Entity Linking and Slot Filling through Statistical Processing and Inference
Rules

Dan Bikel and Vittorio Castelli and Radu Florian and Ding-jung Han
{dbikel,vittorio, raduf,dbhan}@us.ibm.com
IBM TJ Watson Research Center
1101 Kitchawan Rd,
Yorktown Heights, NY 10598

Abstract

Information extraction is one of the fundamen-
tally important tasks in Natural Language Pro-
cessing, and as such it has been the subject of
many evaluations and competitions. The lat-
est such evaluation, the Knowledge Base Pop-
ulation (KBP) part of the Text Analysis Con-
ference 2009, is focusing on two aspects: en-
tity linking and slot filling. This paper presents
the design and implementation of the hybrid
statistical/rule-based IBM system that performs
these two tasks.

1 Introduction

This paper describes the IBM systems for entity linking
and slot filler extractor used during the TAC-KBP evalua-
tion. Due to the paucity of training data for the two tasks
and the relatively short time available for this task, we
have adopted hybrid approaches, where we used statisti-
cal classifiers to perform information extraction, includ-
ing parsing, semantic role label detection, mention and
entity detection and recognition, relation detection and
recognition, and time normalization, to extract important
clues from text, and then implemented a rule-based map-
ping on top of the rich annotations to perform the indi-
vidual tasks. As training data becomes available for this
task, the system is well positioned to be converted to a
fully statistical system, by converting the rules into fea-
tures and training the system with one of the many avail-
able training procedures (e.g., Maximum Entropy, SVM,
etc).

In processing the data for entity linking, we made
heavy use of DBpedia (v 3.2), which contains automat-
ically extracted relations from the Wikipedia, and used
the SPARQL query language (Pérez et al., 2006) to query
it. The similarity measure we used to assess the close-
ness of the entity candidate to an entry in the knowledge
database has two components, one related to spelling
(name aliases, Wikipedia redirections, edit distance) and

the other to contextual similarity between the candidate’s
document and the database wikipedia entries. This mea-
sure was tuned on a development set.

For the slot filling task, we implemented an inference
engine on top of the automatically derived relations, us-
ing a maximum-entropy cascaded model. Around 120
simple inference rules were manually created (e.g. if A
is sibling of B and C is a parent of A, then C is a par-
ent of B). The process of filing slots for a particular en-
tity consists of (1) searching the database for documents
that contain the entity, (2) run the inference engine on
the returned documents, and (3) filter the identified val-
ues, by accumulating evidence across documents. For
some of the slot types, the answers can be found directly
in arguments of relations (such as AGE, Date-of-Birth,
Date-of-Death), while for others we used the inference
engine to produce the answers. For instance, in the sen-
tence "John was one of the three Americans who died in
the Monday crash." - we use the fact that John is in the
relation ’part-of-many’ with *Americans’, which are the
object of an ’event-violence’ that happened "Monday’ to
obtain that John died on Monday, which was resolved to
be 20081223.

The remainder of the paper is organized as follows:
Section 2 presents the data processing that was performed
on the TAC corpus, serving as input to the entity detection
and slot filing systems. Section 3 describes the design and
implementation of the entity linking task, while Section
4 presents the slot-filling system. Section 5 presents the
numerical results obtained by the system in the official
evaluation and some observations related to the evalua-
tion process. Finally, Section 6 concludes the paper.

2 Data Processing

For the TAC-KBP evaluations we annotated data based
on an IBM-developed framework for mention, event,
coreference, and relation annotation. We call this frame-
work Knowledge from Language Understanding and Ex-
traction, or KLUE for short. KLUE is a general-purpose
component of our NLP toolkit, serving as a basic build-

ing block for our TAC-KBP system. We extended parts of
the KLUE framework, in particular its entity taxonomy,
to accommodate the TAC-KBP tasks.

In this section we describe the KLUE aspects relevant
to the TAC-KBP evaluation. First, we discuss the KLUE
mention detection and coreference resolution framework
and the derived statistical model we used to preprocess
the data. Then we describe the relation framework and
the resulting relation statistical model.

