clas-
sified using nave Bayes classifier which classifies the
post either relevant or non relevant. A post is said
to be relevant if its polarity is same as the polarity of
the question and non relevant if its polarity is differ-
ent from the polarity of the question. Finally the set
of relevant passages returned by the classifier were
used for answer extraction.

For Answer Extraction we divided the answer
types into two super classes.

1. AUTHOR-PERSON

2. Named Entities

In the first case, answer to the given question is
the list of authors from all the relevant posts and
the names of the persons within the posts. As the
author names were previously extracted during Pre-
processing, all the authors who are associated with
the relevant passages form a list of possible answers
to the question. For extracting the person names
from the posts, we used Stanford Named Entity Rec-
ognizer (SNER) (Finkel et al., 2005) and for the sec-
ond case also we used SNER to extract possible an-
swer candidates for the given question.

The list of answer candidates obtained from an-
swer extraction is ranked using relevance features.
We have two such features:

1. Blog post relevance to the question

2. Blog post relevance to the polarity of the ques-
tion

The first feature ranks the answer candidates which
are extracted from the most relevant posts higher
and the second feature ranks the answer candidates
based on the polarity of the blog post . We used
a weighted linear combination of these two features
to compute the final score for each answer candidate.
Finally, the ranked list of answers based on candidate
scores is provided as answer to the given question.

4 Approach for Squishy List
Questions

In both Opinion QA and Opinion Summarization
these squishy list questions focuses on the descrip-
tive answers of the target. The approach for these
questions will be similar for both the task with some
differences in the methods used. The main steps in-
volved in squishy list part of opinion QA and opinion
Summarization are:

1. Query analysis

2. Opinion mining and Polarity determination

3. Opinion sentences summarization.

The summarization system we designed for
DUC07 has two features to rank sentences for gener-
ating summary. These features are 1) Query depen-
dent feature and 2) Query independent feature.

Query dependent feature boosts the sentences
which are most relevant to the given query. The
query independent feature boosts the most informa-
tive sentences in the given text using KL divergence
method. Using these two features, we have achieved
good results in summarization which is a kind of de-
scriptive QA in DUC 2007. Both Opinion QA and
Opinion Summarization are also similar to descrip-
tive QA with minute difference of giving some impor-
tance to opinions of the sentences. This factor mo-
tivated us to use the above two features along with

our opinion feature for summarization. We did our
experiments on two variances of this opinion feature
which we will present in detail below.

Query analysis focuses on predicting the polarity
class (either positive or negative) for the query. For
example a query like What features do people like in
vista? focuses on positive aspects of product vista.
For predicting the polarity class for the query, we
framed a set of rules. We have downloaded a list of
words which can be termed as a seed list for query
words. This list contains a small set of keywords
which are classified as positive or negative. We have
classified query based on this list of words as posi-
tive or negative. In this process we have taken into
account the negated verbs also.

Opinion mining and Polarity determination fo-
cuses on our interest in mining opinion sentences
from non-opinions and determining polarity for opin-
ions in the given input data. We built a two class
classifier in two phases one for classifying opinions
and non-opinions and other for classifying opinions
as positive and negative. The classifier used for this
classification in Opinion QA task is Rainbow with
naive Bayes method for two runs. In Opinion Sum-
marization task we have used SVM classifier (Ku et
al., 2006) with unigrams as features in one of runs
and Rainbow using prind - probabilistic indexing
method in the other run.

Each sentence will have its opinion and polarity
class scores obtained from classifier associated with
it. In Opinion QA first run we made use of these
scores as a feature along with both query dependent
and query independent feature to score sentences. In
second run of Opinion QA we have used opinion score
as a filter and used only query dependent and query
independent feature to score sentences. In Opinion
Summarization task, we made use of Senti wordnet,
which is a lexical source for opinions as the opinion
scoring feature. Senti Wordnet will have a list of
words which will be the sources for sentence polarity.
Each word which contribute to sentence polarity will
have both positive and negative score associated with
it. So we used this to score sentences along with
query dependent and query independent feature in
our first run. In second run, we used scores obtained
from classifier using probabilistic indexing method as
the opinion feature along with query dependent and
query independent features.

5 Description of Runs

Our approach to handle opinion sentences uses two
phase classification first the sentence is classified as
either opinion or non-opinion(fact) then it is classi-
fied as positive or negative. The data used to build

these models are described below.
For opinion-non opinion classification we have

downloaded IMDB movie review data from the web
which is annotated. The data contains 10,000 sen-
tences of opinions and non-opinions. We have used
this data as a training data for our opinion, non-
opinion classification.

