CLASSY and TAC 2008 Metrics

John M. Conroy Judith D. Schlesinger IDA Center for Computing Sciences,USA

Outline

- CLASSY 08
 - Update: System 6, 37, 60.
 - [Opinion: System 5, 36]
- What we submitted.
- How we did and how the metrics compare.
- Combining metrics.
- Meta-evaluation: evaluation of evaluation.

CLASSY (Clustering, Linguistics, And Statistics for Summarization Yield)

- Linguistic preprocessing.
 - Shallow parsing
 - Find sentences and apply trimming techniques.
- Sentence Scoring.
 - Approximate Oracle.
- Redundancy Removal.
 - Select a subset of sentences.
 - LSI and non-negative "QR."
- Ordering
 - TSP

Linguistic Processing

- Eliminations
 - -Gerund phrases
 - -Relative clause appositives
 - -Attributions
 - -Lead adverbs and phrases
 - For example, On the other hand, ...
 - -Medial adverbs
 - too, however, ...

An Oracle Score

- An oracle might tell us Pr(t)
 Pr(t)=Probability that a human will choose term t to be included in a summary.
- If we had human summaries, we could estimate Pr(t) based on our data
 - E.g., 0, 1/4, 1/2, 3/4, or 1 if 4 human summaries are provided.
 - Oracle Score: fraction of expected abstract terms (vector space model).

A Simple Approximation of $P(t|\tau)$

• We approximate $P(t|\tau)$ by

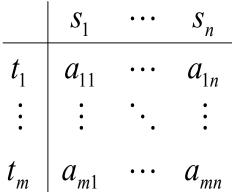
$$P_{sq\rho}(t \mid \tau) = \frac{1}{4}s(t) + \frac{1}{4}q(t) + \frac{1}{2}\rho(t)$$

 $s(t) = \begin{cases} 1 \text{ if } t \text{ is a signature term} \\ 0 \text{ if } t \text{ is not a signature term} \\ q(t) = \begin{cases} 1 \text{ if } t \text{ is a query term} \\ 0 \text{ if } t \text{ is not a query term} \\ 0 \text{ if } t \text{ is not a query term} \end{cases}$ $\rho(t \mid \tau) = \text{ probability } t \text{ occurs in a sentence considered}$

• The score of a sentence is the sum of $P(t|\tau)$ taken over its terms divided by its length.

Smoothing and Redundancy Removal

Use approximate oracle to select candidate sentences (~3X *words*).


Terms as sentence features

- Terms: $\{t_1, ..., t_m\} \in \mathbb{R}^m$
- Sentences: $\{s_1, \ldots, s_n\} \in \mathbb{R}^n$

• LSI to reduce rank 0.65*n*.

-Non-negative "QR" to select sentences.

Ordering Sentences

- Approximate TSP to increase flow.
- Start with worst...
- Order the lowest scoring sentence last.
- Order the other sentences so that the sum of the distances between adjacent sentences is minimized (TSP).
- *B_{ij}* =number number words sentence *i* and *j* have in common.

$$c_{ij} = -\frac{b_{ij}}{\sqrt{b_{ii}}\sqrt{b_{jj}}}$$

Adaptations for Update

- Sub-task A: run CLASSY on 10 docs.
- Sub-task B:
 - Use docs A and B to generate signature terms.
 - Project term-sentence matrix to orthogonal complement of submitted summary.
 - Select sentences from 10 new documents.
- This update strategy scored best in 2007.

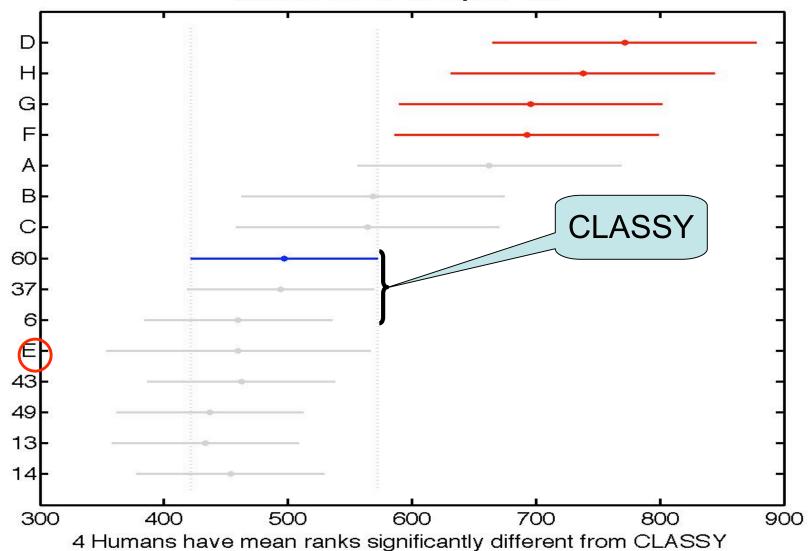
Three Submissions

- System 6: background = AQUAINT 2
 Complete Sentences: Bin packing to choose last sentence or two.
- System 37:background = AQUAINT 2
 Possible Fragments
- System 60: background AQUAINT 1
 Possible Fragments

