
Tsinghua University at the summarization

track of TAC 2008

*Shouyuan Chen, *Yuanming Yu, *Chong Long,

Feng Jin, Lijing Qin, Minlie Huang, Xiaoyan Zhu1,2,3

1Dept. of Computer Science and Technology,
2Tsinghua National Laboratory for Information Science and Technology,

3State Key Laboratory on Intelligent Technology and Systems,
Tsinghua University, Beijing 100084, China

*The three authors should be all first-authors.

Corresponding author: Minlie Huang {aihuang@tsinghua.edu.cn}

Abstract

This paper presents our extractive
summarization systems at the update
summarization track of TAC 2008. We
proposed two novel methods, one is based on
the information distance theory, and the other
is based on the sentence centrality which
derives from the centrality concept in the
graph theory. The evaluation results show that
the two submitted runs are very competitive to
generate extractive summaries.

1 Introduction

We participated in the update summarization
track of TAC 2008. The update summarization
task is to write a short (~ 100 words)
summary of a set of newswire articles, under
the assumption that the user has already read a

given set of earlier articles. The summaries
will be evaluated for readability and content
(based on Columbia University's Pyramid
Method) [1].
We developed two systems for the task. The
first one was based on the Kolmogorov
complexity and information distance theory.
Here we provide an initial pragmatic study of
measuring information shared by many
objects, which can be applied to make a
summary given a group of news articles:
firstly, the optimal summary can be viewed as
the one with the smallest information distance
to all original news articles. In other words,
this summary can cover the most information
contents shared by all those articles. And then,
the text summarization problem is converted
into an optimization problem limited by the
summary's information content (the length of
summary). Finally, to solve this optimization
problem, we proposed an approach to

approximate K(.) and D(.,.). The results
ranked 1st by average overall responsiveness,
3rd by average linguistic quality, 5th by
average modified pyramid score, and 5th by
macroaverage modified score.
The second system was based on the
centrality concepts within the graph theory.
We constructed a graph model in which nodes
refer to sentences and edges represent the
similarities between sentences which are
calculated by a latent semantic indexing (LSI)
algorithm. We proposed a variation of
eigenvector centrality calculation method on
the graph model to estimate the relevant
importance of sentences, which contributed to
choose the candidate sentences and score the
sentences as a feature. In addition, the
background information provided in
previously seen documents was reduced by
performing the eigenvector calculation on a
combination of two graph models of currently
processing documents and previously seen
documents. In short, the centrality of a
sentence would be increased by the
similarities with important sentences in
current documents, while it had a negative
correlation with major information presented
in former documents set. The results ranked
1st by average overall responsiveness, 2nd by
average linguistic quality, 7th by average
modified pyramid score, and 7th by
macroaverage modified score.
In the following sections, we introduce the
two systems respectively, and finally
concluding remarks are made.

2 The first system: information-distance

based update summarization

2.1 Kolmogorov complexity and

information distance
Kolmogorov complexity was introduced
almost half a century ago by R. Solomonoff,
A.N. Kolmogorov and G. Chaitin, see [2]. It is
now widely accepted as an information theory
for individual objects parallel to that of
Shannon's information theory which is
defined on an ensemble of objects. Fix a
universal Turing machine U, the Kolmogorov
complexity of a binary string x condition to
another binary string y, KU(x|y), is the length
of the shortest (prefix-free) program for U that
outputs x with input y. It can be shown that
for different universal Turing machine Us, for
all x,y

KU(x|y)=KU’(x|y)+C,
where the constant C depends only on U’.
Thus KU(x|y) can be simply written as K(x|y).
They write KU(x|y), where ε is the empty
string, as K(x). For a comprehensive study of
Kolmogorov complexity and its applications,
see [3].
Given Kolmogorov complexity, information
distance was defined in [2] as the energy to
convert between x and y to be the smallest
number of bits needed to convert from x to y
and vice versa. That is, with respect to a
universal Turing machine U, the cost of
conversion between x and y is:

E(x,y)=min{|p|:U(x,p)=y, U(y,p)=x}.
It is clear that E(x,y)≤K(x|y)+K(y|x). From
this observation, and some other concerns,
Bennett et al. have defined the sum distance in
[3]:

Dsum(x,y)=K(x|y)+K(y|x).
However, the following theorem proved in [3]
was a surprise:

E(x,y)=max{K(x|y),K(y|x)}.
Thus, the max distance was defined in [3]:

