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• My talk is about Monte Carlo Semantics.
• I am currently working on this topic in Cambridge, where I have

just finished the second year of my PhD project under the
supervision of Ann Copestake.

• More particularly, the topic is robust inference and logical pattern
processing based on integrated deep and shallow semantics.
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• In this venue, we are seeing many talks by people who have just
built a system doing textual entailment, and they come here to
talk about how the system works, and what evidence they have
gathered about its behaviour, experimentally.

• But, my talk has a different format. I will talk about my idea of
robust inference, concentrating on its theoretic foundations
within logic, combinatorics, and sampling theory.
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• I believe, this talk should be highly relevant to this community,
nevertheless. Because, if we are building and evaluating RTE
systems, then it would be useful to have a theoretic framework
for thinking and talking about RTE.

• . . . and while we have seen many different systems for RTE, a
theoretic framework of this kind is still largely lacking.

• In order to determine whether or not a theory of RTE is in fact
useful in this sense, we have to ask ourselves two questions.



Desiderata for a Theory of RTE

I Does it describe the relevant aspects of the
systems we have now?

I Does it suggest ways of building better
systems in the future?
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Desiderata for a Theory of RTE

• First: Does it describe the relevant aspects of the broad range of
systems that have been, and are being, built now.

• Second: Does it suggest possible paths of development that
may lead to better systems in the future.

• In an attempt to answer this second question, I have started to
build the MCPIET Monte Carlo Pseudo Inference Engine for
Text. However, I have only recently started development, and
any conclusions that might be drawn on its performance, would
be mere speculation at this point in time.

• In the present talk, I will concentrate on the first question. Does
my theory describe the relevant aspects of the systems we
currently have?



A System for RTE

I informativity: Can it take into account all available
relevant information?

I robustness: Can it proceed on reasonable assumptions,
where it is missing relevant information.
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A System for RTE

• What is a good system? What are the relevant aspects?
• A good system is one that is both informative and robustness,

and the relevant aspects of a system are those properties that
give rise to its informativity and robustness.

• By informativity, I mean the ability of a system to take into
account all available relevant information.

• By robustness, I mean the ability of a system to proceed on
reasonable assumptions, even where relevant information is
missing.



Current RTE Systems

A spectrum between
I shallow inference

(e.g. bag-of-words)
I deep inference

(e.g. FOPC theorem proving, see Bos & Markert)
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Current RTE Systems

• What systems do we currently have?
• They can perhaps be situated anywhere in a spectrum between

shallow and deep systems.
• For example systems making use of textual representations

similar to bag-of-words techniques, might be classified as
shallow.

• On the other hand, systems making use of logical
representations such as FOPC, might be classified as deep.



The Informativity/Robustness Tradeoff

informativity

robustness

?
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The Informativity/Robustness Tradeoff

• What we observe about these systems in practice is a tradeoff
between robustness and informativity.

• Deep systems are very informative, yet they are not robust
enough.

• Shallow systems are very robust, yet they are not informative
enough.

• And most systems we see in practice, are intermediate-level
systems that provide some intermediate level of both robustness
and informativity.

• The goal of deep/shallow integration is to escape this tradeoff
and construct a system that is both informative and robust. –
And this is an interesting open problem.
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• The notion which is at the very core of my theory is that of
graded validity. The first half of my talk will be dedicated to
defining this notion and the theory surrounding it.

• I will first talk in some more detail about informativity and
robustness. I’ll give some examples, and I’ll define them as
theoretic notions in terms of graded validity.

• I will then go on to show how graded validity relates to the notion
of validity we are used to from classical logic, and how the
practical design goals of informativity and robustness relate to
the theoretic notions of consistency and completeness.

• And finally, I will show how we can generalize from classical
validity to graded validity within a model theoretic framework.

• Hopefully, this should give you a good idea of what my theory
actually is.
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• Concerning that theory, I basically make only one claim, at this
point in time: That it is a useful way of thinking and talking about
the robustness and informativity characteristics of current
shallow and deep systems.

• I will therefore go on to establish bag-of-words techniques as a
special case of robust inference within my theory, on the shallow
end of the spectrum.

• And then I will similarly establish FOPC theorem proving as a
special case, on the deep end of the spectrum, considering the
syllogistic fragment in greater detail.

