
Tsinghua University at the summarization 

track of TAC 2008 

*Shouyuan Chen, *Yuanming Yu, *Chong Long, 

Feng Jin, Lijing Qin, Minlie Huang, Xiaoyan Zhu1,2,3
 

1Dept. of Computer Science and Technology,  
2Tsinghua National Laboratory for Information Science and Technology, 

3State Key Laboratory on Intelligent Technology and Systems,  
Tsinghua University, Beijing 100084, China 

*The three authors should be all first-authors. 

Corresponding author: Minlie Huang {aihuang@tsinghua.edu.cn} 
 
 

Abstract 

This paper presents our extractive 
summarization systems at the update 
summarization track of TAC 2008. We 
proposed two novel methods, one is based on 
the information distance theory, and the other 
is based on the sentence centrality which 
derives from the centrality concept in the 
graph theory. The evaluation results show that 
the two submitted runs are very competitive to 
generate extractive summaries. 

1 Introduction 

We participated in the update summarization 
track of TAC 2008. The update summarization 
task is to write a short (~ 100 words) 
summary of a set of newswire articles, under 
the assumption that the user has already read a 

given set of earlier articles. The summaries 
will be evaluated for readability and content 
(based on Columbia University's Pyramid 
Method) [1]. 
We developed two systems for the task. The 
first one was based on the Kolmogorov 
complexity and information distance theory. 
Here we provide an initial pragmatic study of 
measuring information shared by many 
objects, which can be applied to make a 
summary given a group of news articles: 
firstly, the optimal summary can be viewed as 
the one with the smallest information distance 
to all original news articles. In other words, 
this summary can cover the most information 
contents shared by all those articles. And then, 
the text summarization problem is converted 
into an optimization problem limited by the 
summary's information content (the length of 
summary). Finally, to solve this optimization 
problem, we proposed an approach to 



approximate K(.) and D(.,.). The results 
ranked 1st by average overall responsiveness, 
3rd by average linguistic quality, 5th by 
average modified pyramid score, and 5th by 
macroaverage modified score.  
The second system was based on the 
centrality concepts within the graph theory. 
We constructed a graph model in which nodes 
refer to sentences and edges represent the 
similarities between sentences which are 
calculated by a latent semantic indexing (LSI) 
algorithm. We proposed a variation of 
eigenvector centrality calculation method on 
the graph model to estimate the relevant 
importance of sentences, which contributed to 
choose the candidate sentences and score the 
sentences as a feature. In addition, the 
background information provided in 
previously seen documents was reduced by 
performing the eigenvector calculation on a 
combination of two graph models of currently 
processing documents and previously seen 
documents. In short, the centrality of a 
sentence would be increased by the 
similarities with important sentences in 
current documents, while it had a negative 
correlation with major information presented 
in former documents set. The results ranked 
1st by average overall responsiveness, 2nd by 
average linguistic quality, 7th by average 
modified pyramid score, and 7th by 
macroaverage modified score. 
In the following sections, we introduce the 
two systems respectively, and finally 
concluding remarks are made. 

2 The first system: information-distance 

based update summarization 

2.1 Kolmogorov complexity and 

information distance 
Kolmogorov complexity was introduced 
almost half a century ago by R. Solomonoff, 
A.N. Kolmogorov and G. Chaitin, see [2]. It is 
now widely accepted as an information theory 
for individual objects parallel to that of 
Shannon's information theory which is 
defined on an ensemble of objects. Fix a 
universal Turing machine U, the Kolmogorov 
complexity of a binary string x condition to 
another binary string y, KU(x|y), is the length 
of the shortest (prefix-free) program for U that 
outputs x with input y. It can be shown that 
for different universal Turing machine Us, for 
all x,y 

KU(x|y)=KU’(x|y)+C, 
where the constant C depends only on U’. 
Thus KU(x|y) can be simply written as K(x|y). 
They write KU(x|y), where ε  is the empty 
string, as K(x). For a comprehensive study of 
Kolmogorov complexity and its applications, 
see [3]. 
Given Kolmogorov complexity, information 
distance was defined in [2] as the energy to 
convert between x and y to be the smallest 
number of bits needed to convert from x to y 
and vice versa. That is, with respect to a 
universal Turing machine U, the cost of 
conversion between x and y is: 

E(x,y)=min{|p|:U(x,p)=y, U(y,p)=x}. 
It is clear that E(x,y)≤K(x|y)+K(y|x). From 
this observation, and some other concerns, 
Bennett et al. have defined the sum distance in 
[3]: 

Dsum(x,y)=K(x|y)+K(y|x). 
However, the following theorem proved in [3] 
was a surprise: 