We have collected product reviews form Ama-
zon.com. We collected about 1,30,000 reviews on
various products. We did use this as a training data
for polarity determination. We have classified the
reviews as positive or negative based on the ratings
given at the end of each review. Each review which
has a rating of 4 or 5 has been termed as positive
and others as negative. Finally, we got about 98,000
positive reviews and the rest were negative for train-
ing.

Models for opinion QA task were built using navie
bayes algorithm, where as models for opinion sum-
marization task were built using SVM-HHM tech-
niques.

5.1 Opinion QA run 1

5.1.1 Rigid List
The same approach we described in section 3 was

used to extract the answers for rigid list questions.
We used two features to rank the candidate answers.
Both the features used to rank candidate answers
were given equal priority while ranking the candidate
answers.

5.1.2 Squishy List
In addition to the two feature used by summa-

rization system, we used a new feature which boost
the opinion sentences. The third feature scores
the sentences using the weighted linear combination
of opinion/non-opinion score and positive/negative
score. We pick either positive/negative sentences
based on the polarity class predicted in question
analysis module. The opinion score of each sentence
is calculated as follows,

opinionscore = 0.3 ∗ p(sentence, opinion)+
0.7 ∗ p(sentence, polarityclasspredicted)

Final score is the weighted linear combination of
all three features. The weights assigned to query
dependent, query independent and opinion features
are 0.275,0.325 and 0.4 respectivly.

5.2 Opinion QA run 2

5.2.1 Rigid List
The rigid list answers submitted for run 2 were

same as those submitted for run 1.

Type Run 1 Run 2 Best Run Median of Runs
Rigid List 0.131 0.131 0.156 0.063

Squishy List 0.186 0.165 0.186 0.091
Total 0.164 0.154 0.168 0.093

Table 7: Opinion QA results.

Runs F-Measure Coherence Readability Responsiveness
Run 1 0.101 2.045 3.545 2.364
Run 2 0.102 2.045 3.545 2.500

Table 8: Opinion Summarization results.

5.2.2 Squishy List

In this run the opinion score computed was used as
a filter. Sentences are ranked using the two features
we had in the summarization system, and a sentence
is picked only if its opinion score is greater than 0.4.

5.3 Opinion Summarization run 1

Each sentence which is an opinion will be classified as
positive or negative and the polarity class predicted
in the query analysis will be used to pick sentences
of that particular polarity class.

Then we ranked the sentences of particular class
using Senti Wordnet to determine the opinion score.
The final score will be weighted linear combination
of all the three features query dependent, query in-
dependent, and opinion feature.

5.4 Opinion Summarization run 2

The run 2 of opinion summarization task is some
what similar to run the run described in section 5.1.2,
except that weight distributions are changed. The
weights assigned to query dependent, query indepen-
dent and opinion features are 0.5,0.3 and 0.2 respec-
tivly.

6 Results

In this section we present the results of our partic-
ipation in opinion QA and opinion summarization
tasks.

The opinion QA task in TAC 2008 has questions
distributed over 50 targets. Each target has a mini-
mum of one rigid list and squishy list questions and
a maximum of 4 questions of both the types. On the
whole there were 90 rigid list and 90 squishy list ques-
tions. Answers for these questions must be retrieved
from the Blog06 corpus. We have used the top 50
documents for each target distributed by NIST to
retrieve answers. The evaluation metrics for rigid
list questions is F-measure and for squishy list ques-

tions nugget pyramid evaluation is used. We present
our results in the Table 7.

In the above table rigid list scores are the aver-
age F-measure scores over 90 rigid list questions and
Squishy list scores are the average pyramid F scores
over 87 squishy list questions and total scores are
average per-series scores over 50 series.

The opinion Summarization task has questions dis-
tributed over 25 targets and a summary for each tar-
get. In addition to the blog posts, there are optional
answer snippets provided for this task. We did nt
use optional answer snippets in our submission. We
present results in the Table 8.

The various entries in the table are Average F-
measure with beta value 1, Average score for Gram-
maticality, Average score for Non-redundancy, Av-
erage score for Structure/Coherence (including focus
and referential clarity), Average score for Overall flu-
ency/readability, Average score for Overall respon-
siveness respectively.