• Finally, I will then briefly mention Monte Carlo Semantics, which,
I believe, is a promising way forward, although I cannot, at this
point, make any strong claims concerning its actual
performance.



Informative Inference.

predicate/argument structures

> >
The cat chased the dog.

→ The dog chased the cat.

monotonicity properties, upwards entailing

Some (grey X ) are Y
→ Some X are Y

≥ >

> >
Some X are Y

→ Some (grey X ) are Y20
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Informativity, Robustness & Graded Validity

Informative Inference.

• Let me start by giving an example of what I mean by
informativity: The cat chased the dog, therefore the dog chased
the cat. This is supposed to be less than true – classically we
would say: it’s false.

• For the most naive bag-of-words inference system, this kind of
inference would be permissible, however, since we have exactly
the same words in the antecedent and the consequent.

• The important point here, is that there is information in those
texts, concerning predicate/argument structure, that is not taken
into account by bag-of-words comparisons. So bag-of-words
inference fails on informativity here, where a theorem prover
would easily get this example right.

• Generally, what one would like to do, is to make a list of example
inferences, like these. An inference engine would be considered
informative, if it gets all of them right.



Robust Inference.

monotonicity properties, upwards entailing

Some X are Y
→ Some (grey X ) are Y

>
Some X are Y

→ Some (clean (grey X )) are Y

graded standards of proof

Socrates is a man
→ Socrates is a man

>
Socrates is a man

→ Socrates is mortal
Socrates is a man

→ Socrates is mortal
>

Socrates is a man
→ Socrates is not a man20
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Robust Inference.

• We can now go on to think about robustness.
• In this first example, let’s substitute elephants for X.
• We know that all elephants are grey.
• But let’s assume that the machine doesn’t know this. This piece

of background knowledge is mentioned nowhere in the
antecedent, and a background theory of common sense
knowledge of this kind is probably not quite complete. So this is
a very realistic scenario.

• Given that all elephants are grey, we would consider the first
inference valid. If some elephants are Y, then some grey
elephants are Y. Given that not all elephants are clean, we would
consider the second inference invalid. It is not the case that, if
some elephants are Y, then some clean grey elephants are Y.



Robust Inference.

monotonicity properties, upwards entailing

Some X are Y
→ Some (grey X ) are Y

>
Some X are Y

→ Some (clean (grey X )) are Y

graded standards of proof

Socrates is a man
→ Socrates is a man

>
Socrates is a man

→ Socrates is mortal
Socrates is a man
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Robust Inference.

• A theorem prover would reach a different conclusion. In the
absence of our background knowledge, it would consider them
both to be equally invalid. We lose the discriminative power, to
distinguish between the two cases, because we are missing
relevant information.

• However, we could have proceeded on a quite reasonable
assumption: We could have simply assumed that two illegal
insertions of this kind are in some sense always worse than only
one.

• So theorem proving fails on robustness. Curiously, the much
simpler bag-of-words technique gets this right.

• It is also worth noting, that these robustness properties cannot
be expressed simply as valid or unsatisfiable example
inferences. Rather, they are expressed as comparisons between
possible example inferences. . . . and this is why we need graded
validity if we want to achieve this kind of robustness.



Robust Inference.

monotonicity properties, upwards entailing

Some X are Y
→ Some (grey X ) are Y

>
Some X are Y

→ Some (clean (grey X )) are Y

graded standards of proof
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Robust Inference.

• I will now go on to compare the idea of graded validity to the
classical notion of validity.



. . . classically

(i) T ∪ {ϕ} |= ψ and T ∪ {ϕ} 6|= ¬ψ;
ENTAILED / valid

(ii) T ∪ {ϕ} 6|= ψ and T ∪ {ϕ} |= ¬ψ;
CONTRADICTION / unsatisfiable

(iii) T ∪ {ϕ} |= ψ and T ∪ {ϕ} |= ¬ψ;
UNKNOWN / possible (consistency)

(iv) T ∪ {ϕ} 6|= ψ and T ∪ {ϕ} 6|= ¬ψ.
UNKNOWN / possible (completeness)
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Classical Validity & Graded Validity

. . . classically

• Classically, we can prove a given candidate entailment of the
form φ→ ψ, using the deduction theorem as follows. We start
with a theory of background knowledge T and add to that theory
the antecedent φ. There are now four cases.