E(x,y)=max{K(x|y),K(y|x)}. 
Thus, the max distance was defined in [3]: 

Dmax(x,y)=max{K(x|y),K(y|x)}  (2.1) 
Now given an object x, we can get its 



information content through its Kolmogorov 
complexity K(x); given two objects K(x) and 
K(y), we can get the information between 
them through Dmax(x,y). However, given n 
objects x1,x2,…,xn, how to get the information 
shared by them?  
If only the most shared information, which 
can be viewed as “information center” c, is 
needed, we can find the one with the one with 
minimal Dmax(c, x1,x2,…,xn). 
2.2 Application in Text Summarization 
TAC update summarization task is to write a 
short summary S of n newswire articles 
B1,B2,…,Bn, under the assumption that the user 
has already read a given set of earlier m 
articles A1,A2,…,Am. According to the theory 
of our theory, S must satisfy the following 
condition: 

minDmax(S, B1B2…Bn| A1A2…Am), |S|≤Θ 
Since the information distance between the 
summary and these articles is not computable, 
in the following section we will take some 
steps to approximate it. Although some steps 
can be regarded as a very rough estimation of 
information content (or Kolmogorov 
complexity) of the review articles, from the 
experiment results in section 3 we will see 
that this already gives very good practical 
results. 
2.3 How to approximate Dmax(.,.) 
Let A∪B to be all information contained in 
article A or B, and A\B to be all information 
contains in A but not in B, then we can get: 

 K(AB)=K(A∪B)   K(A|B)=K(A\B) 
Suppose S contains l sentences S1,S2,…,Sl, 
moreover, to be an ideal summary, all the 
information contained in S should also be in 
B1,B2,…,Bn, but not in A1,A2,…,Am, that is 

S1,S2,…,Sl∈B1B2…Bn\ A1,A2,…,Am 

According to (2.1): 
Dmax(S, B1B2…Bn| A1A2…Am) 

=max{K(S|B1B2…BnA1A2…Am),  
K(B1B2…Bn| SA1A2…Am)} 

Since S1,S2,…,Sl∈B1B2…Bn\ A1,A2,…,Am, 
K(S|B1B2…BnA1A2…Am)≤K(B1B2…Bn| 
SA1A2…Am)}, therefore, 

Dmax(S, B1B2…Bn| A1A2…Am) 
=K(B1B2…Bn| S A1A2…Am) 
=K(B1B2…Bn| S1S2…SlA1A2…Am) 
=K(B1B2…Bn\A1A2…Am)\S1S2…Sl) 

As B1B2…Bn and A1A2…Am are already known 
and S1S2…Sl are in B1B2…Bn\A1A2…Am, the 
more information S1S2…Sl contains, the less 
one (B1B2…Bn\A1A2…Am)\S1S2…Sl has. 
Therefore, in order to get minDmax, we need to 
get max{K(S1S2…Sl)}. 
Suppose in S1,S2,…,Sl, each “important” word 
carries one unit of information, then the 
Kolmogorov complexity can be intuitively 
estimated by 

K(S) =|S| 
However, in a sentence, which words are 
“important”? In our method, two conditions 
must be satisfied: (1) they are not 
“stop-words”; (2) their document frequency 
(df) is larger than a threshold. Intuitively, 
those “not important” words contribute much 
less information to the whole sentence so they 
can be ignored in our approximation. 
2.4 Sentence selection 
The next problem is how to generate S1S2…Sl 

to make a good summary S. 
It is clear that under most conditions, in an 
article, there is always one sentence which can 
cover most of this article’s information. 
Therefore, for one article, we tend to only find 
one sentence to represent the whole article 
under the given topic. According to the task 
requirement, the most representative must be 
completely related to the topic. 
In TAC 2008, for a topic, named entities, such 
as special words or phrases of a person, a 



place, an organization, et al., contain the most 
part of the information, and they are “key 
words”. For example, in the following two 
topics’ narratives: 

(1) Describe developments in the 
production and launch of the Airbus A380. 