7 Conclusion

We described our participation in the TAC 2008
opinion QA track and opinion summarization track.
In our approach for rigid list questions, we used both
the authors of the posts and person names within the
posts as a list of possible answers to the PERSON
type questions i.e, we are also adding answer can-
didates of incorrect answer type to the list of possi-
ble answer candidates, which definitely decreases the
precision. So, using a mechanism to distinguish the
fore mentioned two answer types the performance
can be increased. For answering squishy list ques-
tions, we added a third feature to boost the sentences
based on the opinion score of the sentence. Using this
approach we obtained the best performance among
all the runs submitted by the opinion QA task par-
ticipants.

In addition to opinion QA experiments, as a part
of opinion Summarization task, we conducted exper-

iments using both SVM and Rainbow text classifier.
In rainbow we used Word Association as a feature
for the classifier rather than giving exact sentence
for training. In ranking the sentences, we have made
use of Senti Wordnet along with query independent
and query dependent features. We described all the
approaches used and description of runs in the above
sections. The average F-measure scores for each run
over 22 summaries are very low. The reasons for
this might be 1.not using the optional answer snip-
pets provided, which may be the cause for low pre-
cision, 2.We used all the space for summary (total
7000 characters), as a result many sentences out of
context appeared in the summaries and 3. weights
were not distributed properly.

Part III

Recognizing Textual
Entailment(RTE)
Track

1 Introduction

The task consists of recognizing the relation between
two given text fragments, namely Text and Hypoth-
esis. The track consists of two way and three way
tasks. The three way task is to recognize the rela-
tionship between text and hypothesis as:

• ENTAILMENT, if Text entails Hypothesis.

• CONTRADICTION, if Text contradicts Hy-
pothesis.

• UNKNOWN, if the truth of Hypothesis cannot
be determined on the basis of Text.

The two way task is to recognize the relationship
between Text and Hypothesis as

1. ENTAILMENT, if Text entails Hypothesis.

2. NOT ENTAILMENT, if Text does not entail
Hypothesis.

Our approach to this task is to construct the syn-
tactic dependency trees for both text and hypothe-
sis sentences and comparing the nodes of the depen-
dency trees by using the semantic similarity between
the two nodes.

2 Method

An overview of our system architecture is shown in
the figure 1.

Figure 1: System Architecture for RTE

Our system uses the approach of syntactic tree
matching of text and hypothesis syntactic depen-
dency trees (Micol et al., 2007). First we create
the syntactic dependency trees for the sentences in
both Text and Hypothesis. For constructing de-
pendency trees we used Stanford Parser. We will
ignore the irrelevant grammatical categories while
constructing the tree. We maintained a list of
irrelevant grammatical categories. Some of these
categories are Determiners, pre-determiners, post-
determiners, clauses, Inflectional phrases, preposi-
tion and preposition phrases, auxiliary verbs, com-
plementizers. Now that we have dependency trees
for both text and hypothesis, we will check whether
the hypothesis tree is embedded in the text. We say
that hypothesis tree is embedded in texts tree if all
nodes and branches of hypothesis are present in text.
For example let ‘h’ be any node in the hypothesis(we
will start with the root node of Hypothesis).

1. For ‘h’ we try to find a matching node ‘x’ in the
text tree.

(a) First we check for the direct match of the
words, without the use of semantics.

(b) If we cannot find any match, then we use
the Wordnet::Similarity tool (Pedersen et
al., 2006) to find semantic similarity be-
tween the words. If the similarity value be-
tween the two words is greater than 0.8 we
consider that they match.

2. Once we find out the matching node ‘x’ we try
to find matching nodes for the children of ‘h’ in
the children of ‘x’ as described in the previous
step.

The above process starts from the root node of
hypothesis tree and continues until all the nodes of
hypothesis are matched in the text. If we found
a matching node for every node of hypothesis, we
judge that text entails hypothesis. Hence the result
would be ENTAILMENT. If we cannot judge en-
tailment from the above step then we send the de-
pendency trees to separate modules, which recognize
CONTRADICTION and UNKNOWN.

For handling CONTRADICTION, we check
for the negation and antonym features(Snow et al.,
2006). If hypothesis is embedded in text, but text
contains a negation words like not, no, none etc,
then we say that text contradicts hypothesis. We
check whether the verbs in text and hypothesis are
antonyms to each other

For handling UNKNOWN case, the following
features based on named entities and verbs have been
included.

