
The University of British Columbia at TAC 2008

Gabriel Murray and Shafiq Joty and Giuseppe Carenini and Raymond Ng
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1Z4 Canada

Abstract

In this paper we describe the University of
British Columbia’s participation in the Text
Analysis Conference 2008. This work rep-
resents our first submission to the DUC/TAC
series of conferences, and we participated in
both the summarization tasks: the main up-
date task as well as the pilot task on summa-
rizing blog opinions. We describe our systems
in detail and describe our performance in the
context of all submitted systems.

1 Introduction

In the first year of the Text Analysis Conference,
there were two main summarization tasks, both of
which the University of British Columbia partici-
pated in: a main update task carried over from the
conference’s previous incarnation as the Document
Understanding Conference (DUC) as well as a novel
pilot task on summarizing opinions from blogs. This
latter task was particularly interesting to our re-
search group, as we have been focusing on the sum-
marization of informal conversation media such as
meetings, emails and chats, including detecting sub-
jectivity in these domains. We accordingly weight
this paper towards a description of the pilot task sys-
tem and its performance.

2 Update Task

The update task involves summarizing newswire
data. For each topic, the system is presented with
two clusters of documents. The system must first
summarize cluster A, then summarize cluster B with

the knowledge that cluster A has already been seen.
It is therefore paramount to reduce the amount of re-
dundancy in the output summaries when summariz-
ing the B clusters. In the sections below we describe
our approach to this problem.

2.1 Features Used

One aim of our update summarization system is to
discriminate between different types of redundancy.
Penalties for redundancy have long been a part
of multi-document summarization methods such as
Maximal Marginal Relevance (MMR) (Carbonell
and Goldstein, 1998). For example, a sentence’s
overall MMR score is simply calculated as its rel-
evance score minus its redundancy score, where the
redundancy score is derived by comparing the candi-
date sentence with the already-extracted sentences.
Penalizing redundancy too much, however, can lead
the summary output to stray from the intended topic.

While penalizing redundancy can lead to lexical
diversity in the final summary, it is not the case that
favouring redundancy necessarily leads to a sum-
mary containing sentences with nearly identical con-
tent. The reason is that an initially extracted sen-
tence might be selected because of terms that closely
overlap with the topic, but it may contain other terms
that build new links between remaining sentences
and the topic. That is, favouring redundancy can be
a form of implicit query expansion. To give a toy
example, if a topic asks “Which games do dogs like
to play?”, the most relevant sentence may be A be-
low, but the inclusion of A in the summary-so-far
also makes sentence B suddenly relevant:

• A: My dog loves to play in the park with this



ragged old ball.

• B: My terrier loves chasing balls and frisbees
in the park.

The terms “park” and “ball” were, in effect, added
to the topic query, thereby making sentence B rel-
evant. This query expansion would be lost in an
MMR-style framework. Naturally, it is undesirable
for a system to extract nearly-identical sentences,
and so a threshold can be included for the maximum
tolerated redundancy.

For the update task we submitted two systems, de-
scribed below. The first system is an unsupervised
approach, and the second uses many of the same fea-
tures in a supervised, machine-learning framework.
Before describing the individual systems, we present
the shared feature set here.

There are several query-relevance metrics used.
The scorecos1 is simply the cosine between the
query vector and the candidate sentence vector. We
carry out query expansion by using the Infomap la-
tent semantic analysis (LSA) tool1 and finding the
most closely related words to the query terms. The
scorecos2 is then the cosine between the expanded
query vector and the candidate sentence vector.

The scoreolap is derived by summing the scores
for terms that are shared by both the candidate and
the original query vector, then dividing by the sum of
query vector values. The metricnonolap is derived
by summing the candidate sentence term scores,
subtracting the total of the term-weights shared by
the sentence and the query, and dividing this subto-
tal by the sum of the candidate sentence term scores.
This score measures what percentage of the sen-
tence’s term-scores are non-overlapping with the
query, i.e. how much the sentence would expand the
topic if added to the summary-so-far.

The metric red1 measures the candidate sen-
tence’s redundancy with the already-extracted sen-
tences, using the maximum cosine of the candidate
and the set of extracted sentences. The scorered2
measures the sentence’s similarity to the summaries
generated for the previous cluster. For the A cluster,
these scores are always 0.