Dmax(x,y)=max{K(x|y),K(y|x)} (2.1)
Now given an object x, we can get its

information content through its Kolmogorov
complexity K(x); given two objects K(x) and
K(y), we can get the information between
them through Dmax(x,y). However, given n
objects x1,x2,…,xn, how to get the information
shared by them?
If only the most shared information, which
can be viewed as “information center” c, is
needed, we can find the one with the one with
minimal Dmax(c, x1,x2,…,xn).
2.2 Application in Text Summarization
TAC update summarization task is to write a
short summary S of n newswire articles
B1,B2,…,Bn, under the assumption that the user
has already read a given set of earlier m
articles A1,A2,…,Am. According to the theory
of our theory, S must satisfy the following
condition:

minDmax(S, B1B2…Bn| A1A2…Am), |S|≤Θ
Since the information distance between the
summary and these articles is not computable,
in the following section we will take some
steps to approximate it. Although some steps
can be regarded as a very rough estimation of
information content (or Kolmogorov
complexity) of the review articles, from the
experiment results in section 3 we will see
that this already gives very good practical
results.
2.3 How to approximate Dmax(.,.)
Let A∪B to be all information contained in
article A or B, and A\B to be all information
contains in A but not in B, then we can get:

 K(AB)=K(A∪B) K(A|B)=K(A\B)
Suppose S contains l sentences S1,S2,…,Sl,
moreover, to be an ideal summary, all the
information contained in S should also be in
B1,B2,…,Bn, but not in A1,A2,…,Am, that is

S1,S2,…,Sl∈B1B2…Bn\ A1,A2,…,Am

According to (2.1):
Dmax(S, B1B2…Bn| A1A2…Am)

=max{K(S|B1B2…BnA1A2…Am),
K(B1B2…Bn| SA1A2…Am)}

Since S1,S2,…,Sl∈B1B2…Bn\ A1,A2,…,Am,
K(S|B1B2…BnA1A2…Am)≤K(B1B2…Bn|
SA1A2…Am)}, therefore,

Dmax(S, B1B2…Bn| A1A2…Am)
=K(B1B2…Bn| S A1A2…Am)
=K(B1B2…Bn| S1S2…SlA1A2…Am)
=K(B1B2…Bn\A1A2…Am)\S1S2…Sl)

As B1B2…Bn and A1A2…Am are already known
and S1S2…Sl are in B1B2…Bn\A1A2…Am, the
more information S1S2…Sl contains, the less
one (B1B2…Bn\A1A2…Am)\S1S2…Sl has.
Therefore, in order to get minDmax, we need to
get max{K(S1S2…Sl)}.
Suppose in S1,S2,…,Sl, each “important” word
carries one unit of information, then the
Kolmogorov complexity can be intuitively
estimated by

K(S) =|S|
However, in a sentence, which words are
“important”? In our method, two conditions
must be satisfied: (1) they are not
“stop-words”; (2) their document frequency
(df) is larger than a threshold. Intuitively,
those “not important” words contribute much
less information to the whole sentence so they
can be ignored in our approximation.
2.4 Sentence selection
The next problem is how to generate S1S2…Sl

to make a good summary S.
It is clear that under most conditions, in an
article, there is always one sentence which can
cover most of this article’s information.
Therefore, for one article, we tend to only find
one sentence to represent the whole article
under the given topic. According to the task
requirement, the most representative must be
completely related to the topic.
In TAC 2008, for a topic, named entities, such
as special words or phrases of a person, a

place, an organization, et al., contain the most
part of the information, and they are “key
words”. For example, in the following two
topics’ narratives:

(1) Describe developments in the
production and launch of the Airbus A380.

(2) Describe steps taken and worldwide
reaction prior to introduction of the Euro on
January 1, 1999. Include predictions and
expectations reported in the press.
Sentence (1) has two key words “Airbus” and
“A380”, and (2) has “Euro” and “January 1,
1999”. Moreover, “January 1, 1999” will have
the different forms, such as “January 1st,
1999” and “1/1/1999”. A most representative
sentence of an article should contain the
information similar to a topic, which means it
must have similar key words.
Here named entity recognition method [3] is
used to all useful entities contained in a
topic’s title, narrative, and each sentence of an
article. We also develop a method to select the
words or phrases that indicates the date. In an
article B, the sentence with minimal distance
to the union of its topic’s title and narrative
(named T) is just the most representative one:

min Dmax(T,P) P∈B
Similar to estimating K(S1S2…Sl) mentioned
in the above section: K(S) =|S|. Only one
different is that “important words” refer to
those have been annotated as name or date
entities which named key words.
With this method, for each document Bi

