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Research Questions

1. Can we Improve sentence
retrieval by assigning more
welights to entity terms?

2. Can we optimize the coherence

of a summary using a statistical
coherence model?
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General Approach
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Step 1: Sentence Retrieval
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Step 2: Sentence Filtering
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Step 3: Summary Organization
(Method 1: Polarity Ordering)

— Paragraph structure by question and polarity

— Add guiding phrase

The first question is ...
Following are positive opinions...

Following are negative opinions...

The second question is ...
Following are mixed opinions...
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Step 3: Summary Organization
(Method 2: Statistical Coherence Optimization)

S1 ST , ,
i \ / o % C(Sl’,SZ,)
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sn S ) c(Sn-1’, Sn’) .

® Coherence function: c(Si, Sj)

® Use a greedy algorithm to order sentences to
maximize the total score
c(S1’, S2’)+c(S1’, S2')+...+c(Sn-1’, Sn’)
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Probabilistic Coherence Function
(Idea similar to [Lapata 03])
(Pointwise mutual information)

C(S" J) ZUES VES;

j | over all word combinations
count("u and Vv In two adjacent sentences")+0.001
count(u) -count(v)+1.0

Train with original document

o(u, V) Average coherence probability

p(u,v) =

Sentence 1 u \Y; u
Sentence 2 \Y; \Y; u Vv
Yes No No No Yes

P(u,v) = (2+0.001)/(3*4+1.0)
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Submissions: UIUC1, UIUC2

UIUC1: non-uniform weighting
UIUC2: uniform weighting

UIUC1: Aggressive polarity filtering
UIUC2: Conservative filtering

UIUC1.: Polarity ordering
UIUC2: Statistical ordering
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Evaluation

® Rank among runs without answer-snippet

(Total: 19 runs)

F-Score
UluC1 6
Polarity
UluC2 3
Coherence

Grammaticalit Non- Structure/ Fluency/ Responsiveness
y redundancy Coherence Readability P
15 15 | 6 8
9 10 15 16 4
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*F NE/NP retrieval, Nithout

Evaluation

Polarity filtering

Polarity ordering

(Total: 19 runs)

core Grammaticality redundancy g;rhue Iéé Rggjde;bci?/i{[y Responsiveness
UlUC1
Polarity 6 : 6 8
UluC2
Coherence 3 15 16 4
Nothing Statistical ordering
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Evaluation of Named Entity
Weighting

Assume a sentence Is relevant iff
similarity(sentence, nugget description) > threshold

Uniform Term Weighting
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Effectiveness of Entity Weighting
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Polarity Module

® Polarity module performance evaluation
on the sentiment corpus. [Hu&Liu 04, Hu&Liu 04b]

(Unit: # of sentence)

Classification result Positive Negative
NonOpinionated 1063 598
Positive 1363 371
Negative 383 412
Mixed 296 210
Total 3105 1591
Exact Match 1363/3105=0.44 412/1591=0.26
(1363+412)/(3105+1591)=0.38
Exact Opposite 383/3105=0.12 371/1591=0.23

(383+371)/(3105+1591)=0.16
15
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Coherence optimization

® Evaluation methods

— Basic assumption

» the sentence order of original document is coherent

— Among given target documents,
use 70% as training set, 30% as test set.

— Measurement: strict pair matching

o # of correct sentence pair / # of total adjacent sentence pair
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Probabilistic Coherence Function

c(s;,s.) = Z P(U,V)  Average coherence probability
. “ssivesi| s |Is; | over all word combinations

Point-wise Mutual information with smoothing

count("u and v in two adjacent sentences™) +0.001
count(u) - count(v) +1.0

p(u,v) =

Strict joint probability
count("u and v In two adjacent sentences")+1
total count of word pairs"+(dictionary size)

p(u,v) =
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Probabilistic Coherence Function

Mutual information
p(u,v) p(notu,v)
Cowypey Pt o8 e )

p(u,notv) )+ p(notu, notv) log( p(notu, notv)
p(u) p(notv) p(notu)p(notv)

p(u,v) = p(u,v)log

+ p(u,notv) log(

where,

(nnt11 v) —
\ U, vy

c(u,v)+0.25 _ c(notu,v)+0.25
N+1 N +1 ’
c(u, notv)+0.25, h(notu, notv) = c(notu,notv)+0.25
N +1 N +1

N = c(u,v)+c(not u, v)+c(u, not v)+c(not u, not v)
For unseen pairs, p(u,v)=0.5*MIN(seen pairs in training)

(11 v) =
\

u,\l/

N
M

p(notu,v) =
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Coherence optimization test

: : Pointwise
Selection of training words Strict J(.)'.nt Mutua_l Mutual
Probability Information :
Information
No Omission 0.022259 0.041651 0.056063
Omitted stopwords 0.031389 0.054554  0.057119
Omitted frequent words (counts > 33) | 0.031389 0.051460 0.049498
(counts > 11) | 0.027013 0.045725 0.046103
(counts> 6)| 0.020448 0.032219 0.034785
(counts > 2)| 0.019769 0.022259 0.021882
Omitted rare words (counts < 33) | 0.022259 0.032898  0.044065
(counts < 14) | 0.022033 0.032823 0.049045
(counts < 6)| 0.021203 0.037048 0.054931
(counts < 2)| 0.022259 0.041802 0.056591

— Pointwise mutual information effectively penalize common

words
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Coherence optimization test
® Top ranked p(u,v) of strict joint probability

u Y p(u,v)
the the 1.75E-003
to the 1.22E-003
the to 1.21E-003
the of 1.14E-003
the and 1.14E-003
of the 1.13E-003
and the 1.12E-003
a the 1.06E-003
the a 1.06E-003

— A lot of stopwords are top-ranked.
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Coherence optimization test

Selection of training words Coherence score
Baseline: random order 0.01586
Strict Joint Probability 0.04308
Mutual Information 0.041651
Pointwise Mutual Information (UIUC2) 0.056063
Omitted stopwords L
Omitted non-stopwords 0.020750
Omitted 95% least frequent words (counts < 33): 0.044065
Omitted 90% least frequent words (counts < 14): 0.049045
Omitted 80% least frequent words (counts < 6): 0.054931
Omitted 60% least frequent words (counts < 2): 0.056591

— Pointwise Mutual information was better than
joint probability and normal mutual information.

— Eliminating common words, very rare words improved
performance
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Conclusions

® Limited improvement in retrieval performance
using named entity and noun phrase

® Need for a good polarity classification module

® Possibility on the improvement of statistical
sentence ordering module with different
coherence function and word selection
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Thank you

University of Illinois at Urbana-Champaign
Hyun Duk Kim (hkim277@uiuc.edu)
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