
TAC2008 QUESTION ANSWERING EXPERIMENTS AT
TOKYO INSTITUTE OF TECHNOLOGY

Matthias H. Heie, Edward W. D. Whittaker, Josef R. Novak, Joanna Mrozinski and Sadaoki Furui

Tokyo Institute of Technology, Department of Computer Science
2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552 Japan,

{heie,edw,novakj,mrozinsk,furui}@furui.cs.titech.ac.jp

ABSTRACT

In this paper we describe Tokyo Institute of Technology’s
submission to the TAC2008 question answering (QA) track.
Keeping the same theoretical QA model as for the TREC2007
track, developed for factoid QA, we investigated the effects
of retrieving blog data versus web data for rigid list questions.
For squishy list questions we relied on sentence retrieval,sim-
ilar to how we approached “other” questions in TREC2007.
While our performance on rigid list questions was poor, for
squishy list questions we achieved a score only slightly lower
than the highest score of all participants.

1. INTRODUCTION

In this paper we describe the application of our data-driven
and non-linguistic framework for the QA track of TAC2008.
Two runs were submitted for evaluation:asked081 and
asked082.

In previous years’ TREC QA evaluations [1] [2] [3], our
focus has been the factoid questions, which were not part of
the TAC2008 QA track. For list questions we have relied on
an extension to our factoid QA system. Due to the similarity
between the TAC2008 QA rigid list task and TREC QA list
tasks, we decided to employ a similar system for the rigid list
questions. We experimented with supplying our answer ex-
traction module sentences retrieved from the Blog06 corpus,
versus supplying web data. For sentence retrieval we used
a language model based approach similar to what we did in
TREC2007. In this approach, a language model (LM) is gen-
erated for each sentence and these models are combined with
document LMs to take advantage of contextual information.
From the retrieved information, we extracted rigid answers
using our answer filter model.

For the squishy list questions, we submitted the highest
ranking sentences from our sentence retrieval module, as many
as the byte limit permitted. This is similar to how we ap-
proached the “other” question task in TREC2007.

2. SENTENCE RETRIEVAL

This section explains the LM-based sentence retrieval method
presented in [4].

Language modeling for IR has gained in popularity over
the last decade since the approach was proposed [5]. Under
this approach a LM is estimated for each document. The doc-
uments are then ranked according to the conditional probabil-
ity P (Q | D), the probability of generating the queryQ given
the documentD.

A language model based approach to sentence retrieval
for QA is presented in [6]. Due to lack of data to train the
sentence specific LM, it is assumed that all words are inde-
pendent, hence unigrams are used:

P (Q | S) =

|Q|
∏

i=1

P (qi | S), (1)

whereqi is the ith query term in the queryQ = (q1...q|Q|)
composed of|Q| query terms.

Smoothing methods are normally employed with LMs to
avoid the problem of zero probabilities when one of the query
terms does not occur in the document. This is typically achie-
ved by redistributing probability mass from the document mo-
del to a background collection modelP (Q | C). We use
Dirichlet prior, where the probability of a query termq given
a sentenceS is calculated as:

P1(q | S) =
c(q; S) + µ · p(q | C)

∑

w c(w; S) + µ
, (2)

wherec(q; S) is the count of query termq in sentenceS, µ

is a smoothing parameter,p(q | C) is the unigram proba-
bility of q according to the background collection model and
∑

w c(w; S) is the count of all words inS.
A problem with the model presented in [6] is that words

relevant to the sentence might not occur in the sentence itself,
but in the surrounding text. For example, for the question
Where was George Bush born?, the sentenceHe was born in
Connecticutin an article about George Bush should ideally
be assigned a high probability, despite the sentence missing

important query terms. To account for this, we train document
LMs, P1(q | D), in the same manner as forP1(q | S) in
Eq. (2), and perform a linear interpolation betweenP1(q | S)
andP1(q | D):

P2(q | S) = (1 − α) · P1(q | S) + α · P1(q | D), (3)

where0 ≤ α ≤ 1 is an interpolation parameter.

3. ANSWER EXTRACTION

For answer extraction we used the same framework as in
TREC2007 [3], described in detail in [7].

We model the most straightforward and obvious depen-
dence of the probability of an answerA on a questionQ:

P (A | Q) = P (A | W, X), (4)

whereA andQ are considered to be strings oflA wordsA =
a1, . . . , alA andlQ wordsQ = q1, . . . , qlQ , respectively. Here
W = w1, . . . , wlW represents a set of features describing the
“question-type” part ofQ such aswhen, why, how, etc. while
X = x1, . . . , xlX represents a set of features that describe the
“information-bearing” part ofQ i.e. what the question is actu-
ally about and what it refers to. For example, in the questions,
Where was Tom Cruise married?andWhen was Tom Cruise
married?, the information-bearing component is identical in
both cases whereas the question-type component is different.