(1≤i≤n) in cluster B, one representative
sentence Si can be found, so there should be n
representative sentences. However, under
certain situations, two or more articles’
representative sentences (written as Si and Sj)
may have nearly the same meaning, which
will contribute less to K(SiSj) due to much
overlap of Si and Sj. Therefore, if two

sentences Si and Sj have (1) more than eight
continuous common words, or (2) more than
60% common words, the sentence with
smallest distance to the topic will be chosen
from these two articles (except Si and Sj) to be
replaced with one of them.
Finally, using these methods mentioned above,
the combination S1S2…Sl with most K(S1S2…Sl)
is selected into the final summary S.
2.5 Experiment Results
Our text summarization method founded on
Kolmogorov complexity is complemented and
tested in TAC 2008. The experiment results
under pyramid evaluation methods are as
follows:

Evaluation
Method

Best
Result

Our
Result

Rank

Average Modified
Score

0.336 0.309 5

Macroaverage
Modified Score
with 3 models

0.331 0.304 5

Average
Linguistic Quality

3.333 2.958 3

Average Overall
Responsiveness

2.667 2.667 1

Table 1. The evaluation results for the first
system.

Obviously, our method has got generally
higher rankings under the pyramid methods,
however, except average overall
responsiveness evaluation, the best results are
significantly better than ours.

3 The second system: sentence

centrality based update summarization

The system works as follows: First, we

stemmed all the words and segmented articles
into sentences (viewed as documents
hereafter). Then we built a matrix Wt*d (terms
*sentences) according to the term frequency
and document frequency, and soon later
constructed a sentence-sentence similarity
matrix SIM by employing an LSI algorithm to
calculate the similarities between sentences.
After that, we propose an approach to
calculate sentence centrality on the SIM
matrix. Informally, the sentence centrality is
the measure of the relevant importance of a
sentence in the current processing cluster, and
its importance is decreased if it was
previously seen in given clusters. All these
centralities, which contribute to choose the
candidate sentences, are computed mainly
based on an eigenvector calculation.
As the last step of our summarization process,
we generate the summary by searching the
combinations of sentences with a maximal
summary score in the candidate set. In this
process, we score the summary as a whole by
combining the word scores, sentence
centralities. And the redundancy among
sentences is also considered in the summary
scoring schema.
We tuned the weights of our method manually
based on the maximization of the ROUGE-2
measure upon the DUC 2007 Update Task
corpus.
3.1 Scoring terms
We design a scoring function to measure how
important each word is. Basically, the term
frequency and document frequency are
considered to score a term. We set a weight
according to the position where the term is
observed, which are shown in Table 2.

Position Weight
Narrative&Topic 8

Headline 4
aFirst Sentence of a document 1
bFirst Sentence of a paragraph 0.2
Not a nor b 0.2
others 0.04
Table 2. Weights for the term frequency

Then we design the following function to
score a term:

Score(w)=tf(w)0.4
*Fd(df(w)) (3.1)

Where the tf(w) is the total frequency of term
w across all documents, df(w) is the document
frequency, and Fd(.) is a weight function as
designed in the below table:
df(w) Fd(.) df(w) Fd(.)
0 0 6 8
1 1 7 8.2
2 2 8 8.4
3 4 9 8.5
4 6 10 8.6
5 7 >10 8.6
Table 3. Weights for the document frequency
Using the scoring function, we only keep the
top 300 terms in this task to build the W
matrix and SIM matrix.

3.2 Building the W matrix and SIM
matrix
After the 300 terms selected out, the
documents are segmented into sentences.
Then we build the W=(wij)t×d matrix
(term-document matrix), where wij is the
frequency of the i-th word appearing in the
j-th sentence. t is the number of words, and d
is the number of sentences.
Then we use LSI method [5] to decompose
the W matrix into the product of three
matrixes:

(w) t×d≈(T) t×k (S) k×k (DT) k×d (3.2)
where k is less than the rank of matrix W.
Define Y=XTX=DS2DT, and the SIM=(Simi,j)

matrix can be defined as follows:

 ij
i j

ii jj

Y
S im

Y Y, = (3.3)

For a single cluster, Simij denotes the
similarity between sentence i and sentence j.
If we generate a summary for cluster A, the
matrix can be used to construct the graph.
Remember that the update summarization task
requires providing as much new information
as possible for cluster B if we have already
read cluster A. Let us go back to the problem:
given cluster A, we need to generate a
summary for cluster B, to provide as much
new information as possible.
Suppose there are nA sentences in cluster A,
and nB in cluster B, then the original W matrix
could be rewritten as W’=(WA WB) where WA
is the term-document matrix for cluster A and
WB for cluster B. The rows of W’ represents
important words selected from both cluster A
and B. Following the line of thinking, the
similarity matrix can be formulated as
follows:

AA AB

BA BB

SIM SIM
SIM

SIM SIM

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

= (3.4)

where the SIMAA is the similarity matrix for
sentences within cluster A and SIMAB is the
similarity matrix between sentences in cluster A
and those in cluster B.