2.1 Mention Detection and Coreference Resolution

TAC-KBP is a natural evolution of the ACE program,
which included an entity detection and coreference reso-
lution task. The KLUE entity taxonomy departs from that
of ACE (NIST, 2008a) in two ways. First, it provides a
broader spectrum of entity types: there are 36 entity types
and 17 event types, versus seven main ACE types. Sec-
ond, it is shallower: while ACE defines entity subtypes,
KLUE refrains from doing so.

These differences proved to be beneficial for the
TAC-KBP evaluation. Adopting a diverse entity-type set
provided us with almost all the entity types required for
the slot-filling task; the few that were not originally cov-
ered were easily added to KLUE.

We trained a mention detection and a coreference
model using internally annotated data. Both models are
akin to those described in (Florian et al., 2004; Bikel
et al., 2008). Mention detection consists of identifying
spans of text that refer to specific entities and labeling
each span with the entity type. Our mention detection
system relies on a sequential detection algorithm centered
around a maximum entropy (henceforth MaxEnt (Berger
et al., 1996)) Markov model. The mention detection
model yields Precision=0.7631, Recall=0.8097, and F-
measure=0.7857. Coreference consists of grouping to-
gether mentions of the same entity or event. It is per-
formed by selecting the partition of the document men-
tions that maximizes an approximation of the posterior
probability over the space of partitions. Our coreference
system uses a MaxEnt model to approximate the poste-
rior probability.

2.2 Relation Detection

Relations are “links” or “connections” between entities or
between an entity and an event supported by textual evi-
dence. Our KLUE relation framework is an extension of
the ACE relation framework (NIST, 2008b), and was de-
veloped independently of the TAC-KBP slot-filling task.
Like in ACE, we only annotate relations between entity
pairs supported by sentences or portions thereof. Thus,
we do not support relations between three or more enti-
ties (e.g., father, mother, and children could be linked by a
family relation, but these types of relations are not part of
KLUE), and we do not annotate relations that span more

than one sentence. Unlike ACE, we support relations be-
tween an entity and an event anchor.

Relying on 36 entity types and 17 event types allowed
us to define a rich set of relations. Specifically, we an-
notated 47 types of relations, substantially more than the
17 categories jointly defined by type and subtype in ACE.
As in ACE, KLUE defines a relation mention as an asso-
ciation between two entity mentions, and a relation as a
collection of relation mentions.

Our slot-content extractor makes use of a few char-
acteristics of relations. A subset of the KLUE relations
are symmetric, notably colleague, competitor,
near, overlaps, partner, and relative,
while the majority are asymmetric. A handful of relations
are transitive, namely locatedAt, partOf, and
partOfMany. Some KLUE relations map in a straight-
forward fashion to TAC-KBP slots, notably basedIn,
bornAt, bornOn, capitalOf, citizenOf,
diedAt, diedOf, diedOn, dissolvedOn,
educatedAt, employedBy, founderOf,
foundedOn, managerOf, memberOf,
parentOf, populationOf, resideslIn,
shareholdersOf, and subsidiaryOf, in addi-
tion to several relation types mentioned above. Other
TAC-KBP slots correspond to special cases of the
general KLUE relations affectedBy, agentOf,
hasProperty, thus mapping is not automatic. The
slots that do not map to relations are filled through an
inference engine described in §4. KLUE relations that
are used in this inference process include: before,
instrumentOf, ownerOf, participantlIn,
playsRoleOf, productOf and timeOf.

KLUE relations have similar attributes to those of ACE
relations. In addition to the type, relations have an argu-
ment order, which, for non-symmetric-relations, denotes
whether the leftmost mention is the first or second argu-
ment; a fense, which denotes whether the text describes,
a past, present or ongoing, future relation; a modality,
which denotes whether the relation is asserted or unspec-
ified; and a specificity attribute, which denotes whether
both arguments are specific entities or at least one of the
arguments is generic (as in “John partnered with one of
his colleagues”). Unlike ACE, KLUE relations do not
have a subtype.