Checking Named Entities. We check whether
all the named entities in the hypothesis are present
in the text. If at least one named entity is not present
in text we would say the result as UNKNOWN.

Checking Verbs. If two or more verbs (other than
auxiliary) in the hypothesis have no match in the
text, then we say that result as UNKNOWN.

3 Evaluation

We submitted two runs to RTE4 challenge. We did
not rank the pairs based on entailment confidence.
We submitted the runs only for the three way task.
The following table shows the official results that our
system obtained in RTE4 challenge

Accuracy
2-way 3-way

Run 1 0.531 0.309
Run 2 0.529 0.307

Table 9: 2-way and 3-way classification accuracy

For the first run, we took the threshold for sim-
ilarity score obtained from Wordnet Similarity tool
as 0.8 and for the second run, we took the threshold
for similarity score as 0.75.

References

Giuseppe Attardi and Maria Simi. 2006. Blog mining
through opinionated words. In Proceedings of TREC
2006, the Fifteenth Text Retrieval Conference.

Terry Copeck, D Inkpen, Anna Kazantseva, A Kennedy,
D Kipp, Vivi Nastase, and Stan Szpakowicz. 2006.
Leveraging duc. In DUC 2006: In the proceedings of
Document Understanding Conference 2006.

Ted Dunning. 1993. Accurate methods for the statistics
of surprise and coincidence. volume 19, pages 61–74.

H. P. Edmundson. 1969. New methods in automatic
extracting. volume 16, pages 264–285. ACM.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local information
into information extraction systems by gibbs sampling.
In ACL ’05: Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, pages
363–370. Association for Computational Linguistics.

Jagadeesh J, Prasad Pingali, and Vasudeva Varma. 2005.
A relevance-based language modeling approach to duc
2005.

Lun-Wei Ku, Yu-Ting Liang, and Hsin-Hsi Chen. 2006.
Opinion extraction, summarization and tracking in
news and blog corpora. In Proceedings of the AAAI
Spring Symposium on Computational Approaches to
Analyzing Weblogs (AAAI-CAAW-06).

C. Lin and Eduard Hovy. 2000. The automated acquisi-
tion of topic signatures for text summarization.

H.P. Luhn. 1958. The automatic creation of literature
abstracts. In IBM Journal of Research and Develop-
ment, Vol. 2, No. 2, pp. 159-165, April 1958.

Daniel Micol, O scar Ferrandez, Rafael Munoz, and
Manuel Palomar. 2007. Semantic similarity based on
syntactic dependency trees applied to textual entail-
ment.

Ani Nenkova, Lucy Vanderwende, and Kathleen McKe-
own. 2006. A compositional context sensitive multi-
document summarizer: exploring the factors that in-
fluence summarization. In SIGIR ’06: Proceedings of
the 29th annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 573–580, New York, NY, USA. ACM.

Ted Pedersen, Siddhart Patwardhan, and Jason Miche-
lizzi. 2006. Wordnet::similarity - measuring the relat-
edness of concepts.

Prasad Pingali, Rahul K, and Vasudeva Varma. 2007.
Iiit hyderabad at duc 07. In DUC’07: Document Un-
derstanding Conference, 2007.

Dou Shen, Jian-Tao Sun, Hua Li, Qiang Yang, and Zheng
Chen. 2007. Document summarization using con-
ditional random fields. In the proceedings of IJCAI
’07., pages 2862–2867. International Joint Conference
on Artificial Intelligence.

Rion Snow, Lucy Vanderwende, and Arul Menezes. 2006.
Effectively using syntax for recognizing false entail-
ment.

Kristina Toutanova, Chris Brockett, Michael Gamon, Ja-
gadeesh Jagarlamundi, Hisami Suzuki, and Lucy Van-
derwende. 2007. The pythy summarization system:
Microsoft research at duc 2007. In DUC 07: In the pro-
ceedings of Document Understanding Conference 2007.

Yiming Yang and Xin Liu. 1999. A re-examination
of text categorization methods. In SIGIR ’99: Pro-
ceedings of the 22nd annual international ACM SIGIR
conference on Research and development in informa-
tion retrieval, pages 42–49. ACM.

Dell Zhang and Wee Sun Lee. 2003. Question classifi-
cation using support vector machines. In SIGIR ’03:
Proceedings of the 26th annual international ACM SI-
GIR conference on Research and development in in-
formaion retrieval, pages 26–32, New York, NY, USA.
ACM.

