
RTE4: Normalized Dependency Tree Alignment Using Unsupervised
N-gram Word Similarity Score

Mehmet Ali Yatbaz
myatbaz@ku.edu.tr
Koç University

Abstract

We propose an unsupervised similarity metric to mea-
sure the relevance of word pairs using the Web1T
data. The alignment scores between the dependency
trees of the text and the hypothesis sentences are cal-
culated based on this new similarity metric and these
scores are used to predict the entailment between the
text and the hypothesis sentences. The new similarity
metric together with other features produces promis-
ing results on validation data sets however it yields an
overall accuracy of %50.9 percent on the RTE4 test
set.

1 System Overview

Our system makes entailment prediction for a text
and hypothesis pair, < t; h >, in three stages:

1. Preprocessing: Sentence segmentation, sentence
tokenization and part of speech tagging of words
are done in this step.

2. Dependency Tree & Normalization: In this stage,
dependency trees of sentences are constructed.
After the dependency tree construction, several
prede�ned normalization rules are applied on
these dependency trees to get simpler (smaller)
ones.

3. Alignment & Prediction: Maximum alignment
scores between all dependency trees of t and h are
calculated based on the new similarity metric.
Using this score together with other features the
system predicts the entailment of < t:h >.

The rest of the paper is organized in the follow-
ing way. Section 1.1 describes the details of the �rst
stage and the tools that are used in this stage. The
tools of the second and the third stage are described

in Section 1.2. Section 1.3, 1.4 and Section 1.5 pro-
vide the necessary information about Normalization
Rules, Dependency Tree Alignment and Similarity
Metric, respectively. Finally, the prediction results
and brief comments are presented in Section 2 and
Section 3.

1.1 Preprocessing

Sentence Segmentation & Tokenization: We use an
in-house sentence splitter to split the multiple sen-
tences into seperate ones. This tool also tokenizes
the sentences.
Lemma assignments: We use an in-house tool to-

gether with the data that we used to train dependency
parser to assign lemmas of each token. Therefore we
prevent any future inconsistencies between the train-
ing data and the output of the tool.
POS tagger: We use SVMTool [6] with � S LRL

option to assign part of speech (POS) tags of each
word.

1.2 Tools

Dependency Tree: We use a non-projective depen-
dency parser based on spanning tree algorithms with
the model that is described in [11]. The result-
ing labeled attachment score on the domain speci�c
data set (i.e. WSJ) is 87.39% and the out of domain
dataset (Brown) is 80.46% [12] . The performance
of this model has two important consequences: (1)
it a¤ects the performance of sentence simpli�cation
rules and (2) it a¤ects the accuracy of the alignment
algorithm.
Named Entity Recognition (NER): We use depen-

dency relations labeled with NAME or TITLE tags
as a primitive method to extract NER.
Web1T Dataset: We use the Web 1T dataset [3]

to extract the frequency counts of the word patterns



that are described in Sec. 1.5 in detail. This data
set contains domain independent counts of the word
sequences up to length �ve in a 1012 word corpus
derived from publicly accessible Web pages.

1.3 Normalization Rules

Normalization is a simpli�cation process for the rel-
atively complex sentences (ex: sentences with Wh-
pronoun, passive voice or appositive structures). The
idea of normalization was also used by several sys-
tems in RTE3 [5] challenge including the top system
developed by [7] and by the system [10] in RTE2 [1].
The normalization rules are applied on the labeled or
unlabelled dependency trees of the text and the hy-
pothesis sentences. Similar to the system [10], simpler
sentences are extracted from each original sentence by
these rules and a set of new sentences is constructed
for each original text and hypothesis sentence. There
are six rules that we use for normalization:

1. Coordination Rule: This rule splits the sentences
that include a coordination label or word. The
rule is recursively applied therefore the new sen-
tences do not have any coordination word.