Finding the best answer̂A involves a search over all avail-
ableA for the one which maximizes the probability of the
above model i.e.,

Â = arg max
A

P (A | W, X). (5)

Given the correct probability distribution, this is guaran-
teed to give us the optimal answer in a maximum likelihood
sense. We don’t know this distribution and it is still difficult
to model but, using Bayes’ rule and making various simplify-
ing, modeling and conditional independence assumptions (as
described in detail in [7]) Eq. (5) can be rearranged to give

argmax
A

P (A | X)
︸ ︷︷ ︸

answer
retrieval

model

· P (W | A)
︸ ︷︷ ︸

answer
filter

model

. (6)

TheP (A | X) model we call theanswer retrieval model.
In this year’s evaluation we didn’t use the answer retrieval
model, i.e.P (A | X) is uniform.

TheP (W | A) model matches a potential answerA with
features in the question-type setW . For example, it relates
place names withwhere-type questions. We call this compo-
nent theanswer filter modeland it is structured as follows.

The question-type feature setW = w1, . . . , wlW is con-
structed by extractingn-tuples (n = 1, 2, . . .) such asWho,

WhereandIn whatfrom the input questionQ. A set of single-
word features is extracted based on frequency of occurrence
in our collection of example questions.

Modeling the complex relationship betweenW andA di-
rectly is non-trivial. We therefore introduce an intermedi-
ate variable representing classes of example questions-and-
answers (q-and-a)ce for e = 1 . . . |CE | drawn from the set
CE . In order to construct these classes, given a setE of exam-
ple q-and-a, we then define a mapping functionf : E 7→ CE

which maps each example q-and-atj for j = 1 . . . |E| into a
particular classf(tj) = e. Thus each classce may be defined
as the union of all component q-and-a features from eachtj
satisfyingf(tj) = e. Finally, to facilitate modeling we say
thatW is conditionally independent ofce givenA so that

P (W | A) =

|CE|
∑

e=1

P (W | ce
W) · P (ce

A | A), (7)

wherece
W andce

A refer respectively to the subsets of question-
type features and example answers for the classce.

Assuming conditional independence of the answer words
in classce givenA, and making the modeling assumption that
thejth answer wordae

j in the example classce is dependent
only on thejth answer word inA we obtain:

P (W | A) =

|CE |
∑

e=1

P (W | ce) ·

lAe
∏

j=1

P (ae
j | aj). (8)

Since our set of example q-and-a cannot be expected to
cover all the possible answers to questions that may be asked
we perform a similar operation to that above to give us the
following:

P (W | A) =

|CE |
∑

e=1

P (W | ce)

lAe
∏

j=1

|CA|
∑

k=1

P (ae
j | ck)P (ck | aj),

(9)
whereck is a concrete class in the set of|CA| answer classes
CA. The independence assumption leads to underestimating
the probabilities of multi-word answers so we take the geo-
metric mean of the length of the answer (not shown in Eq. (9))
and normalizeP (W | A) accordingly.

4. EXPERIMENTAL WORK

Two different runs (asked081 andasked082) were sub-
mitted for evaluation, with their data sources given in Table 1.

4.1. Data pre-processing, indexing and retrieval

Raw text was extracted from the XML format of the Blog06
collection. This text was cleaned using a series of regular

Run Rigid Squishy
asked081 Blog06 sentencesincl. context Blog06 sentencesexcl.context
asked082 Web snippets Blog06 sentencesincl. context

Table 1. Data sources of the 2 runs submitted to TAC2008.

Rigid Squishy Avg. per-
Run Correct Distinct Unsupported Non-exact F-score F-score series score

asked081 11 10 6 8 0.011 0.173 0.093
asked082 2 2 5 7 0.003 0.132 0.068

Table 2. Performance of the 2 submitted runs, for 90 rigid list questions and 87 squishy list questions.

Rigid Squishy
High Median Low High Median Low
0.156 0.063 0.000 0.186 0.091 0.018

Table 3. Summary of F-scores of all runs for all teams.

expressions. The pre-processed documents were then indexed
using the Xapian search engine library1. A set of stopwords
was used during indexing and retrieval. 150 documents were
retrieved for each question. The documents were sentence
segmented, using a rule-based algorithm, and the sentences
were ranked using the language modeling approach explained
in Section 2.

For web data we used the snippets returned by theYahoo
search engine. These snippets were cleaned in the same way
as the Blog06 documents.

Questions were cleaned in the same way as retrieved text.
If the target for a question did not appear character-for-chara-
cter in the question string, it was simply appended to the end
of the question string. Stopwords were removed, in addition
to common question-type words such aslist andname, etc.
Each question was treated independently of all other ques-
tions.

4.2. Rigid list question task

In asked081, for each question, the top 100 Blog06 sen-
tences and their contexts (the immediately preceding and suc-
ceeding sentence), were passed to the answer extraction mod-
ule. Inasked082 the top 100 web snippets were used.

Our factoid QA system always outputs a list of candidate
answers ranked by their probabilities. The issue for the rigid
list task is therefore to determine how many of the top answers
to submit so as to maximize the F-score. We chose simply to
submit the top 10 answers of the answer extraction module.