We extract KLUE relations from text using a cascaded
MaxEnt model (Kambhatla, 2004). The cascaded model
is a multi-stage classifier that analyzes all entity mention
pairs and all entity mention-event mention pairs that oc-
cur in each sentence. The cascade consists of an existence
model, followed by type, argument order, tense, modal-
ity, and specificity models in that order.

We trained our relation model with features that fall
into five broad categories:

Structural features include the distance between the

mention pair been analyzed and the number of in-
tervening mentions.

Lexical features include the mention types and entity
types, the non-stop-words between the mentions,
PropBank-derived features, features that fire in the
presence of lexical patterns, and in the presence of
punctuation patterns.

Syntactic features include features computed from the
parse tree, such as features extracted from the root of
the subtree that covers the mentions being analyzed,
features extracted when walking the parse tree from
one mention to the other; features computed from
the part-of-speech tags; and features that detect spe-
cific syntactic patterns, such as the existence of pos-
sessive constructions.

Semantic features are computed from the SRL labels of
the parse tree nodes.

Relation features fire when the mentions being ana-
lyzed appear in relations with other mentions. More
specifically, consider the mentions in a sentence,
consider all the possible pairs, and construct an or-
dering. Pick a specific pair (M;, M), and con-
sider all the pairs to its left in the ordering. If M,
or My appears in one such pair, and a relation ex-
ists between the mentions in that pair, then a relation
feature fires.

From the viewpoint of the TAC-KBP slot-filling task, re-
lation existence, relation type, and argument order are by
far the most important attributes, while tense, modality,
and specificity are for the most part ignored by the slot
filling algorithm described later. Precision, Recall, and
F-Measure on relation mention type are 0.7185, 0.6682,
and 0.6924, respectively, and are dominated by misses
and false alarms.

3 Entity Linking

The IBM entity linking system uses a two-phase ap-
proach: cross-document coreference followed by entity
linking.

After mention detection and within-document corefer-
ence, a cross-document coreference component attempts
to link all within-document entities to some entity in
our database, a superset of the provided knowledge base
(KB). If a link is found, the unique identifier of such
an entity is transformed into a cross-document entity id.
This first phase occurs on all entities in all documents in
the corpus, and thus formally constitutes the last step in
our data processing pipeline.

In the second phase, an entity linking query is pro-
cessed by examining every occurrence of the query string

in the context of the query document. If a mention (de-
tected by our mention detector) overlaps an occurrence
of the query string, and that mention was given a cross-
document id from the KB in the first pass, then that id
is output as the system response. Otherwise, the system
attempts to link the query string in its context to a KB
entity using the same cross-document coreference com-
ponent of the first phase.

3.1 Data for the database

We constructed our database of entities from two sources:
the provided KB and the dbpedia.! Crucially, dbpedia
v3.2 includes an ontology with nodes that closely corre-
spond to the entity linking task’s definition of a PERSON,
GPE and ORGANIZATION. Since the dbpedia is provided
in the N-triples format, we were able to mine its infor-
mation using the rich SPARQL query language. Figure 1
shows the basic statistics of both sources of data.

] \ KB | dbpedia v3.2
PER 116498 211029
GPE 114523 179842
ORG 55813 75627
UKN | 531907 n/a

[Total | 818741 466498

Figure 1: Basic statistics for our entity database.

Given that both the KB and the dbpedia are culled from
the Wikipedia, there is considerable overlap in the en-
tities of each database: all but about 60,000 entities in
the dbpedia are present in the KB. However, unlike the
KB, the entities mined from the dbpedia all have types,
so whenever a KB entity of type UKN also appeared in
the dbpedia, we coerced its type to be that of the dbpe-
dia’s entry. We were thus able to transform 153,641 UKN
entities from the KB to a “known” type.