2. Passive to active: This rule converts a passive
sentence to an active sentence by removing the
auxiliary verb and changing the real subject to
the object of the sentence. Moreover, where pos-
sible this rule also changes the by-phrase to sub-
ject of the sentence.

3. Wh-pronoun: This rule recursively splits the sen-
tences that have a wh-pronoun. (i.e. who, where,
when, what etc.)

4. Appositive rule: This rule constructs new sen-
tences by splitting the sub-tree that is connected
to the main tree with the APPO tag. Moreover,
the nouns or pronouns that have an appositive
are replaced with the appositive to alternate the
sentences with the same meaning.

5. Possessive Rule: This rule catches the possessive
su¢ x and creates new sentences. (ex: Mark �s
new car was stolen. ! Mark has a new car. /
Mark has a car. / Marks �s car was stolen. /
Marks �s new car was stolen.)

6. Auxiliary, Punctuation & Model Rule: Auxil-
iary words, model words and punctuations are
removed from the sentences.

7. Name Rule: For every original sentence we form
a name set to keep the words that have a NAME
or TITLE tag.

1.4 Dependecy Tree Alignment

We use the tree alignment algorithm that is developed
by [9] based on the algorithm of [2]. The algorithm
locates the alignment with the highest score in the
space of all possible alignment of tree T and H where
T and H are the labeled dependency trees of the hy-
pothesis and test sentences. The maximum score of
alignment between node t 2 T and h 2 H is de�ned
by the S(t; h) function in Eq.1.

S(t; h) = max

0BB@
NODEMATCH(t; h)
argmax

ti2children of t
S(ti; h)� �

argmax
hi2children of h

S(t; hi)� �

1CCA (1)

This recursive equation considers two node match-
ing possibilities:

1. Node h can be aligned to node t or vice versa;

2. Node t (h) can be aligned to children of h (t)
with some penalty 0 � � � 1 (0 � � � 1).

The algorithm uses � and � to penalize skipping
nodes from corresponding trees during the alignment.
The hypothesis sentences are much shorter than the
text sentences, therefore skipping a hypothesis�node
will be more costly compared to skipping a test�s
node. Thus, the penalty of the text sentences is set
to zero by default while the penalty of the hypothesis
is estimated using the validation set.
The TREEMATCH function calculates the

matching score between t and h and it is de�ned as:

TREEMATCH(t; h) = w �NODEMATCH(t; h)
+ (1� w) � CHILDMATCH(t; h) (2)

where w is the weight coe¢ cient of the equation. The
Eq.2 is a weighted sum of the matching score of the
words of nodes, and the matching score of their chil-
dren. The value of w is estimated using the validation
set. The similarity between the words of t and h is
calculated by the NODEMATCH function and it
is de�ned as:
NODEMATCH(t; h) =8<: 1 if tword = hword;

1 if tlemma = hlemma;
sim(tlemma; hlemma) if otherwise:
where sim(tlemma; hlemma) is the new similarity

measurement between two words, that is described
in Sec.1.5. There are four main classes of POS tags
which are: noun, verb, adjective and other. If two



words have POS tags from di¤erent classes, then their
similarity score is equal to zero by default. The orig-
inal version of the algorithm uses WordNet [4, 10] in
NODEMATCH to match the words that are syn-
onyms or hypernyms. We remove this part assuming
that our new similarity metric described in Sec.1.5
assigns higher scores to the words that are synonyms
or hypernyms. The similarity between the children of
t and h is calculated by CHILDMATCH function
which is formulated as:

CHILDMATCH(t; h) =

max
p2O(t;h)

0@ X
(i;j)2p

jShj j
jStj

� S(ti; hj)

1A (3)

where Shj is the set of all nodes rooted by ti (similarly
for Sti) and O(t; h) is the set of all possible one-to-
one pairings of the children of t with the children of h.
This function looks for the best one-to-one matching
of children nodes. Therefore maximizing this sum-
mation is nothing but �nding the best sub-alignment
rooted by t and h. If t or h does not have any children
then this function returns 0.