(2) Describe steps taken and worldwide 
reaction prior to introduction of the Euro on 
January 1, 1999. Include predictions and 
expectations reported in the press. 
Sentence (1) has two key words “Airbus” and 
“A380”, and (2) has “Euro” and “January 1, 
1999”. Moreover, “January 1, 1999” will have 
the different forms, such as “January 1st, 
1999” and “1/1/1999”. A most representative 
sentence of an article should contain the 
information similar to a topic, which means it 
must have similar key words. 
Here named entity recognition method [3] is 
used to all useful entities contained in a 
topic’s title, narrative, and each sentence of an 
article. We also develop a method to select the 
words or phrases that indicates the date. In an 
article B, the sentence with minimal distance 
to the union of its topic’s title and narrative 
(named T) is just the most representative one: 

min Dmax(T,P)  P∈B 
Similar to estimating K(S1S2…Sl) mentioned 
in the above section: K(S) =|S|. Only one 
different is that “important words” refer to 
those have been annotated as name or date 
entities which named key words. 
With this method, for each document Bi 

(1≤i≤n) in cluster B, one representative 
sentence Si can be found, so there should be n 
representative sentences. However, under 
certain situations, two or more articles’ 
representative sentences (written as Si and Sj) 
may have nearly the same meaning, which 
will contribute less to K(SiSj) due to much 
overlap of Si and Sj. Therefore, if two 

sentences Si and Sj have (1) more than eight 
continuous common words, or (2) more than 
60% common words, the sentence with 
smallest distance to the topic will be chosen 
from these two articles (except Si and Sj) to be 
replaced with one of them. 
Finally, using these methods mentioned above, 
the combination S1S2…Sl with most K(S1S2…Sl) 
is selected into the final summary S. 
2.5 Experiment Results 
Our text summarization method founded on 
Kolmogorov complexity is complemented and 
tested in TAC 2008. The experiment results 
under pyramid evaluation methods are as 
follows: 

 
Evaluation 
Method 

Best 
Result 

Our 
Result 

Rank

Average Modified 
Score 

0.336 0.309 5 

Macroaverage 
Modified Score 
with 3 models 

0.331 0.304 5 

Average 
Linguistic Quality

3.333 2.958 3 

Average Overall 
Responsiveness 

2.667 2.667 1 

Table 1. The evaluation results for the first 
system. 
 
Obviously, our method has got generally 
higher rankings under the pyramid methods, 
however, except average overall 
responsiveness evaluation, the best results are 
significantly better than ours. 

3 The second system: sentence 

centrality based update summarization 

The system works as follows: First, we 



stemmed all the words and segmented articles 
into sentences (viewed as documents 
hereafter). Then we built a matrix Wt*d (terms 
*sentences) according to the term frequency 
and document frequency, and soon later 
constructed a sentence-sentence similarity 
matrix SIM by employing an LSI algorithm to 
calculate the similarities between sentences.  
After that, we propose an approach to 
calculate sentence centrality on the SIM 
matrix. Informally, the sentence centrality is 
the measure of the relevant importance of a 
sentence in the current processing cluster, and 
its importance is decreased if it was 
previously seen in given clusters. All these 
centralities, which contribute to choose the 
candidate sentences, are computed mainly 
based on an eigenvector calculation.  
As the last step of our summarization process, 
we generate the summary by searching the 
combinations of sentences with a maximal 
summary score in the candidate set. In this 
process, we score the summary as a whole by 
combining the word scores, sentence 
centralities. And the redundancy among 
sentences is also considered in the summary 
scoring schema. 
We tuned the weights of our method manually 
based on the maximization of the ROUGE-2 
measure upon the DUC 2007 Update Task 
corpus. 
3.1 Scoring terms 
We design a scoring function to measure how 
important each word is. Basically, the term 
frequency and document frequency are 
considered to score a term. We set a weight 
according to the position where the term is 
observed, which are shown in Table 2.  
 
Position Weight 
Narrative&Topic 8 

Headline 4 
aFirst Sentence of a document 1 
bFirst Sentence of a paragraph 0.2 
Not a nor b 0.2 
others 0.04 
Table 2. Weights for the term frequency 
 
Then we design the following function to 
score a term:  

Score(w)=tf(w)0.4
*Fd(df(w))    (3.1) 

Where the tf(w) is the total frequency of term 
w across all documents, df(w) is the document 
frequency, and Fd(.) is a weight function as 
designed in the below table: 
df(w) Fd(.) df(w) Fd(.) 
0 0 6 8 
1 1 7 8.2 
2 2 8 8.4 
3 4 9 8.5 
4 6 10 8.6 
5 7 >10 8.6 
Table 3. Weights for the document frequency 
Using the scoring function, we only keep the 
top 300 terms in this task to build the W 
matrix and SIM matrix. 
 