3.3 Computing the sentence centrality
The centrality is a concept of graph theory for
measuring how important a vertex is in a
graph. The idea is similar to the process of
extractive summarization which is to find
important representative sentences from
documents. In our method, each sentence is
viewed as a vertex, and there is an edge
connecting sentence i and sentence j with

weight Simij if i≠j. On such a graph, we use a
power iteration algorithm to compute the
centrality of a vertex.
The centrality idea is that a sentence is
important if it is similar to other important
sentences. Translate this to the graph language:
if a vertex connects with other important
vertices with high weights, the vertex itself is
important. Suppose the centrality of sentence
s is Cs, then the idea is formally as:

s r s r
r D r s

C Sim Cλ ,
∈ , ≠

= ∑ (3.5)

where Simr,s is the similarity between sentence
r and s, and D={1,2,…,d} (d: the number of
sentences). Define the adjacency matrix
M=(mij) as follows:

,

0,
ij

ij

S im i j
m

i j

≠⎧
= ⎨

=⎩

Let C=(C1,C2,…,Cd)T, we have the matrix
form for the formula (3.5):
 λC = M*C (3.6)
Notice that C is the eigenvector of M, and λ is
the corresponding eigenvalue. This inspires us
to apply the classic eigenvector calculation
algorithm. In our system, we use the power
iteration algorithm.
(1) Choose an arbitrary random vector

U=(u1,u2,…,ud)T that satisfies

1max 1i d iu≤ ≤ | |≤ ;

(2) V=M*U, 1max { }i d ik v≤ ≤= | | ;

(3) Let u v k′ = / , 1max i d i iu uδ ≤ ≤= | − | ;

(4) If δ<0.001 exit the iteration; otherwise go
to step 2.

Note that M is a real symmetric matrix and
hence its eigenvalues should be real numbers.
It can be shown that when the eigenvalues of
M, λ1, λ2,λ3…λd, satisfy λ1>λ2>λ3>…>λd, this

algorithm will terminate in finite steps and
returns the largest eigenvalue and its
corresponding eigenvector.
From the viewpoint of graph theory, vector C
is actually the “eigenvector centrality", which
represents the importance of vertices in a
graph whose adjacency matrix is M.
Our approach is similar to LexRank [6] and
TextRank [7], but we developed a completely
different way to compute the sentence
centrality for the update summarization task.
3.4 Computing the sentence centrality
for cluster B with cluster A given
In cluster B, the system already has “read"
documents in cluster A. Thus those sentences
already highlighted in cluster A should not be
emphasized too much now in cluster B. The
system should provide more new important
information without mentions in already seen
documents. Intuitively, if a sentence in cluster
B is very similar to an important sentence in
cluster A, the sentence should not be included
in the summary of cluster B since the
information is already covered by cluster A.
Hence, we should take into account the
similarity between sentences in cluster B and
sentences in cluster A. We change the
equation as follows:

B A

s r s r r s r
r D r s r D r s

C Sim C Sim Cλ β
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎜ ⎟ ⎜ ⎟

, ,⎢ ⎥⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎢ ⎥∈ , ≠ ∈ , ≠⎝ ⎠ ⎝ ⎠⎣ ⎦

= −∑ ∑ (3.7)

Where β is a penalty constant which is set to
0 8. in practice.
Noting the way that we construct the SIM
matrix for cluster B as shown in (3.4), SIM
can be written as following:

' AA AB

BA BB

SIM SIM
SIM

SIM SIM
β

β

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

−
=

−
 (3.8)

where SIMAA has |DA| rows, SIMBB has |DB|
rows.

Apply the same power iteration algorithm on
this matrix, we can obtain the centralities of
sentences and furthermore we can select out
those important sentences as candidate
sentences of the final summary.

3.5 Summary extraction
The extraction process has three steps. First,
select candidate sentences according to the
centrality computed in section 3.4. The
candidates consist of the following two parts:
(1) the first sentence of each article whose
sentence centrality is among the top 1/3 of all
sentences in the cluster; (2) sentences that are
not the first sentence, but with high centrality
scores. The size of the candidate sentence set
is set to 15 in our system.
Second, search for the best sentence
combination. We enumerate all possible
sentence combinations from the candidate set,
and score the summary as a whole that is
different from the traditional approaches
which scores sentences independently.
Formally, the algorithm can be written as the
following:
(1) bestScore=-∞, bestSum=Θ;
(2) Find a combination S=s1,s2,…,sm where si

is chosen from the candidate set, and the
total number of words in S satisfies the
length limit (100 in this task);

(3) Calculate the score of the summary,
SumScore(S), which will be introduced
soon later. If SumScore(S)>bestScore,
bestScore=SumScore(S), bestSum=S;

(4) If all combinations are enumerated, exit;
otherwise go to step (2).