• Case 1: If we can prove the consequent ψ, and we cannot prove
its negation ¬ψ, then the implication is valid.

• Case 2: If we cannot prove the consequent ψ, but we can prove
its negation ¬ψ, then the implication is unsatisfiable.

• But, combinatorically, there are two more possibilities here.
Case 3: We might be able to prove both. Case 4: We might be
able to prove neither.



. . . classically

(i) T ∪ {ϕ} |= ψ and T ∪ {ϕ} 6|= ¬ψ;
ENTAILED / valid

(ii) T ∪ {ϕ} 6|= ψ and T ∪ {ϕ} |= ¬ψ;
CONTRADICTION / unsatisfiable

(iii) T ∪ {ϕ} |= ψ and T ∪ {ϕ} |= ¬ψ;
UNKNOWN / possible (consistency)

(iv) T ∪ {ϕ} 6|= ψ and T ∪ {ϕ} 6|= ¬ψ.
UNKNOWN / possible (completeness)
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Classical Validity & Graded Validity

. . . classically

• In classical logic, we would always require any theory to be
consistent, so that it does not prove two contradictory theses. In
other words: We require that case 3 cannot occur.

• Furthermore, we always require a theory to be complete, so that
among two contradictory theses, one must always be provable.
In other words: We require that case 4 cannot occur.

• Let’s think about what this means in practice.
• A background theory could consist of meaning postulates such

as “∀x : cat(x) → animal(x)”, which could be derived from the
WordNet noun hyponymy hierarchy, or
“∀x , y , z : buy-from(x , y , z) ≡ sell-to(z, y , x)” could be derived
from a role-labelled verb lexicon. Given careful knowledge
engineering we might be able to ensure that a background
theory of this kind is consistent.



. . . classically

(i) T ∪ {ϕ} |= ψ and T ∪ {ϕ} 6|= ¬ψ;
ENTAILED / valid

(ii) T ∪ {ϕ} 6|= ψ and T ∪ {ϕ} |= ¬ψ;
CONTRADICTION / unsatisfiable

(iii) T ∪ {ϕ} |= ψ and T ∪ {ϕ} |= ¬ψ;
UNKNOWN / possible (consistency)

(iv) T ∪ {ϕ} 6|= ψ and T ∪ {ϕ} 6|= ¬ψ.
UNKNOWN / possible (completeness)

20
08

-1
1-

26
Monte Carlo Semantics

Classical Validity & Graded Validity

. . . classically

• But what about completeness? Say we are trying to prove
“Socrates is a man, therefore Socrates is mortal”. In the empty
background theory we can prove neither that Socrates is mortal,
nor that he isn’t. The background theory is incomplete.

• We would have to add knowledge to the background theory, for
example saying that every man is mortal, or that no man is
mortal, etc.

• Now, I think that a completeness property of the kind required by
classical logic would be very nice to have, but is entirely
unrealistic in practice.

• I think that this case 4, far from being nonexistent, will in practice
probably be the most common case, with cases 1 and 2
occuring only as limit cases of theoretical interest.



. . . instead

(i) T ∪ {ϕ} |=1.0 ψ and T ∪ {ϕ} |=0.0 ¬ψ;
(ii) T ∪ {ϕ} |=0.0 ψ and
(iii) T ∪ {ϕ} |=t ψ and T ∪ {ϕ} |=t ′ ¬ψ, for 0 < t , t ′ < 1.0.

(a) t > t ′

(b) t < t ′

More generally, for any two candidate entailments
I T ∪ {ϕi} |=ti ¬ψi ,
I T ∪ {ϕj} |=tj ¬ψj ,

decide whether ti > tj , or ti < tj .20
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Classical Validity & Graded Validity

. . . instead

• The solution I propose is to work with degrees of validity, rather
than drawing the classical dichotomous distinction between
validity and unsatisfiability.

• We would still have the classical two cases of validity, and
unsatisfiability.

• If the degree of validity of ψ is 1.0, while the degree of validity of
¬ψ is 0.0, then we have classical validity.

• If the degree of validity of ψ is 0.0, while the degree of validity of
¬ψ is 1.0, then we have classical unsatisfiability.

• However, classical logic with its dichotomous validity notion is
ignorant of this new case 3.
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Classical Validity & Graded Validity

. . . instead

• What we would like to do in case 3, is the following:
• We acknowledge, that neither the conclusion ψ, nor its negation
¬ψ is classically provable, but we still want to know, which is
more provable than the other.