3.2 Building the W matrix and SIM 
matrix 
After the 300 terms selected out, the 
documents are segmented into sentences. 
Then we build the W=(wij)t×d matrix 
(term-document matrix), where wij is the 
frequency of the i-th word appearing in the 
j-th sentence. t is the number of words, and d 
is the number of sentences. 
Then we use LSI method [5] to decompose 
the W matrix into the product of three 
matrixes:  

(w) t×d≈(T) t×k (S) k×k (DT) k×d    (3.2) 
where k is less than the rank of matrix W. 
Define Y=XTX=DS2DT, and the SIM=(Simi,j) 



matrix can be defined as follows: 

        ij
i j

ii jj

Y
S im

Y Y, =     (3.3) 

For a single cluster, Simij denotes the 
similarity between sentence i and sentence j. 
If we generate a summary for cluster A, the 
matrix can be used to construct the graph. 
Remember that the update summarization task 
requires providing as much new information 
as possible for cluster B if we have already 
read cluster A. Let us go back to the problem: 
given cluster A, we need to generate a 
summary for cluster B, to provide as much 
new information as possible.  
Suppose there are nA sentences in cluster A, 
and nB in cluster B, then the original W matrix 
could be rewritten as W’=(WA WB) where WA 
is the term-document matrix for cluster A and 
WB for cluster B. The rows of W’ represents 
important words selected from both cluster A 
and B. Following the line of thinking, the 
similarity matrix can be formulated as 
follows: 

AA AB

BA BB

SIM SIM
SIM

SIM SIM

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

=    (3.4) 

where the SIMAA is the similarity matrix for 
sentences within cluster A and SIMAB is the 
similarity matrix between sentences in cluster A 
and those in cluster B. 
 
3.3 Computing the sentence centrality 
The centrality is a concept of graph theory for 
measuring how important a vertex is in a 
graph. The idea is similar to the process of 
extractive summarization which is to find 
important representative sentences from 
documents. In our method, each sentence is 
viewed as a vertex, and there is an edge 
connecting sentence i and sentence j with 

weight Simij if i≠j. On such a graph, we use a 
power iteration algorithm to compute the 
centrality of a vertex. 
The centrality idea is that a sentence is 
important if it is similar to other important 
sentences. Translate this to the graph language: 
if a vertex connects with other important 
vertices with high weights, the vertex itself is 
important. Suppose the centrality of sentence 
s is Cs, then the idea is formally as: 

s r s r
r D r s

C Sim Cλ ,
∈ , ≠

= ∑    (3.5) 

where Simr,s is the similarity between sentence 
r and s, and D={1,2,…,d} (d: the number of 
sentences). Define the adjacency matrix 
M=(mij) as follows: 

,

0,
ij

ij

S im i j
m

i j

≠⎧
= ⎨

=⎩
 

Let C=(C1,C2,…,Cd)T, we have the matrix 
form for the formula (3.5): 
      λC = M*C              (3.6) 
Notice that C is the eigenvector of M, and λ is 
the corresponding eigenvalue. This inspires us 
to apply the classic eigenvector calculation 
algorithm. In our system, we use the power 
iteration algorithm.  
(1) Choose an arbitrary random vector 

U=(u1,u2,…,ud)T that satisfies 

1max 1i d iu≤ ≤ | |≤ ; 

(2) V=M*U, 1max { }i d ik v≤ ≤= | | ; 

(3) Let u v k′ = / , 1max i d i iu uδ ≤ ≤= | − | ; 

(4) If δ<0.001 exit the iteration; otherwise go 
to step 2. 

Note that M is a real symmetric matrix and 
hence its eigenvalues should be real numbers. 
It can be shown that when the eigenvalues of 
M, λ1, λ2,λ3…λd, satisfy λ1>λ2>λ3>…>λd, this 



algorithm will terminate in finite steps and 
returns the largest eigenvalue and its 
corresponding eigenvector.  
From the viewpoint of graph theory, vector C 
is actually the “eigenvector centrality", which 
represents the importance of vertices in a 
graph whose adjacency matrix is M.  
Our approach is similar to LexRank [6] and 
TextRank [7], but we developed a completely 
different way to compute the sentence 
centrality for the update summarization task. 
3.4 Computing the sentence centrality 
for cluster B with cluster A given 
In cluster B, the system already has “read" 
documents in cluster A. Thus those sentences 
already highlighted in cluster A should not be 
emphasized too much now in cluster B. The 
system should provide more new important 
information without mentions in already seen 
documents. Intuitively, if a sentence in cluster 
B is very similar to an important sentence in 
cluster A, the sentence should not be included 
in the summary of cluster B since the 
information is already covered by cluster A. 
Hence, we should take into account the 
similarity between sentences in cluster B and 
sentences in cluster A. We change the 
equation as follows:  

B A

s r s r r s r
r D r s r D r s

C Sim C Sim Cλ β
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎜ ⎟ ⎜ ⎟

, ,⎢ ⎥⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎢ ⎥∈ , ≠ ∈ , ≠⎝ ⎠ ⎝ ⎠⎣ ⎦

= −∑ ∑ (3.7) 

Where β is a penalty constant which is set to 
0 8.  in practice.  
Noting the way that we construct the SIM 
matrix for cluster B as shown in (3.4), SIM 
can be written as following:  

' AA AB

BA BB

SIM SIM
SIM

SIM SIM
β

β

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

−
=

−
 (3.8) 

where SIMAA has |DA| rows, SIMBB has |DB| 
rows.  