The docscore metric measures the similarity be-
tween the document as a whole and the query. This

1http://infomap-nlp.sourceforge.net

feature weight
cos1 1
cos2 1
olap 1
dscore 1
poscore 1
nonolap 0.6
red1 0.6
red2 -1

Table 1: Feature Weights

is motivated by the intuition that a sentence should
be more likely to be extracted if the document in
which it occurs is very relevant. The scoreposit in-
dicates the position of the candidate sentence in its
source document, with 1 representing the beginning
of the document and 0 representing the end. This is
motivated by the fact that the first paragraphs of an
article tend to provide a high-level overview of the
subject.

In cases where a candidate sentence is 30 words or
longer in length, we break the sentence into its con-
stituent clauses using the Sundance parser (Riloff
and Phillips, 2004), and treat each clause as a sep-
arate candidate sentence. This is to ensure that our
final output summary does not contain only three or
four sentences.

2.2 Unsupervised Update System

For the unsupervised system, an overall sentence
score is derived by summing over all of the fea-
tures, with each feature having an associated weight
as listed in Table 1. The only penalty is therefore
thered2 score, measuring overlap with the summary
sentences from the previous cluster. The sentences
are then ranked according to this combined score
and extracted until the maximum summary length is
reached. The system ID for the unsupervised update
system is 29.

2.3 Supervised Update System

The supervised system uses all of the previously de-
scribed features and more. Theolap and nonolap
scores are calculated using both the original query
and expanded query. We also calculate a variety of
redundancy features for the previous cluster, com-
paring the candidate sentence to both the previous
cluster summaries and the previous cluster docu-
ment sentences as a whole. We also introduce a



featuresharecon that compares each candidate sen-
tence to all of the other candidate sentences with
highercos1 scores, and measures the sum of term-
weights for terms that are shared between these sen-
tence pairs but are not contained in the query. So if
sentence A has a highercos1 score than sentence B,
we sum the term-weights for all terms that are shared
between the two sentences but are not contained in
the query, and assign this as thesharecon score for
sentence B. This helps measure query relevance for
sentences that might not share exact terms with the
query but are nonetheless related to the topic.

There were two central challenges with our su-
pervised summarization system. The first is that we
did not possess sentence-level summarization anno-
tation for training purposes for this task. The second
was the challenge in utilizing dynamic features in
a static system. We address these two concerns in
turn.

For training our update task summarizer, we
needed gold-standard extractive/non-extractive an-
notations. While we had data for the 2007 DUC Up-
date Task, this did not contain sentence-level anno-
tations. We decided to derive these class labels au-
tomatically by measuring n-gram overlap between
each sentence from the 2007 task documents with
the relevant human abstracts, using ROUGE-2 and
ROUGE-SU4. We then considered the top-scoring
sentences according to ROUGE to be the summary
sentences for that topic (using a summary length
of 200 words), with the remaining sentences being
members of the non-extractive class. While this
would lead to noisy class labels, we predicted that
ROUGE would give a rough approximation of sen-
tence informativeness for training purposes.

The second challenge was in deciding how to
capture dynamic features in a static summarization
framework. In the unsupervised system, thered1
scores change every time that a sentence is included
in the growing summary. In other words,red1 is a
dynamic feature. This is straight-forward in an unsu-
pervised algorithm but more complex in a machine-
learning framework. For the supservised system, we
calculated thered1 scores for each sentence by first
ranking all candidate sentences according tocos1
scores, then calculating for each sentence itsred1
score for all of the sentences ranked higher. So
for a given candidate sentence, we simply consider

its summary-so-far to be the set of sentences with
highercos1 scores.

The system ID for the supervised update system
is 55.

2.4 Results

Both of our update task systems performed approxi-
mately average in comparison with the 71 submitted
systems. For the A cluster documents, the average
Pyramid score for all participant systems was 0.26.
Our unsupervised system averaged 0.245 and the su-
pervised system averaged 0.232. For overall respon-
siveness, the average for all systems was 2.32. Our
systems averaged 2.1 and 2.2, respectively. For over-
all responsiveness, our systems were ranked 46th
and 41st out of all participant systems.