1http://www.xapian.org/

4.3. Squishy list question task

We used our sentence retrieval module to answer squishy list
questions, as we did for “other” questions in the TREC2007
QA evaluation. Inasked081we submitted the highest rank-
ing sentences, as many as the limit of 7000 bytes permitted.
In asked082 we submitted the highest ranking sentences
and their contexts (the immediately preceding and succeed-
ing sentence), again as many as the byte limit permitted.

5. RESULTS AND DISCUSSION

The results for the 2 submitted runs on the 2 tasks are shown
in Table 2.

Our system is essentially a factoid QA system. We have
previously used an extended version of this system for TREC
QA list questions, as explained in Section 4.2, but we have
performed poorly on the list task in previous evaluations. The
results show that in this year’s TAC QA track our rigid list
scores are considerably lower than the median, shown in Ta-
ble 3. When considering only the best run of each participant,
we had the lowest score. Many of the questions were “who”
questions, where the system is asked to provide the name of
opinion holders, such as the name of a blog or its owner, or
a blog poster. Our system consistently failed to answer these
questions correctly.

Using the Blog06 collection as data source yields a sig-
nificantly higher F-score than using web data. To some extent
this can be explained by the fact that only supported answers
count in the calculation of the F-score. Finding a support-
ing document in the Blog06 collection is naturally more diffi-
cult if the answer is extracted from a different collection.But
also when non-exact and unsupported questions are consid-
ered, we are able to extract more correct answers using the
Blog06 collection than the web: 25 vs. 14.

Figure 1 shows to what extent we are able to retrieve
correct answers in the sentence retrieval stage. The graph
shows how many of the 90 rigid list questions haveN or more
unique reference answers within the retrieved sentences, as
the number of sentences varies. Note that if# sentences per

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

qu

es
tio

ns

sentences per question

N = 1
N = 3
N = 5

Fig. 1. Number of rigid list questions (out of 90) with at least
N reference answers in the retrieved sentences, as the number
of retrieved sentences varies.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 1 2 3 4 5 6 7 8 9 10

F
-s

co
re

answers per question

Fig. 2. Average F-score of 90 rigid list questions as number
of submitted answers varies.

questionis M, it means that the topM sentences, plus their im-
mediately preceding and succeeding sentences, is retrieved,
as inasked081.

We also investigated the appropriateness of submitting 10
answers per question. Figure 2 shows the average F-score as
the number of submitted answers varies, using the setup of
asked081. It shows that submitting fewer than 10 answers
per question would have reduced our F-score.

The squishy list results show that the score of our best
run is only slightly lower than the highest scoring run of all
participants. When considering only the best run of each par-
ticipant, we had the second highest score, despite not per-
forming any opinion analysis. Our best run isasked081,
i.e. we achieve a better result by not submitting surrounding
sentences, which allows us to submit more lower-ranking sen-
tences. Figure 3 shows the F-score as the number of submitted
bytes varies. We achieve the highest score by submitting as
many sentences as the byte limit allows (7000 bytes), as we
did in the evaluation.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 1000 2000 3000 4000 5000 6000 7000

F
-s

co
re

bytes per question

Fig. 3. Average F-score of 87 squishy list questions as number
of submitted bytes varies.

6. CONCLUSION

In this paper we have given an overview of our methods and
results for the TAC2008 question answering evaluation. Our
results show that our squishy list QA system, based on sen-
tence retrieval, is able to achieve a high score, relative tothe
other teams. Using our factoid QA system for the rigid list
question task did not yield good performance. We are able to
achieve a higher score on this task by relying on Blog06 data,
rather than web data.

7. REFERENCES

[1] Whittaker, E., Chatain, P., Furui, S. and Klakow, D.,
“TREC2005 Question Answering Experiments at Tokyo
Institute of Technology”,Proc. TREC-14, 2005.

[2] Whittaker, E., Novak, J., Chatain, P. and Furui, S.,
“TREC2006 Question Answering Experiments at Tokyo
Institute of Technology”,Proc. TREC-15, 2006.

[3] Whittaker, Heie, M., Novak, J. and Furui, S., “TREC2007
Question Answering Experiments at Tokyo Institute of
Technology”,Proc. TREC-16, 2007.

[4] Heie, M., Whittaker, E., Novak, J. and Furui, S., “A
Language Modeling Approach to Question Answering on
Speech Transcripts”,Proc. ASRU, 2007, pp. 219-224.

[5] Ponte, J. and Croft, W., “A Language Modeling Approach
to Information Retrieval”,Proc. SIGIR, 1998, pp. 275-
281.

[6] Merkel, A. and Klakow, D., “Comparing Improved Lan-
guage Models for Sentence Retrieval in Question An-
swering”,Proc. CLIN-17, 2007.

[7] Whittaker, E., Furui, S. and Klakow, D., “A Statistical
Pattern Recognition Approach to Question Answering us-
ing Web Data”,Proc. Cyberworlds, 2005, pp. 421-428.