Apply the same power iteration algorithm on 
this matrix, we can obtain the centralities of 
sentences and furthermore we can select out 
those important sentences as candidate 
sentences of the final summary. 
 
3.5 Summary extraction 
The extraction process has three steps. First, 
select candidate sentences according to the 
centrality computed in section 3.4. The 
candidates consist of the following two parts: 
(1) the first sentence of each article whose 
sentence centrality is among the top 1/3 of all 
sentences in the cluster; (2) sentences that are 
not the first sentence, but with high centrality 
scores. The size of the candidate sentence set 
is set to 15 in our system. 
Second, search for the best sentence 
combination. We enumerate all possible 
sentence combinations from the candidate set, 
and score the summary as a whole that is 
different from the traditional approaches 
which scores sentences independently. 
Formally, the algorithm can be written as the 
following:  
(1) bestScore=-∞, bestSum=Θ; 
(2) Find a combination S=s1,s2,…,sm where si 

is chosen from the candidate set, and the 
total number of words in S satisfies the 
length limit (100 in this task); 

(3) Calculate the score of the summary, 
SumScore(S), which will be introduced 
soon later. If SumScore(S)>bestScore, 
bestScore=SumScore(S), bestSum=S; 

(4) If all combinations are enumerated, exit; 
otherwise go to step (2). 

Now it is the turn to describe the scoring 
function of a summary. Our consideration is 
that a good summary should cover various 
kinds of important information mentioned in 
the articles, and it should have as little 



redundant information as possible.  
Firstly, we calculate the maximal similarity 
(which could be treated as a measurement of 
redundancy) between sentences in the 
summary S, as follows:  

1
( ) max

i js si j m
R S Sim ,≤ , ≤

=  

We should not accept the summary whose 
information is highly redundant. In our system, 
if R(S)>0.5, the summary is discarded.  
Secondly, for each word w , observed in S, we 
evaluate its contribution to the summary score 
as following:  

0 5

1
( )

i
i

w w i s
i m w s

count occur s C .

≤ ≤ , ∈

= ∑  

where occurw(si) represents the occurrence 
number of word w in sentence si, Csi is the 
sentence centrality of si which is described in 
section 3.4.  
We are now ready to combine the word score 
Score(w) shown in the formula (3.1) and 
design the final score of the summary. We 
define maxscore = maxany w {Score(w)},  
power(w), and finally SumScore(S) as below: 

 
0 15( )( ) 1 0 45 2Score wPower w

maxscore

.⎛ ⎞⎛ ⎞= − . /⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

( )( ) ( )Power w
w

w S
SumScore S count

∈

= ∑  

The final step of summary extraction is to 
re-order sentences within the extracted 
summary. Suppose the extracted summary is 
bestSum = {b1,b2,…,bn}, then we compute the 
summary score of each individual sentence bi 
as follows: 

P(bi)=SumScore({bi}), 1≤i≤n 
Sort these sentences according to P(bi) in an 
descending order, and this is the final 
summary. 
 
 

3.6 Evaluation results 
The evaluation results from the official 
evaluation from TAC 2008 are shown in the 
following table. Among 58 submitted runs, 
our results are competitive. 
Evaluation 
Method 

Best 
Result 

Our 
Result 

Rank

Average 
Modified Score 

0.336  0.304  7  

Macroaverage 
Modified Score 
with 3 models 

0.331  0.299  7  

Average 
Linguistic 
Quality 

3.333  3.073  2  

Average Overall 
Responsiveness 

2.667  2.667  1  

Table 4. The Evaluation results for the second 
system. 

Conclusion 

In this paper, we have presented two systems 
for the update summarization task of TAC 
2008. The first system is based on the 
information distance theory, and the other is 
based the graph centrality. Although there are 
still many parameters to be tuned 
experimentally, the two methods have already 
contributed very competitive results during 
the official evaluation. 
Still, fine tuning of these two systems, and 
more sophisticated natural language 
processing techniques, are awaiting to be 
exploited. 
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