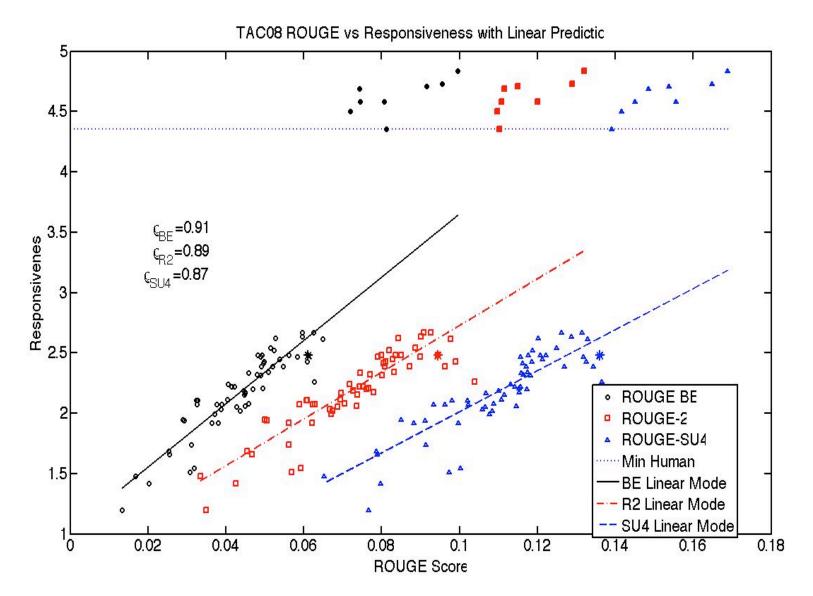
Content and Responsiveness

- DUC 2007 Main Task: Systems ending summary with sentence had significantly higher content responsiveness, Conroy & Dang 2008 COLING. However, content responsiveness "behaved like" overall responsiveness of 2006!
- DUC 2007 Update Task: Systems ending summary with sentence had significantly lower content responsiveness.

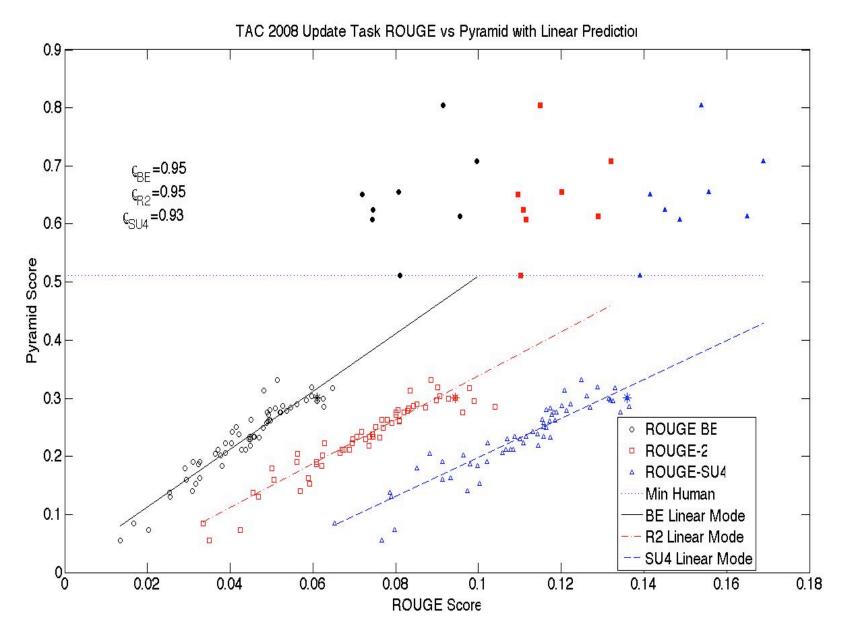
2008 Update Task


Metric	Sentence	Fragment	<i>p</i> -Value
ROUGE-BE	0.045	0.043	0.092
ROUGE-2	0.073	0.072	0.319
ROUGE-SU4	0.287	0.289	0.974
Linguistic	2.422	2.239	6.74e-8
Pyramid	0.232	0.233	0.838
Over. Resp.	2.203	2.137	0.010

What about CLASSY?


- CLASSY
 - Pyramid, Responsiveness, ROUGE-BE
 - No significant difference between submissions.
 - ROUGE 2, SU4
 - Ending with fragment significantly higher.
 - No significant difference background model: AQUAINT 1 vs. 2.
- Conclusions:
 - Perhaps we could do better bin packing!
 - Signature terms are relatively robust.

Our Favorite Metric: ROUGE 1


ROUGE-1 Multi-Compare Test

ROUGE and Responsiveness

Correlating ROUGE with Pyramid

Choose Best Linear Combination of Metrics

- Canonical Correlation: Hotelling 1935
 - Finds optimal linear combination to maximize correlation: a LS problem; more generally an eigenvalue problem.
- ROUGE Optimal Summarization
 Evaluation. ROSE, Conroy, Dang 2008.
- Linear combination of average system scores not document set scores.