• We acknowledge that, on the basis of the given knowledge,
neither the conclusion nor its negation are supported perfectly
well, but we still want to know, which of the two is better
supported by the knowledge we have.

• Our degrees of validity are now supposed to support this kind of
comparison, and allow, within case 3, a distinction into two
subcases: Case (a), where ψ is more valid than ¬ψ; and
case(b), where ψ is less valid than ¬ψ.
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Classical Validity & Graded Validity

. . . instead

• More generally: Given 800 candidate entailments, I do not
simply want to partition them into a set of valid entailments and a
set of unsatisfiable entailments. I want to order them from left to
right.

• On the left end, I want to have tautologies like Socrates is a
man, therefore Socrates is a man,

• On the right end, I want to have contradictions like Socrates is a
man, therefore Socrates is not a man,

• And in between, I want to have various contingencies like
Socrates is a man, therefore Socrates is mortal, ordered by their
degrees of validity.
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Classical Validity & Graded Validity

. . . instead

• Given such an ordering, and prior knowledge saying, for
example, that I expect 300 yes-answers, 200 don’t know
answers, and 300 no-answers, I can use that ordering and
determine appropriate cutoffs.

• This gives me robustness, since, instead of insisting that
candidate entailments be perfectly valid or unsatisfiable logically,
I now have a more lenient way of saying what exactly it means
for an entailment to be good enough to be a yes-answer, or a
no-answer. And everything else is then a don’t know answer.
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Propositional Model Theory & Graded Validity

Outline

• I will now go on to define, how exactly I can determine, the
degree of validity for a given candidate entaiment as a concrete
number.



Model Theory: Classical Bivalent Logic

Definition
I Let Λ = 〈p1, p2, . . . , pN〉 be a propositional language.
I Let w = [w1,w2, . . . ,wN] be a model.

The truth value ‖ · ‖Λ
w is:

‖ ⊥ ‖Λ
w = 0;

‖pi‖Λ
w = wi for all i ;

‖ϕ→ ψ‖Λ
w =


1 if ‖ϕ‖Λ

w = 1 and ‖ψ‖Λ
w = 1,

0 if ‖ϕ‖Λ
w = 1 and ‖ψ‖Λ

w = 0,
1 if ‖ϕ‖Λ

w = 0 and ‖ψ‖Λ
w = 1,

1 if ‖ϕ‖Λ
w = 0 and ‖ψ‖Λ

w = 0;

for all formulae ϕ and ψ over Λ.
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Propositional Model Theory & Graded Validity

Model Theory: Classical Bivalent Logic

• Let me start out by giving you a little refresher on how model
theory works for a classical bivalent propositional logic.

• In the language of propositional logic, we have three kinds of
formulae.

– We can use the falsity constant, which always has the truth
value zero.

– We can state atomic propositions, which always get their
truth value assigned, according to a valuation, to be either
zero or one.

– If phi is a formula and psi is a formula, then so is the
implication “phi implies psi” and the truth value of that
formula is determined according to the well known truth
table.



Model Theory: Satisfiability, Validity

Definition
I ϕ is valid iff ‖ϕ‖w = 1 for all w ∈ W.
I ϕ is satisfiable iff ‖ϕ‖w = 1 for some w ∈ W.

Definition

JϕKW =
1
|W|

∑
w∈W

‖ϕ‖w.

Corollary

I ϕ is valid iff JϕKW = 1.
I ϕ is satisfiable iff JϕKW > 0.
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Propositional Model Theory & Graded Validity

Model Theory: Satisfiability, Validity

• The model theoretic notion of validity is set up on that basis, by
saying that phi is valid, i.e. phi is a tautology, iff the truth value of
that formula phi is one for all valuations.

• That is: For every possible assignment of truth values to the
atomic propositions that occur in phi, we want the truth value of
the whole formulae phi to be one. Then we have a tautology.
Then we have a valid formula.

• And we say that a formula is satisfiable if, for some valuation,
the truth value of phi is one.

• That is: We want to be able to come up with some assignment of
truth values to atomic propositions that make the truth value of
the whole formulae phi one.



Model Theory: Satisfiability, Validity
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Propositional Model Theory & Graded Validity

Model Theory: Satisfiability, Validity

• Now what I do instead, is to take the same setup, and use a
different mode of aggregating across truth values for the different
valuations.

