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Abstract

In this paper we describe the PeMoZa system participating tothe fourth
Recognizing of Textual Entailment (RTE) challenge. The major novelties
with respect to our systems of the RTE3 challenge is the exploration on com-
bining different data sets, coming from different challenges and from auto-
matically acquired corpora.

1 Introduction

The design of our RTE4 system capitalizes our previous experiences in Recog-
nizing of Textual Entailment challenges (RTE2 [1] and RTE3 [6]). It is based on
a machine learning model that automatically derives first-order (logic) rules from
annotated examples. In contrast with the previous challenges [4, 1, 6], the partici-
pants were not provided with a development set. This motivated our study on the
use of data coming from the different challenges to improve the accuracy of our
system. In such work we considered (a) previous work showingthe failure on the
use of data merged from different challenges and (b) the exploitation of automati-
cally acquired datasets.

In this paper, we introduce the model in Sec. 2 and present theexperiments
and the results in Sec. 3.
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Figure 1: A syntatically analyzed textual entailment pair

2 Learning first-order rewrite rules from examples

Our model is based on a feature space, which can represent first-order syntactic
rewrite rules as described in [12]. This section describes such space (Sec. 2.1) as
well as the kernel function which implicitly defines such space (Sec. 2.2.1).

2.1 First-order syntactic rewrite rules feature space

In the feature space of first-order syntactic rewrite rule (FOSR), each featurefρ

represents a syntactic first-order or grounded rewrite ruleρ. For example, the rule:

ρ′ = l′ → r′=

S

NP X VP

VBP

bought

NP Y

→

S

NP Y VP

VBP

owns

NP X

is represented with the feature< l′, r′ >. A (T,H) pair p activates a featurefρ

if it unifies with the ruleρ. For example, the above featurefρ′ is activated for the
example in Fig. 1.

2.2 Kernels for the FOSR feature space

Since the full FOSR feature space has an exponential number of features, we use
the kernel trick to optimize computations. It consists in defining the scalar product
K(i1, i2) between two instancesi1 andi2 in such space, instead of first defining the
functionF mapping instances in the feature space, i.e.,F(i1) andF(i2) and then
computing the distance. This is possible because kernel-machines, e.g. SVMs,
only useK(i1, i2) and not directly the feature values.
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Our kernel is defined as follows. LetF(T,H) be the set of features that the
example(T,H) activates. For example, the set of featuresF(T1,H1) activated by
the example in Fig. 1 is:F(T1,H1) =

{ 〈
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bought

NP 3

,
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NP 1

NP 1 PP 2
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VBZ

owns

NP 3

〉 , 〈
S

NP 1 VP

,
S

NP 1 VP

〉 , ...}

The kernel functionK((T ′,H ′), (T ′′,H ′′)) that we need to model is then:

K((T ′, H ′), (T ′′, H ′′)) = |F(T ′, H ′) ∩ F(T ′′, H ′′)|

The problem of computing this kernel is exponential in the number of variables
between T and H [12]. We will then use the approximated and efficient version
proposed in [11].

In the rest of the section we propose a kernel function to define the ground
and first-order spaces. We first introduce the tree kernel functions in Section 2.2.1.
Then, we describe how we use this function to define kernels for the FOSR feature
space (Section 2.2.2).

F
(

VP

V

book

NP

D

a

N

flight

)

=
{

VP

V NP

D

a

N

flight

,

VP

V NP

D N

,

NP

D

a

N

flight

,

NP

D

a

N ,

NP

D N

flight

,
NP

D N
,

N

flight
, . . .

}

Figure 2: A syntactic parse tree.

2.2.1 Tree Kernel Functions

Tree kernels represent trees in terms of their substructures (fragments) which are
mapped into feature vector spaces, e.g.,<n. A kernel function measures the simi-
larity between two trees by counting the number of their common fragments. For
example, Figure 2 shows some substructures for the parse tree of the sentence
"book a flight". The main advantage of tree kernels is that, to compute the
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substructures shared by two treesτ1 andτ2, the whole fragment space is not used.
In the following, we report the formal definition presented in [3].