3.2 Entity matching strategy

At bottom, entity linking is about similarity: we seek the
best similarity metric so that given a name in context we
can find the most similar entity in our database, or, if none
appears similar, output NIL. Given the great size of our
database, we need an efficient way to narrow down the
search before we can apply a detailed similarity metric.
Thus, we decompose entity similarity into two subprob-
lems: a fast match followed by a “slow match”.
Following the approach taken in (Bikel et al., 2008),
we do a fast match by only doing a fuzzy name match.
Fuzzy name matching against a large database can be
viewed as an information retrieval problem. Using the

!The dbpedia is available at http: //dbpedia.org/.

open-source search engine Lucene, we index each en-
tity’s name and aliases by all its character trigrams, and
then perform searches based on all character trigrams of
query names. The names that have the most character tri-
grams in common with the set of trigrams of the query
name will tend to have the highest scores. This approach
works remarkably well at putting the correct entity within
the top 50 hits, and can handle spelling variations. Since
aliases are crucial to this method of fast match, we made
extensive use of dbpedia in order to capture a wide vari-
ety of aliases for each entity, including its redirects
dataset.

After narrowing the search space, our system performs
a “slow match”, attempting to match the query entity to
the top hits from the fast match. The slow match relies on
a more sophisticated name-matching technique, as well
as a metric for evaluating context. A name similarity
score is provided by SoftTFIDF from the SecondString
(Cohen et al., 2003), using Jaro-Winkler as the secondary
token-matching metric with a weight of 0.95.

Our context-matching score is based on cosine simi-
larity; we call it a “cosine inclusion score”. Let the con-
text of query entity Cquery as the set of non—stop words
of all mentions in the current sentence plus those of the
previous and following sentences. Let the context of a
database entity Cg;, be the set of non—stop words from its
infobox slot values (obtained both from the KB and the
dbpedia). Our context similarity score cinclusion Measures
the overlap of the context words of a database entity with
those of the query entity:

Zwecm,ew NCapb ldf(w)
ZwECque‘.y ldf(w) ’

where idf(w) is the log of the inverse document fre-
quency of term w.

The overall similarity score s is a simple weighted
combination in log space of the name matching score v
and the context similarity score Cinclusion:

(1)

Cinclusion =

s = 10g (V) + - log (Cinclusion) (2)
3.3 Entity linking

As described at the beginning of §3, we employ a two-
pass strategy for entity linking. First, our system pro-
cesses all mentions detected in a document with its coref-
erence component, and then examines the mentions that
overlap with the query name. If any has been linked to a
KB entity, the system simply outputs that entity id. Other-
wise, the coreference component examines each instance
of the query name in context, employing the coreference
component again, using its fast and “slow” matches de-
scribed above.

One issue with the fast match is that it can ignore im-
portant cases of name ambiguity. For example, when the

query name is George Bush, the top-scoring entity re-
turned by the fast match is George_Bush_ (NASCAR).
Our solution to this is to prefer “famous” entities. We ac-
complish this by using the large pagelinks dataset that
is part of dbpedia, creating a new N-triples dataset that
contains the number of incoming Wikipedia page links to
each page. We use this number of incoming links as a
proxy for fame; to wit, George Bush (the 43rd President
of the U.S.) has 8133 incoming links, whereas George
Bush the NASCAR driver has 2.

Accordingly, the entity linking system first attempts to
link only among “famous” entities. We define “famous”
as having a number of incoming page links greater than
100 (this parameter optimized on a small, held-out de-
velopment set). Unless a famous entity in the database
matches the query entity with a score higher than a spe-
cific threshold, the system tries again, this time attempt-
ing to match the query entity against all entities in the
database. The process is illustrated in Figure 2.

st fame = 100, fast match
character trigrams

slow match:
no: name + context

set fame = 0

output NIL) Coutput entity id)

Figure 2: Two-pass entity linking strategy.

4 Slot Filling

There are three major components in the IBM system for
the slot filling task. The first is our information extraction
(IE) system described in §2. The second component is a
search engine capable of finding the documents contain-
ing a specific entity. The third component is a slot filler
extractor that works on the identified documents to infer
the appropriate slot fillers for a given query entity.