• Validity means taking a minimum. Satisfiability means taking a
maximum.

• What I’m doing instead is to take an arithmetic mean.
• This is informationally stronger than the other two, because

given the arithmetic mean, we can still determine whether the
formula was valid or satisfiable, but not the other way around.

• In particular: We know that the formula is valid, when the
arithmetic mean is one, and we know that it is satisfiable, when
it’s strictly greater than zero.



Model Theory: Satisfiability, Validity
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Propositional Model Theory & Graded Validity

Model Theory: Satisfiability, Validity

• But the crucial thing, is that this measure can also take on
values between zero and one. And this is

– my notion of graded validity
– the standard of proof
– the degree to which a theory supports a conclusion



Model Theory: Satisfiability, Validity
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Propositional Model Theory & Graded Validity

Model Theory: Satisfiability, Validity

• This definition also has a probabilistic interpretation.
• Here, one can think of ‖χ‖ as a random variable indicating the

truth value taken on for ‖χ‖w , when a valuation w is chosen from
W at random.

• The value of JχK is then quite simply the probability that the truth
value of χ, for such a valuation w chosen at random, is 1,
assuming for this choice a uniform distribution.
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Propositional Model Theory & Graded Validity

Model Theory: Satisfiability, Validity

• From the point of view of traditional objectivist probability, the
question arises: Why should this distribution be uniform, rather
than anything else? In response to this question, one might
imagine an assumption of maximum entropy, i.e. maximum
uncertainty, regarding this choice of a valuation.

• From the point of view of De Finetti’s subjectivist probability, this
question does not even arise. The question, then, is not “Why
assume a uniform distribution?”, but rather “Why not?” – in the
absence of any certain information contradicting such an
assumption.
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Shallow Inference: Bag-of-Words Encoding

Outline

• So now that we know what graded validity is, how do we use it
for reasoning purposes?

• As I’ve said before, I’ll answer this question in two steps.
• First, I will look at how this notion of graded validity can serve as

a theoretical justification for bag-of-words reasoning.
• Then, I will show that we can equally apply it to deeper level

reasoning.



Bag-of-Words Inference (1)

assume strictly bivalent valuations;
Λ = {socrates, is,a,man, so,every}, |W| = 26;

(T) socrates ∧ is ∧ a ∧man
∴ (H) so ∧ every ∧man ∧ is ∧ socrates

;

ΛT = {a}, |WT| = 21;

ΛO = {socrates, is,man}, |WO| = 23;

ΛH = {so,every}, |WH| = 22;

21 ∗ 23 ∗ 22 = 26;20
08
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Shallow Inference: Bag-of-Words Encoding

Bag-of-Words Inference (1)

• My theoretical justification for bag-of-words reasoning is
essentially based on the idea of this bag-of-words
representation.

• That is: When we do bag-of-words inference, then essentially
what we’re doing is to treat the words in a piece of text, as if they
were atomic propositions and the texts themselves, as if they
were conjunctions of such atomic propositions.

• As an example, let’s consider the Woody Allen mood of the
syllogism. Socrates is a man, therefore every man is Socrates.



Bag-of-Words Inference (1)

assume strictly bivalent valuations;
Λ = {socrates, is,a,man, so,every}, |W| = 26;

(T) socrates ∧ is ∧ a ∧man
∴ (H) so ∧ every ∧man ∧ is ∧ socrates

;

ΛT = {a}, |WT| = 21;

ΛO = {socrates, is,man}, |WO| = 23;

ΛH = {so,every}, |WH| = 22;

21 ∗ 23 ∗ 22 = 26;20
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Bag-of-Words Inference (1)

• If we write this formula down like this, then the degree of validity
for that implication is simply a function of the sizes of three sets:

– the set of words that appear only in the antecedent, but not
in the consequent.

– the set of words that appear both in the antecedent and in
the consequent;

– the set of words that appear only in the consequent, but not
in the antecedent.
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Bag-of-Words Inference (1)

• Logically, we are looking at six atomic propositions, so there are
26 = 64 ways of assigning truth values to these five propositions.

• There are 21 = 2 ways of assigning truth values to the
propositions in the antecedent.

• There are 23 = 8 ways of assigning truth values to the
propositions in the overlap set.