Both of our systems fared substantially better on
summarizing the B clusters, in terms of system rank-
ing. The average Pyramid score was 0.21 overall,
and our unsupervised and supervised systems aver-
aged 0.23 and 0.22, respectively. The average re-
sponsiveness for all participant systems was 2.03,
and our systems averaged 2.06 and 1.98. They were
ranked 28th and 35th overall. For ROUGE-SU4, our
systems hovered around the overall average of 0.11,
with averages of 0.11 and 0.10.

Our expectation was that our supervised sys-
tem would perform slightly better, particularly on
ROUGE since ROUGE was used for determining
the training labels using the 2007 data, but this was
not the case. We suspect that the class labels were
simply too noisy for our supervised system.

3 Blog Opinion Task

For the blog opinion summarization task, we sub-
mitted two systems. Both systems share the same
subjectivity components, which we describe in the
next section. The systems differ primarily in their
use of query expansion and named entity detection
and matching. For both systems, we chose not to use
the available QA snippets.

3.1 Subjectivity Features

Our blog summarization systems use two compo-
nents for subjectivity detection. These are described
in turn below.



3.1.1 Extraction Patterns for Positive and
Negative Subjectivity

The first subjectivity component is based on iden-
tifying positive and negative extraction patterns in
the manner of Riloff et al. (Riloff and Wiebe, 2003).
This component utilizes the Sundance parser and the
AutoSlog-TS algorithm for identifying relevant ex-
traction patterns from data that is annotated for sub-
jectivity. This algorithm takes as input a corpus, a
portion of which is annotated for the domain of in-
terest, e.g. positive subjectivity. All of the extrac-
tion patterns from the corpus are extracted, where
an extraction pattern is essentially a partial lexical
instantiation of a syntactic pattern. For example,
in the work of Riloff et al. in detecting sentences
about terrorism, significant extraction patterns in-
cluded “sympathizers of<np>” and “<subj> kills
bystanders.” The extraction patterns that occur more
often in the data subset of interest are considered to
be highly indicative of that domain. For example,
we can find the extraction patterns that occur often
in sentences with positive subjectivity but rarely in
the corpus as a whole.

Because we do not possess blog data that is anno-
tated for positive and negative subjectivity, we had
to learn these positive and negative extraction pat-
terns using a different corpus from the meetings do-
main. A portion of the AMI corpus2 has been an-
notated with a large amount of subjectivity informa-
tion (Wilson, 2008), and we hypothesized that the
informal, conversational and often disfluent nature
of meeting speech may share interesting character-
istics with blog data.

We applied the AutoSlog-TS algorithm to the 20
annotated AMI meetings, automatically learning the
extraction patterns for the positive and negative dia-
logue acts (DAs). The extraction patterns are scored
in several different ways, and we chose to consider
an extraction pattern to be a significant indicator of
that domain if it occurred more than 2 times and
had a posterior probability of at least 0.65. These
are rather low thresholds, but using stricter crite-
ria resulted in very few extraction patterns being re-
trieved.

One interesting result is that there are far more ex-
traction patterns returned for positive DAs than for

2http://www.amiproject.org

Positive Patterns Negative Patterns

<subj> BE easy <subj> BE boring
<subj> BE better <subj> BE bad
<subj> liked <subj> avoid
change<dobj> worry about<np>
<subj> agree <subj> BE confusing

Table 2: Examples of Positive and Negative Patterns

negative DAs. We hypothesize that this is because
participants in meetings will tend to couch nega-
tive sentiments in indirect language or euphemisms,
whereas positive sentiments may be expressed more
directly and use more typical repeated patterns. 185
positive extraction patterns were found, but only 41
negative patterns.

A few of the extraction patterns are not only
domain-specific, but specific even to the AMI sce-
nario task, but most are general. For example the top
two positive patterns are “<subj> BE good”, with a
probability of 0.833 and 36 total occurrences, and
“<subj> BE easy,” with a probability of 0.731 and
26 total occurrences. The top two negative extrac-
tion patterns are “problem with<np>,” with a prob-
ability of 1 and six total occurrences, and “<subj>
BE problem,” with a probability of 0.80 and 10 total
occurrences. Table 2 lists some of the top positive
and negative extraction patterns.