1.5 Similarity Metric

The new similarity metric is de�ned under the as-
sumption that the similarity between two words tends
to be high if the former and the latter tokens of these
words have similar distributions. Otherwise stated,
words with similar frequencies for the former and the
latter tokens have higher scores. In order to satisfy
this assumption, we use the formulation of the DIRT
algorithm [8] with some minor changes. DIRT ex-
tracts the paths and the frequency counts from the
dependency trees constructed by Minipar[?] .On the
other hand, our method extracts the frequency counts
from the Web1T data without using any smoothing
method. Therefore the frequency counts are more
accurate than the commonly used 1GB of newspaper
text (ex: Wall Street Journal). Our method assumes
that every word has only one possible path and it is
de�ned as:

hT�1 W T+1i (4)

where T�1 and T+1 are the place holders of the former
and latter tokens of the word W , respectively. The
similarity score of the two words are calculated in
terms of the mutual information between their paths
and tokens. In other words, paths with common
tokens will be more similar compared to the paths
with less common tokens. We de�ne two patterns

Verb Score
outbid 0.76
cost 0.51
oblige 0.48
diversify 0.46
legalise 0.45
purchase 0.43
design 0.41
include 0.40
store 0.40
toss 0.39

Verb Score
happen 0.10
be 0.10
do 0.07
star 0.07

produce 0.07
seek 0.06
arm 0.06
attack 0.06
kill 0.03
die 0.03

Table 1: Table on the left shows the top 10 similar
verbs of buy and the one on the right shows the bot-
tom 10 similar verbs of buy.

< � ; W > and < W ; � > to extract the frequency
counts of the former and the latter tokens, where � is
a wildcard. The mutual information between a token
t, and its place holder T for a given path p, is de�ned
as:

mi(p; Ti; t) = log(
C(p; Ti; t)� C(�; Ti; �)
C(p; Ti; �)� C(�; Ti; t)

) (5)

where C(p; Ti; t) is the frequency count of token t at
place Ti in path p and � represents a summation over
all possible values of the corresponding argument.
The similarity between the place holder Ti of two dif-
ferent paths p1 and p2 is computed by the formula:

sim(p1; p2; Ti): =P
t2S(p1;Ti)\S(p2;Ti)

mi(p1; Ti; t) +mi(p2; Ti; t)P
t2S(p1;Ti)

mi(p1; Ti; t) +
P

t2S(p2;Ti)
mi(p2; Ti; t)

(6)

where S(pi; Ti) is the set of all possible tokens that
are observed at Ti for a given path pi. As previously
mentioned, the similarity of two words is calculated
using the paths of these words, thus using Eq.6. The
similarity can be de�ned as:

sim(p1; p2) =
q
sim(p

1
; T�1) � sim(p2; T+1) (7)

Top 10 and bottom 10 similar verbs with the verb
buy, based on the similarity score de�ned in this sec-
tion, are presented in Table 1.



Type Train Validation Test
IE 59.3 60.0 52.0
IR 65.8 57.0 46.5
QA 68.9 68.0 54.0
SUM 64.5 60.0 51.0

Average 64.6 61.0 50.9

Table 2: Percent recall scores of the system on the
training, validation and RTE4 test datasets.

1.6 Feature construction and Entail-
ment prediction

For every < t; h > pair, the system de�nes three fea-
tures:(1) domain of the sentence (2) the maximum
score of alignment and (3) the name feature. The do-
main feature is the type of task (i.e. QA, IR, IE or
SUM). The maximum score of alignment feature is
de�ned as:

MaxScore = argmax
ti2Nt

 
argmax
hj2Nh

S(ti; hj)

!
(8)

where Nt and Nh are the set of normalized depen-
dency trees of t and h, and S(ti; hj) is the alignment
function de�ned in Sec.1.4.
The name feature is a binary feature and is set to

1 if t and h have a common name. Otherwise it is set
to 0. We have de�ned this feature to see whether we
can use the labels of the dependency trees to extract
named entities or not.
K-nearest neighbor algorithm is used to predict the

entailment of each < t; h > pair. The parameters,
described in Sec.1.4, are optimized using the training
and validation datasets.