(BE,Readability) Model

ROSE Model Extrapolation for 2008 5 4.5 (ROSE,Resp) Machines 4 (ROSE, Resp) Canonical Correlation (ROSE, Resp) Machine Extrapolation (ROSE, Resp) Humans Min Human Resp 2008 ROSE Model (BE,LING) Machine Correlatio 2 with Content Responsiveness=0.96 1.5 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 **ROSE Score**

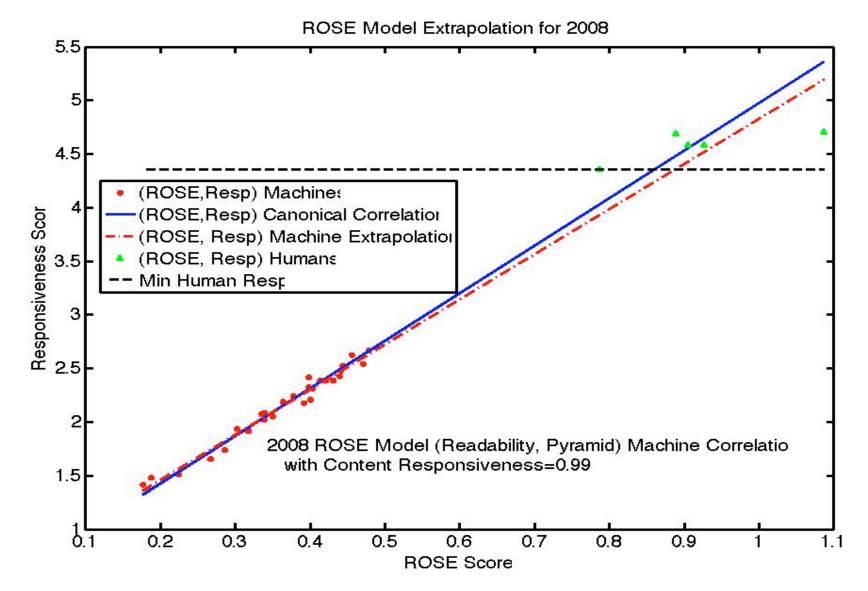
(BE, Pyramid) Model

ROSE Model Extrapolation for 2008 6 5.5 2008 ROSE Model (BE, Pyramid) Machine Correlatio 5 with Content Responsiveness=0.96 4.5 Responsiveness Scor 4 3.5 з (ROSE, Resp) Machines (ROSE, Resp) Canonical Correlation 2.5 (ROSE, Resp) Machine Extrapolation (ROSE, Resp) Humans 2 Min Human Resp 1.5

0.2

0.3

ROSE Score

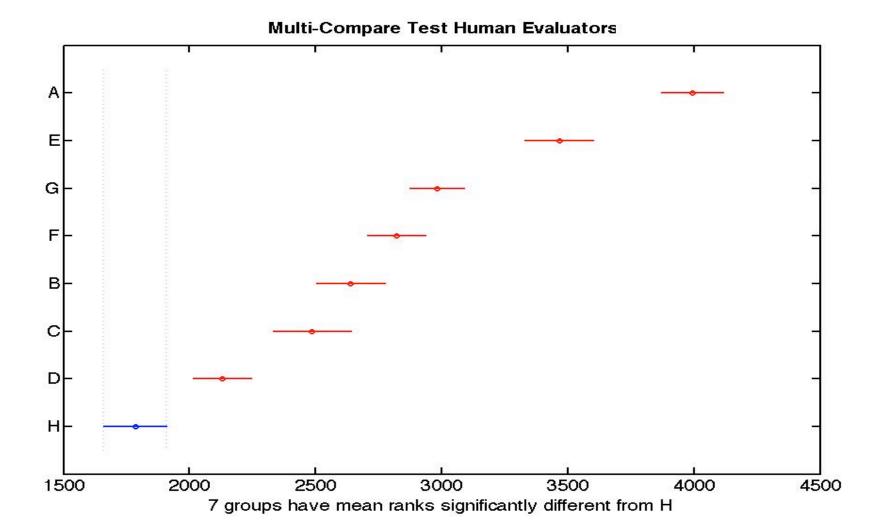

0.4

0.5

1ò

0.1

(Readability, Pyramid) Model


Conclusions

- CLASSY did well at ROUGE eval. for update task and on human evals.
- Gap between humans and machines still exists.
- Gaps automatic and human metrics still exists.
- Pyramid correlates quite well with overall responsiveness.

Meta Evaluation

- Evaluate the Evaluation Methods.
 - Automatic methods to estimate:
 - Linguistic quality. (Regina Barzilay, Mirella Lapata 2005)
 - Pyramid scoring. (Columbia, Univ. Penn.)
 - New ROUGE BE, n-gram graph evaluation.
 - Correlate overall responsiveness with an extrinsic evaluation: What task is the summary serving?

Easy and Hard to Please