• There are 22 = 4 ways of assignign truth values to the
propositions in the consequent.



Bag-of-Words Inference (2)

How to make this implication false?
I Choose the 1 out of 24 = 16 valuations from WT ×WO

which makes the antecedent true.
I Choose any of the 22 − 1 = 3 valuations from WH which

make the consequent false.
...now compute an expected value. Count zero for the
1 ∗ (22 − 1) = 3 valuations that make this implication false.
Count one, for the other 26 − 3. Now

JT → HKW =
26 − 3

26 = 0.95312,

or, more generally,

JT → HKW = 1− 2|ΛH| − 1
2|ΛT|+|ΛH|+|ΛO|

.
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Bag-of-Words Inference (2)

• Now how do we make this implication false?
• In order to make an implication false, we must make its

antecedent true, and its consequent false.
• In order to make this antecedent, which is a conjunction of four

propositions, true, we have to make each of its conjuncts true.
So out of the 24 possible ways of assigning truth values to these
four conjuncts, only one way makes it true, namely that
assignment which makes all the conjuncts true.

• Now let’s look at the consequent. Of the five words in this
consequent, we have already assigned the truth value one to
three of them. So there are two more proposition which need a
truth value.

• Here we want to assign the value zero, in order to make the
consequent false, which we can do in three ways. The only
assignment we cannot choose is the one that makes them both
true. The other three choices make the conjunction false.
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Bag-of-Words Inference (2)

• So we know that exactly three out of the 26 possible valuations
make this implication false. Now let’s count zero for these three
assignments, and let’s count one for all the others, and let’s sum
them up, and divide them by the number of valuations 26, and
that gives us the degree of validity, which is, in our particular
example this number: 0.95.

• More importantly, we can write down the degree of validity as a
closed formula.

• And, not surprisingly, we find that this formula is, in fact a
bag-of-words overlap measure.

• What we have shown here is that, if you take this robust
inference engine, and you give it no information in the semantic
representation, beyond that which is available from a simple
tokeniser, then the inference mechanism will reduce to simply
measuring bag-of-words overlap. It will have the same
informativity and robustness properties as this well-known
method.
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• But now the question is: What happens if you make the
semantic representations more informative. Can we correctly
apply the information that’s present in a deeper-level semantic
representation?

• To answer that question, let’s look at the deep end of the
spectrum, where we assume that we have unambiguous
information about predicate predicate-argument structures,
quantifiers, and their scopes.



Language: Syllogistic Syntax

Let
Λ = {x1, x2, x3, y1, y2, y3};

All X are Y =(x1 → y1) ∧ (x2 → y2) ∧ (x3 → y3)

Some X are Y =(x1 ∧ y1) ∨ (x2 ∧ y2) ∨ (x3 ∧ y3)

All X are not Y =¬Some X are Y ,
Some X are not Y =¬All X are Y ,
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Language: Syllogistic Syntax

• In this case, our method would apply a syllogistic representation.
• So rather than just looking at a text as a conjunction of words,

taken as atomic propositions, . . .
• . . . , we now formulate a sentence like “All X are Y” by taking that

to be a compound formula.
• We simply assume that such a formula would be a predication

about three individuals 1, 2, and 3, in some artificial domain.
• So, saying that “All X are Y” would mean that “If one is an x, then

1 is a Y, AND, if 2 is an x, then 2 is a y, AND, if 3 is an x, then 3 is
a Y.”

• Similarly, “Some X are Y” would mean that “One is an x and one
is y, OR, two is an x and two is a y, OR, three is an x and three is
a y.”



Proof theory: A Modern Syllogism

∴ All X are X
(S1),

Some X are Y
∴ Some X are X

(S2),

All Y are Z
All X are Y

∴ All X are Z
(S3),

All Y are Z
Some Y are X

∴ Some X are Z
(S4),

Some X are Y
∴ Some Y are X

(S5);20
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Proof theory: A Modern Syllogism

• If we represent these sentences in that way, it turns out that the
following theorems are provable. And these theorems are the
axioms of the syllogism.

• So it turns out that our logic does, in fact, have the syllogism as
a fragment.