Having determined positive and negative extrac-
tion patterns, we can then score candidate sentences
according to how many patterns match the sentence
and how well the polarity of the sentence matches
the polarity of the query.

3.1.2 Semantic Orientation Calculator

The second subjectivity tool used is the seman-
tic orientation calculator (SO-CAL) (Taboada et al.,
2008), originally developed for analyzing online
product reviews and movie reviews. It works by
combining a lexicon of subjective keywords with
contextual cues that shift the polarity of the key-
words. The keywords have associated values rang-
ing from -5 to 5, i.e. from very negative to very pos-
itive. SO-CAL outputs a single score in the same
range, indicating the subjectivity type of the docu-
ment.



Because SO-CAL was developed for online re-
views, its lexicon is quite small and specialized. We
supplemented the existing keywords with keywords
gleaned from the MPQA corpus3. The MPQA key-
words did not have the associated values that SO-
CAL requires, so we mapped “weakly positive” and
“weaky negative” keywords to 1 and -1, respectively,
while “strongly positive” and “strong negative” key-
words were given scores of 5 and -5, respectively.

SO-CAL typically generates overall document
scores, but we used the calculator to generate scores
for individual sentences, so that every candidate sen-
tence is given a score between -5 and 5.

3.2 Blog Opinion System 1

The first blog summarization system is the more ad-
vanced of the two, featuring several preprocessing
and query expansion components. These are de-
scribed in turn below. The system ID for our first
blog system is 3.

3.2.1 Question Decomposition and Expansion

Question Decomposition involves breaking a
compound question into its subparts. We look for the
conjunctions to break the questions into two or more
subquestions. We find the first-sense synonyms (us-
ing WordNet) of the nouns and verbs in a question.
We expand the questions by adding these synonyms.
For example the question: “What motivated posi-
tive opinions of CARMAX from car buyers” be-
comes “What motivate or actuate or propel or move
or prompt or incite positive opinion or sentiment or
thought or view or persuasion of CARMAX from
car or auto or automobile or machine or motorcar
buyers or purchaser or emptor or vendee” after ex-
pansion.

3.2.2 Named Entity Tagging

Named entities are terms that refer to certain
entity. For example “Canada” refers to a coun-
try, “Vancouver” refers to a city. We used the
OAK named entity tagger4 to tag the questions with
named entities. OAK uses a set of 150 different
named entity tags. We capture the named entities
of the question to compare it later with the named
entities of the document sentence.

3http://www.cs.pitt.edu/mpqa/databaserelease
4http://nlp.cs.nyu.edu/oak/

3.2.3 Named Entity Overlap Measure

For each document sentence we extract the named
entities in the same way as we did for the questions.
We measure the named entity overlap by counting
the number of named entities common in them.

3.2.4 Cosine Similarity Overlap Measure

The sentences are represented as sentence vec-
tors based on the tf*idf counts of the words. The
questions are also represented as question vectors in
the same way. We measure the the cosine similarity
overlap of a sentence with a question by computing
the angle between the sentence vector and the ques-
tion vector as follows:

θ = cos−1
~q.~s

‖~q‖ × ‖~s‖

We measure the cosine similarity of a sentence
with the original question as well as with the de-
composed and expanded questions of the original
question. Hence we have two cosine similarity mea-
sures for each document sentence:1. CosSimOrg:
that computes the similarity with the original ques-
tion and2. CosSimExp: that computes the similarity
with the decomposed and expanded questions of the
original question.

3.2.5 Sentence Ranking

For each question of a target we rank the sen-
tences. We have four different measures for each
of the sentences:

1. Subj: The subjectivity score of the sentence,
averaging the extraction pattern and SO-CAL
scores.

2. NE: The named entity overlap score of the sen-
tence.

3. CosSimOrg: The Cosine similarity overlap
score with the original question.

4. CosSimExp: The Cosine similarity overlap
score with the decomposed and expanded ques-
tions of the original question.

We want the sentences to be important with re-
spect to its subjectivity and at the same time relevant
to the question. We set a thresholdT for this. Our
ranking formula is:



Figure 1: Blog Task Results for Non-Snippet Systems

if(CosSimOrg > T ) :

score = Subj + NE + CosSimOrg + 3

4
×

CosSimExp

else :

score = NE+CosSimOrg+ 3

4
×CosSimExp

In this way, we prevent the sentences that have
low relevancy with the question from being ex-
tracted simply because they have a high subjectivity
score.