2 Results

Results of the 2-way entailment challenge are ob-
tained by using three data sets: (1) training dataset,
(2) validation dataset and (3) test dataset. The de-
velopment and the test datasets of RTE3 are used as
the training and the validation data set of the system,
respectively. The test dataset is the RTE4 test data.
The trivial baseline of the RTE4 test dataset for the
2-way classi�cation task is 50% by selecting the ma-
jority entailment answer. Table 2 presents the percent
accuracies of the system on each task. The new sim-
ilarity metric together with other features produces
promising results on validation data sets. However
the results on the RTE4 test dataset is signi�cantly

lower than the validation dataset scores. The perfor-
mance of the system is not challenged on 3-way en-
tailment and our experiments mainly focused on the
e¤ect of the system on 2-way entailment problem.

3 Future Work

The similarity scores can be improved by de�ning
more than one path between pairs. The paths can be
extracted naturally from the Web1T data based on
their frequency counts. Multiple paths between pairs
will also enable the system to use n-grams where n
is larger than 3. Another improvement is to apply
smoothing on Web1T data to assign probabilities to
unseen tokens between pairs.

References

[1] R. Bar-Haim, I. Dagan, B. Dolan, L. Ferro,
D. Giampiccolo, B. Magnini, and I. Szpektor.
The Second PASCAL Recognising Textual En-
tailment Challenge. In Proceedings of the Second
PASCAL Challenges Workshop on Recognising
Textual Entailment, pages 1�9, 2006.

[2] R. Barzilay. Information fusion for multidocu-
ment summarization: paraphrasing and gener-
ation. PhD thesis, Columbia University New
York, NY, USA, 2003.

[3] Thorsten Brants and Alex Franz. Web 1T 5-
gram version 1. Linguistic Data Consortium,
Philadelphia, 2006. LDC2006T13.

[4] Christiane Fellbaum, editor. Wordnet: An Elec-
tronic Lexical Database. MIT Press, 1998.

[5] D. Giampiccolo, B. Magnini, I. Dagan, and
B. Dolan. The Third PASCAL Recognizing Tex-
tual Entailment Challenge. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, pages 1�9, 2007.

[6] Jesús Giménez and Lluís Màrquez. Svmtool:
A general pos tagger generator based on sup-
port vector machines. In Proceedings of the 4th
LREC, 2004.

[7] A. Hickl and J. Bensley. A Discourse
Commitment-Based Framework for Recognizing
Textual Entailment. ACL, 2007.

[8] D. Lin and P. Pantel. DIRT-Discovery of Infer-
ence Rules from Text. In Proceedings of ACM



SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 323�328, 2001.

[9] E. Marsi and E. Krahmer. Explorations in sen-
tence fusion. In Proceedings of the 10th European
Workshop on Natural Language Generation, Ab-
erdeen, Scotland, pages 109�117, 2005.

[10] E. Marsi, E. Krahmer, W. Bosma, and M. The-
une. Normalized alignment of dependency trees
for detecting textual entailment. In Proceed-
ings of the Second PASCAL Challenges Work-
shop on Recognising Textual Entailment, pages
56�61, 2006.

[11] Ryan McDonald, Koby Crammer, and Fernando
Pereira. Online large-margin training of depen-
dency parsers. ACL, 2005.

[12] Deniz Yuret, Mehmet Ali Yatbaz, and Ah-
met Engin Ural. Discriminative vs. generative
approaches in semantic role labeling. In Confer-
ence on Computational Natural Language Learn-
ing (CoNLL), Manchaster, UK, Aug 2008.