Proof theory: “Natural Logic”

∴ All (red X ) are X
(NL1), ∴ All cats are animals

(NL2),

Some X are (red Y )

∴ Some X are Y
,

Some X are cats
∴ Some X are animals

,

Some (red X ) are Y
∴ Some X are Y

,
Some cats are Y

∴ Some animals are Y
,

All X are (red Y )

∴ All X are Y
,

All X are cats
∴ All X are animals

,

All X are Y
∴ All (red X ) are Y

,
All animals are Y

∴ All cats are Y
;
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Proof theory: “Natural Logic”

• Why should we care about the syllogism? The important thing is
that the syllogism also proves all of the monotonicity properties
that are sometimes dealt with under the name “natural logic”



Natural Logic Robustness Properties

Some X are Y
∴ Some X are (red Y )

>
Some X are Y

∴ Some X are (big (red Y ))
,

Some X are Y
∴ Some (red X ) are Y

>
Some X are Y

∴ Some (big (red X )) are Y
,

All X are Y
∴ All X are (red Y )

>
All X are Y

∴ All X are (big (red Y ))
,

All (red X ) are Y
∴ All X are Y

>
All (big (red X )) are Y

∴ All X are Y
.20
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Natural Logic Robustness Properties

• So we get all the right theorems to be provable, but what about
the theorems that are not perfectly provable? In this case, we
still get the right robustness properties!



Preliminary Conclusions

(a) “. . . you must be very naive to believe you can reason
about language in logic. Even if you could, you’re missing
the knowledge to prove things. Even if you had that, logic
would still be too computationally complex.” WRONG!

(b) “. . . you must be rather ignorant to believe a machine
learner will get you anywhere, if all you do is to feed it bags
of words. It’s just wrong from the point of view of logic,
epistemology, linguistics, and whatever other theory you
should care about.” WRONG!
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Preliminary Conclusions

• Let me stop here, to draw some preliminary conclusions that we
might draw from the theoretic results presented so far.

• Let’s consider these two statements. . . .
• Although this is the sort of thing that we don’t read much about

these days, this separation of the world of NLP into (a) and (b),
is still a deeply entrenched paradigm.

• And if I were sitting in the audience right now, I’d probably be
asking myself whether what I’m hearing is an (a)-talk or a
(b)-talk.

• This is why, I would like to emphasize at this point, that I
subscribe neither to viewpoint (a) nor to viewpoint (b) exclusively.
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Preliminary Conclusions

• I have talked about classical logic, subscribing to the viewpoint
that the classical dichotomous notion of validity, and the
associated kinds of completeness and consistency assumptions
are just not practical, when it comes to reasoning within a theory
containing common-sense or real-world knowledge. I believe
that probability is just a better model of the epistemological
phenomena we are seeing in common-sense reasoning with
natural language. – this is a viewpoint we would associate with
the (b)-world.
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• On the other hand, I have talked about bag-of-words encodings
for text, essentially claiming that if you feed your machine learner
bags of words, you are forcing a semantic interpretation on your
texts, which is, from a logical-semantic point of view, no less
naive than saying that a text is just a conjunction, the conjuncts
of which are atomic propositions symbolized by words. My
viewpoint on this is that existing tools for semantic composition
can do much better than that. – this is a viewpoint we would
associate with the (a)-world.
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Preliminary Conclusions

• In and of themselves, these viewpoints are quite unsurprising.
• What is new, however, about my viewpoint, is the fact that those

two propositions are taken to be independent aspects of the
same theory, rather than belonging to two contradictory theories.

• And, as a result, we can draw two interesting conclusions, in
response to viewpoint (a) and viewpoint (b).
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Preliminary Conclusions

• In response to viewpoint (a), we can now say that knowledge
and computational complexity are issues that are completely
separate from the question of whether or not logic is a useful
theoretic framework for approaching textual inference.

• It is all a question of how one represents text in logic.
• In the case of a bag-of-words representation, all the knowledge

that is required is in the identities of the logical variables, and
computational complexity is as little as that of evaluating a
simple arithmetic expression.



Preliminary Conclusions

(a) “. . . you must be very naive to believe you can reason
about language in logic. Even if you could, you’re missing
the knowledge to prove things. Even if you had that, logic
would still be too computationally complex.” WRONG!

(b) “. . . you must be rather ignorant to believe a machine
learner will get you anywhere, if all you do is to feed it bags
of words. It’s just wrong from the point of view of logic,
epistemology, linguistics, and whatever other theory you
should care about.” WRONG!