4.1 Document Retrieval

For this task we have adopted the open-source Lucene
search engine for identifying relevant documents for ex-
traction. The preprocessed documents were indexed to
support queries targeting (a) a specific KB id or (b) a
specific entity type plus its spelling (PERSON, Barack
Obama).? The search results consist of relevant docu-

’In fact, we used the same Lucene index created for the en-
tity linking task, as described in §3.2.

ments and the relevant mentions (identified by our IE en-
gine) within those documents.

At run-time when a query includes a KB node id, we
query our search engine using both that KB node id and
the name string. For a query without a KB node id, we
use only the name string for searching.

In the latter case, we improve precision of document
retrieval by checking the relevant mentions identified
within the documents. For each of these relevant men-
tions, the system checks all the mentions in its corefer-
ence chain. If none of those mentions’ text matches the
query string, the system discards the document.

4.2 Slot Extraction

As discussed in §2.2 above, although many TAC-KBP
slots can be filled by KLUE relations, there are still slots
that require a combination of KLUE structures — men-
tions, coreference chains and relations — to produce their
fillers. Our system therefore includes a third component
to produce the final output.

For example, no single structure identified by our IE
engine maps to slot per:title:; however, we can
perform reasoning on a set of structures to fill this
slot. Consider the sentence The 44th President
is Barack Obama. Our system identifies two men-
tions, President of type OCCUPATION and Barack
Obama of type PERSON. The two mentions are con-
nected via coreference. The system is able to make use
of the coreference chain and mention types to fill the
per:title: slot of Obama with president. Next,
consider the sentence President Barack Obama
addressed Congress. There are still two mentions
of type OCCUPATION and PERSON, and KLUE relates
them via the hasProperty relation.

The above examples show that the rich set of KLUE
structures may be combined with a small amount of in-
ference to produce slot fillers. We designed three types
of rules for slot extraction: COREF rules, RELATION rules
and IRELATION rules (“inferred relation”).

e COREF rules operate on pairs of mentions that co-
refer.

e RELATION rules are used when a chain of KLUE
relations links two mentions.

e IRELATION rules are similar to RELATION rules, but
may also include previously-extracted TAC-KBP
slots. The advantage of this type of rules is that work
done in extracting a slot can be re-used to infer an-
other slot.

Since we allow recursion via IRELATION rules, it is vital
to keep track of dependencies among the slot rules. If the
system makes a deduction about one slot, it must update
all deductions based on that slot. The system in effect

performs non-monotonic reasoning, which makes these
types of rules flexible and powerful.

Our system also fills slots for selected entities other
than the query entity to aid its search. For example, to
extract per : parents for a query person (@, it is poten-
tially useful to extract per:parents for a non-query
person S because if S is a sibling of () and P is a parent
of S, then P is also a parent of (). Therefore, our system
will first identify all entities that are weakly connected to
the query entity via a relation, and then extract all appli-
cable slot fillers for each of these entities.

In addition to the slot-specific extraction rules, our sys-
tem also exploits two types of general inference rules on
relations. The first type concerns the basic properties of
KLUE relations, viz., symmetry, transitivity and equiva-
lence (we do not have reflexive relations). For example, if
person A is a colleague of person B, then B is also a col-
league of A by symmetry. The second type of inference
rules encodes useful world knowledge. For example, if a
person is a manager in an organization, then that person
is also a member of that organization. These two types of
rules are executed before any slot-specific rules.

4.3 Producing final output

We need filler ranking for selecting only one filler for
the single-valued slots, and for filtering for the list-valued
slots. For each filler candidate c;

1
Score (¢;) = count (¢;) + —docCount (¢;)
n

where count (c;) is the frequency of the answer ¢;, n is
the total number of candidates, and docCount (¢;) is the
document frequency of the candidate c;.

The final output for each slot is produced by the fol-
lowing steps:

e The system selects the candidate with the highest
score for single-valued slots. For list-valued slots,
the score is used to form a ranked list which is then
processed to remove redundancy based on string
match. Additionally, for time-related fillers (e.g.,
per:date_of_birth), we compare the normal-
ized times to remove duplicates.

e The system uses the same redundancy-elimination
strategy to identify slot values that already appear in
the KB. These values are not output.

e The system identifies slot values that are entities in
the KB and links them using the entity linking com-
ponent described in §3. Additionally, slot values that
are linked to the same KB entries are considered du-
plicates and only one of them is kept.