Given the set of fragments{f1, f2, ..} = F , the indicator functionIi(n) is
equal to 1 if the targetfi is rooted at noden and 0 otherwise. A tree kernel is then
defined as:

TK(τ1, τ2) =
∑

n1∈Nτ1

∑

n2∈Nτ2

∆(n1, n2) (1)

whereNτ1 andNτ2 are the sets of theτ1’s andτ2’s nodes, respectively and∆(n1, n2) =
∑|F|

i=1 Ii(n1)Ii(n2). This latter is equal to the number of common fragments rooted
in then1 andn2 nodes and∆ can be evaluated with the following algorithm:

1. if the productions atn1 andn2 are different then∆(n1, n2) = 0;

2. if the productions atn1 andn2 are the same, andn1 andn2 have only leaf
children (i.e. they are pre-terminal symbols) then∆(n1, n2) = 1;

3. if the productions atn1 andn2 are the same, andn1 andn2 are not pre-
terminals then

∆(n1, n2) =

nc(n1)
∏

j=1

(1 + ∆(cj
n1

, cj
n2

)) (2)

wherenc(n1) is the number of the children ofn1 andc
j
n is thej-th child of the

noden. Note that, since the productions are the same,nc(n1) = nc(n2).
Additionally, we add the decay factorλ by modifying steps (2) and (3) as

follows1:

2. ∆(n1, n2) = λ,

3. ∆(n1, n2) = λ

nc(n1)
∏

j=1

(1 + ∆(cj
n1

, cj
n2

)).

The computational complexity of Eq. 1 isO(|Nτ1 | × |Nτ2 |) although the average
running time tends to be linear [10].

The next section shows a technique to assign the same placeholders to similar
text and hypothesis pair.

1To have a similarity score between 0 and 1, we also apply the normalization in the kernel space,
i.e. K′(τ1, τ2) = TK(τ1,τ2)

√

TK(τ1,τ1)×TK(τ2 ,τ2)
.
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2.2.2 Matching First-order Features

Defining kernel functions implementing the FOSR feature space is not trivial. Tree
kernels applied to two texts or two hypotheses match identical fragments. When
variables are added to trees as in the FOSR feature space, thelabeled fragments
are matched only if the basic fragments and the assigned placeholders match. For
example, let us compare the pair in Fig. 1 with the following pair:

T2 ⇒ H2
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The two pairs share many common features such as:

〈

S

NP X VP

VBP

bought

NP Y

,

S

NP X VP

VBP

owns

NP Y

〉

Yet, a simple use of the tree kernel function can lead to miss these common fea-
tures. In(T1,H1) Y is 3 while in (T2,H2) it is 2. To detect this feature with
simple tree kernel functions we need to find a correct mappingbetween placehold-
ers in(T1,H1) and in(T2,H2). It is straightforward to note that the correspon-
dences1=1 and 3=2 allow more substructures (i.e. large part of the trees) to be
identical.

Although, there may be several approaches to accomplish this task, we apply a
basic heuristic which is very intuitive:
Choose the placeholder assignment that maximizes the tree kernel function over
all possible correspondences
More formally, letA andA′ be the placeholder sets of〈T,H〉 and 〈T ′,H ′〉, re-
spectively, without loss of generality, we consider|A| ≥ |A′| and we align a subset
of A to A′. The best alignment is the one that maximizes the syntactic and lexical
overlapping of the two subtrees induced by the aligned set ofanchors. By calling
C the set of all bijective mappings fromS ⊆ A, with |S| = |A′|, to A′, an ele-
mentc ∈ C is a substitution function. We define the best alignmentcmax the one
determined by

cmax = argmaxc∈C(TK(t(T, c), t(T ′, i)) + TK(t(H, c), t(H ′, i)),
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where (1)t(·, c) returns the syntactic tree enriched with placeholders replaced by
means of the substitutionc, (2) i is the identity substitution and (3)TK(τ1, τ2) is
a tree kernel function (e.g. the one specified by Eq. 1) applied to the two treesτ1

andτ2.
At the same time, the desired similarity value to be used in the learning al-

gorithm is given byTK(t(T, cmax), t(T ′, i)) + TK(t(H, cmax), t(H ′, i), i.e. by
solving the following optimization problem:

Kp(〈T,H〉, 〈T ′,H ′〉) = maxc∈C(TK(t(T, c), t(T ′, i)) + TK(t(H, c), t(H ′, i)),
(3)

As a final remark, it should be noted that, (a)Ks(〈T,H〉, 〈T ′,H ′〉) is a sym-
metric function since the set of derivationC are always computed with respect to
the pair that has the largest anchor set and (b) it is not a valid kernel as themax

function does not in general produce valid kernels. However, in [7], it is shown
that when kernel functions are not positive semidefinite like in this case, SVMs
still solve a data separation problem in pseudo Euclidean spaces. The drawback is
that the solution may be only a local optimum. Nevertheless,such a solution can
still be valuable as the problem is modeled with a very rich feature space.

3 Preliminary analysis

We study how effectively using data from different challenges and automatically
acquired corpora. Our preliminary analysis demonstrates that (a) naively merging
data is not effective and (b) the use of automatically acquired corpora decreases
accuracy.

3.1 Experimental Setup

For our experiments, we used the following sets:
news: a corpus of 1600 examples obtained using the methods described for build-
ing the LCC corpus, both for the negative and positive examples [8].2 We randomly
divided the corpus in two parts: 800 training and 800 testingexamples. Each set
contains an equal number of 400 positive and negative pairs.

RTE1,RTE2, andRTE3: the corpora from the first three RTE challenges [4, 1, 6].
We used the standard split between development and testing,where the former is
used for training.

2For negative examples, we adopt the headline - first paragraph extraction methodology.
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Training Corpus Accuracy
RTE2 60.62

RTE1 51.25
RTE3 57.25
news 53.25
RTE2+RTE1 58.5
RTE2+RTE3 59.62
RTE2+news 56.75

Table 1:Accuracy of different training corpora over RTE2 test

We use the Charniak Parser [2] for parsing sentences, and SVM-light [9] ex-
tended with the syntactic first-order rule kernels described in [12, 11]. Additionally,
we used the lexical overlap similarity (lex model) score described in (Corley and
Mihalcea, 2005).

3.2 Experimental Results

For the exploratory experiments, we used the FORS feature space described in Sec-
tion 2. The first goal of the experiment is to check the qualityof the automatically
acquired corpus. We then independently experiment with thenews corpora with
the standard training-test splits as reported above. The accuracy of the system is
94.875% on thenews corpus. Thenews corpus is very easy to separate: pilot
experiments show that when increasing the size of thenews corpus the accuracy
reaches nearly 100%. This suggests that positive examples are very differently
from negative ones. Indeed, we note that the lexical overlapin the negative ex-
amples is extremely low. This makes such dataset not really representative for the
entailment phenomenon.

As a second step, we tested the use of RTE corpora from different challenges.
Some experiments (e.g. [5]) show that RTE corpora are usually not homogeneous
making difficult their joint exploitation. Following such work, we used RTE2 test
set and different training sets obtained as combination of the remaining RTE sets.
Results are reported in Table 1. The best result is achieved by training and testing
on RTE2 (second row). As expected, the models learnt on RTE1 and RTE3 perform
worse than on RTE2. RTE1 is extremely different from RTE2 according to our
FOSR feature space. It is interesting to notice that all the experimented extensions
of the RTE2 training lead to a drop in accuracy, suggesting that none of the corpora
is homogeneous to RTE2. Yet, the performance drop of thenews corpus (RTE2
+ news) is much larger than when using the other two RTE corpora (i.e. RTE2 +
RTE1 and RTE2 + RTE3). This suggests thatnews is very different from RTE and
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Run Training Accuracy Average Precision
1 RTE1+RTE2+RTE3 0.563 0.5619
2 RTE2+RTE3 0.59 0.6287
2 RTE3 0.586 0.603

Table 2:Result submission

cannot be used to improve our systems.

3.3 Submission results

The results of the submission are presented in Tab. 2. Here the model used is
the FORS feature space combined with the lexical feature space. As expected the
results are lower than those obtained in the other years since we expected RTE4
test data different from previous the one developed previous challenges. The best
result has been obtained excluding RTE1 from the learning set.
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