20
08

-1
1-

26
Monte Carlo Semantics

Conclusions

Preliminary Conclusions

• In response to viewpoint (b), we can now say that bag-of-words
inference really is not that unmotivated, theoretically. I have
shown that bag-of-words inference fits perfectly well into the
logical scheme of things.

• And this theoretical account for the success of bag-of-words
inference, especially when it comes to its robustness properties,
is an important first step towards replicating the same
robustness properties for other systems.
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• So, we have a unified theory that integrates deep and shallow
inference. But an important question remains. Can we come up
with a method, putting this into practice? How could we go about
translating these theoretical informativity and robustness
properties into an observable accuracy figure?

• And, as I’ve said before, I have only recently started to address
this question in my work, and cannot yet make any concrete
claims.

• But, nevertheless, I’d like to show you how I plan to approach he
problem, and why this approach intuitively looks so interesting to
me.



Model Theory: Satisfiability, Validity, Expectation

Definition

JϕKW =
1
|W|

∑
w∈W

‖ϕ‖w.

How do we compute this in general?

Observation
I Draw w randomly from a uniform distribution over W.

Now JϕK is the probability that ϕ is true in w.
I If W ⊆ W is a random sample over population W, the

sample mean JϕKW approaches the population mean JϕKW
as |W| approaches W.20
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Model Theory: Satisfiability, Validity, Expectation

• The questin is, quite simply, how do we compute a degree of
validity in practice?

• Obviously, an exact computation for this is far from trivial, since
we have an exponential number of truth valuations to sum over,
in this formula.

• Even, traditionally, if you want to check whether a propositional
formula is a tautology, by trying out all truth assignments, you’ll
be in trouble computationally.

• This is because, when you have N propositions, you have to run
your model-checker 2N times, to ensure that all of the
assignments of truth values make the formula true.

• This would be just too computationally complex, and that is the
reason why theorem provers are usually symbolic
implementations of the proof theory for a logic, not model
checkers.
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Model Theory: Satisfiability, Validity, Expectation

• But, fortunately, this arithmetic mean is a little better behaved
than the strict notion of validity, when it comes to systematic
model checking.

• Namely: By statistical sampling theory, we know that it has a
consistent estimator.

• So if we only need to approximate this number, there is no need
to check all of the valuations.

• We can simply check a random sample. And that is what
enable the Monte Carlo method that I talked about about last
year.

• That is: We can assign truth values to propositions at random,
check the truth value, repeat the randomization, check the next
truth value, repeat the randomization, etc. And we simply do this
a couple of times and compute this mean over the sample rather
than the whole population to get a reasonable estimate of the
population mean.
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• I hope, that I’ve successfully made clear to you the idea of robust
inference that I’m employing for my work, and some of its
theoretical foundations within logic, combinatorics, and sampling
theory.

• My theoretical framework is largely based on logic, however it
advocates an important paradigm shift. I took the viewpoint that
we have to introduce robustness properties to deal effectively
with incomplete theories of background knowledge.

• This is done by generalizing from the classical dichotomous
validity notion to a notion of graded validity, imposing a more
useful structure on truth classes to deal with the case of what
would traditionally be considered incomplete or inconsistent
background theories.
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• I have then shown that this theory is in fact a useful way to think
and talk about current deep and shallow textual inference
systems.

• On the shallow end of the spectrum: If you give me a logical
representation for a bit of text, that comes directly out of a
tokeniser, my notion of graded validity reduces to a bag-of-words
overlap metric.

• If you give me a logical representation that comes out of deep
analysis, where you give me predicate-argument structures and
quantifier scopes, I can do everything that a theorem prover can
do, and I can give you certain robustness properties on top of
that, in order to deal with the situation where you’re missing
background knowledge.



Outline

Informativity, Robustness & Graded Validity

Propositional Model Theory & Graded Validity

Shallow Inference: Bag-of-Words Encoding

Deep Inference: Syllogistic Encoding

Computation via the Monte Carlo Method20
08

-1
1-

26
Monte Carlo Semantics

Summary

Outline

• I’ve defined a notion of robustness for inference in NLP that is
theoretically justifiable from the point of view of epistemology,
logic, and linguistics.

• It enables practical computation of degrees of validity via a
Monte Carlo method.

• So thank you, for your attention, and I’ll be happy to answer any
questions.
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