Now it is the turn to describe the scoring
function of a summary. Our consideration is
that a good summary should cover various
kinds of important information mentioned in
the articles, and it should have as little

redundant information as possible.
Firstly, we calculate the maximal similarity
(which could be treated as a measurement of
redundancy) between sentences in the
summary S, as follows:

1
() max

i js si j m
R S Sim ,≤ , ≤

=

We should not accept the summary whose
information is highly redundant. In our system,
if R(S)>0.5, the summary is discarded.
Secondly, for each word w , observed in S, we
evaluate its contribution to the summary score
as following:

0 5

1
()

i
i

w w i s
i m w s

count occur s C .

≤ ≤ , ∈

= ∑

where occurw(si) represents the occurrence
number of word w in sentence si, Csi is the
sentence centrality of si which is described in
section 3.4.
We are now ready to combine the word score
Score(w) shown in the formula (3.1) and
design the final score of the summary. We
define maxscore = maxany w {Score(w)},
power(w), and finally SumScore(S) as below:

0 15()() 1 0 45 2Score wPower w

maxscore

.⎛ ⎞⎛ ⎞= − . /⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

()() ()Power w
w

w S
SumScore S count

∈

= ∑

The final step of summary extraction is to
re-order sentences within the extracted
summary. Suppose the extracted summary is
bestSum = {b1,b2,…,bn}, then we compute the
summary score of each individual sentence bi
as follows:

P(bi)=SumScore({bi}), 1≤i≤n
Sort these sentences according to P(bi) in an
descending order, and this is the final
summary.

3.6 Evaluation results
The evaluation results from the official
evaluation from TAC 2008 are shown in the
following table. Among 58 submitted runs,
our results are competitive.
Evaluation
Method

Best
Result

Our
Result

Rank

Average
Modified Score

0.336 0.304 7

Macroaverage
Modified Score
with 3 models

0.331 0.299 7

Average
Linguistic
Quality

3.333 3.073 2

Average Overall
Responsiveness

2.667 2.667 1

Table 4. The Evaluation results for the second
system.

Conclusion

In this paper, we have presented two systems
for the update summarization task of TAC
2008. The first system is based on the
information distance theory, and the other is
based the graph centrality. Although there are
still many parameters to be tuned
experimentally, the two methods have already
contributed very competitive results during
the official evaluation.
Still, fine tuning of these two systems, and
more sophisticated natural language
processing techniques, are awaiting to be
exploited.

Acknowledgement

This work was supported by National Natural
Science Foundation of China (60572084,

60621062, 60803075), National Basic
Research Program of China (2007CB311003),
and 985 key projects (SIST3002), as well as
by Tsinghua Basic Research Foundation under
grants no. 052220205 and no. 053220002.

References

[1] http://www.nist.gov/tac/tracks/2008/sum
marization/index.html

[2] M. Li and P. Vit′anyi. An Introduction to
Kolmogorov Complexity and its
Applications (2nd Edition).
Springer-Verlag, 1997.

[3] C. Bennett, P. Gacs, M. Li, P. Vit′anyi,
and W. Zurek. Information distance.
IEEE Transactions on Information
Theory, 44(4):1407–1423, July 1998.

[4] Vijay Krishnan and Christopher D.
Manning. An Effective Two-Stage Model
for Exploiting Non-Local Dependencies
in Named Entity Recognition. In
Proceedings of the 21st International
Conference on Computational Linguistics
and 44th Annual Meeting of the
Association for Computational
Linguistics. 2006

[5] Scott Deerwester, Susan T. Dumais,
George W. Furnas, Thomas K. Landauer,
and Richard Harshman. Indexing by
Latent Semantic Analysis. Journal of the
American Society of Information Science,
Vol. 41, No. 6. (1990), pp. 391-407.

[6] Gűneş, Erkan and Dragomir R. Radev,
LexRank: Graph-based Centrality as
Salience in Text Summarization. Journal
of Artificial Intelligence Research (JAIR),
Vol. 22 (2004), pp. 457-479.

[7] Rada Mihalcea and Paul Tarau, TextRank:
Bringing Order into Texts. In
Proceedings of EMNLP 2004.