3.2.6 Redundancy Checking and Producing
Answer

The answer length is maximum 7000 characters
for each question but we do not include all the top
ranked sentences upto 7000 characters in the final
answer. The sentence which has score greater than a
fixed threshold (T=1.5) will be included in the final
answer if it passes through a redundancy checker.
The redundancy checker checks the cosine similar-
ity of a candidate summary sentence (to be added)
with each of the sentences which are already in the
summary. The sentences for which the similarity
measure is below a certain threshold (0.75) will be
included in the final answer. In this way we produce
answers for each of the questions in the target.

3.3 Blog Opinion System 2

Our second blog system is essentially a simplified
version of the first. This system does not use query

expansion or named entity recognition and match-
ing. There are essentially three components to a
sentence score. The first score is derived from the
subjectivity tools described previously, representing
the polarity of the sentence. There are then two rele-
vance metrics: cosine with the query and cosine with
the topic. If the relevance metrics fall below a cer-
tain threshold, the overall sentence score is derived
using only the relevance metrics and no subjectivity
score. This is to prevent the case where a sentence
is selected because of a very high subjectivity score
but nevertheless has low relevance scores.

The system ID for the second system is 25.

3.4 Results

Of all submitted systems, 19 in total did not use the
QA snippets. Among those 19 systems, our two
submitted systems fared very well according to the
various evaluation metrics. For Pyramid scores, the
average for all 19 systems was 0.15. Our first sys-
tem, UBC1, averaged 0.16 and our second system,
UBC2, averaged 0.22. This latter score was the sec-
ond highest of the 19 systems. For overall respon-
siveness, both of our systems were again above the
average of 2.61. UBC1 averaged 2.82 while UBC2
averaged 3.32, which tied for third place among the
19 systems.

The most surprising result was that UBC2, the
simpler of our two submitted systems, performed



much better than UBC1. We hypothesize that this
is because of the query expansion component that is
present in UBC1, and that query expansion is actu-
ally detrimental for this task. The topic questions
are very specific, asking for opinions about entities
such as “Jiffy Lube” and “Carmax,” and it may be
the case that query expansion causes sentences to
be extracted that are only tangentially related to the
topic. Interestingly, UBC2 is also much better than
UBC1 on criteria of grammaticality and fluency.

The only criteria for which UBC2 is below the
average for all 19 systems are non-redundancy, in
which case UBC2 is just below average and UBC1
is actually better, and the structure/coherence score.

Figure 1 gives the scores for the maximum, mini-
mum and average performance of the 19 non-snippet
systems, in comparison with our UBC1 and UBC2
systems.

4 Conclusion

For TAC 2008, UBC submitted a total of four sys-
tems - two for each summarization task. For the up-
date task, our systems performed average, with the
unsupervised system slightly better than the super-
vised system.

For the blog opinion task, our systems performed
well, with the UBC2 system being among the best
of all submitted non-snippet systems according to
Pyramid and responsiveness metrics. We plan to
explore novel methods for detecting subjectivity
in blogs and other informal conversations such as
meetings and emails.

5 Acknowledgments

Thank you to Maite Taboada and Julian Brooke of
Simon Fraser University for the use of their SO-
CAL code.

References

J. Carbonell and J. Goldstein. 1998. The use of MMR,
diversity-based reranking for reordering documents
and producing summaries. InProc. of ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval 1998, Melbourne, Australia, pages 335–
336.

E. Riloff and W. Phillips. 2004. An introduction to the
sundance and autoslog systems.

E. Riloff and J. Wiebe. 2003. Learning extraction pat-
terns for subjective expressions. InProc. of EMNLP
2003, Sapporo, Japan.

M. Taboada, K. Voll, and J. Brooke. 2008. Extracting
sentiment as a function of discourse structure and top-
icality. JNLE, to appear.

T. Wilson. 2008. Annotating subjective content in meet-
ings. InProc. of LREC 2008, Marrakech, Morocco.