5 Evaluation Results

The results of our entity linking system and our slot filler
system on the evaluation data are summarized in Tables
1 and 2, respectively. Since there was very little anno-
tated data available, the systems were tuned on such ex-
istent data. For the entity linking data, the development
set consisted of internally annotated 120 examples, plus
a small number of resources that were exchanged by the
task participants.

For the slot filling task, we selected 30 frequent enti-
ties (10 of each type PER, ORG and GPE) in a set of 568
documents, from which we extracted roughly 1500 fillers
(actual text spans of the fillers). These data drove the
development of the rules described above, and allowed
tuning of the various parameters of the system.

Micro-average Macro-average
No. Q IBM* | allNIL | No.Q IBM* all NIL
KB 1675 63.5% 0% 182 42.3% 0%
NILL 2229 71.8% 100% 378 66.2% 100%
total 3904 68.2% 57.1% 560 58.4% 67.5%

Table 1: Results of the highest-accuracy IBM entity link-
ing system on the evaluation queries.

Accuracy | IBMI | IBM2 | Baseline (NULL) |
Single-valued | 0.816 | 0.816 0.847
List-valued | 0.742 | 0.715 0.741

Overall 0.779 | 0.765 0.794

Table 2: Results of the IBM slot filler extraction system
on the evaluation queries.

It should be noted that the results shown in Table 1
are obtained with a corrected system, which was submit-
ted after the close of the entity linking evaluation cycle.
During the slot filling evaluation period, we noticed that
the formula computing the similarity of two mentions -
Equation (2), was being computed wrongly as

s =log(v) —a-log (Cinclusion)

This had the negative effect of penalizing the entities that
have contexts in common with the query entity.

We also note that tuning the threshold for deciding
whether an entity is in the KB or not is a very delicate
matter, as it depends strongly on the test distribution. On
our internal development test sets, we were seeing ac-
curacies of over 90%. Also, when we took a random
sample of 10% of the evaluation queries and re-evaluated
our system but with that threshold turned up (to be more
conservative and produce fewer false alarms), we saw
our micro-average score jump dramatically from 68% to

75%. These results point to the ever-critical need of hav-
ing development data that is representative of test data.

6 Conclusion

The Knowledge Base Population task, part of the 2009
Text Analysis Conference, is the latest in a long tradi-
tion of information extraction evaluations — which in-
clude the MUC conferences, the CoNLL 2002 and 2003
shared tasks, and the NIST-organized ACE evaluation. It
facilitates and encourages progress by moving to more
involved and realistic tasks — namely, cross-document
coreference and slot filling. This paper presents the sys-
tems that produced the results submitted by IBM to this
evaluation. The paper describes in details the hybrid sta-
tistical / rule-based models used by the systems, which
make heavy use of automatically extracted mentions, en-
tities (coreference information) and relations to quickly
prototype and implement entity linking and slot filling.

For entity linking, we have implemented a system that
utilizes information extracted from Wikipedia and DBpe-
dia, and heuristic similarity measures based on character
trigrams and context similarity to link the query entity
with the KB. Its two-faceted design — composed of a fast
search followed by a thorough search — allows it to inves-
tigate efficiently, yet in depth, the corpus to identify and
score possible candidates.

The slot filling system is built on top of the informa-
tion extracted by our in-house IE system, which iden-
tifies a large number of entity and relation types. This
system has three components: a search engine, a slot
extractor and scorer, and a summarization system. The
mentions and relations extracted from documents found
by the search engine are analyzed by an inference engine
based on Horn clauses, built to map the basic relations
to corresponding slots. The resulting output is filtered to
produce the desired results (either single-valued or list-
valued slots).

The systems were tuned on development sets that were
both obtained from the community (for entity linking)
and annotated in-house. We found that some of these data
sets were not good representatives of the actual evaluation
data, such as in the case of entity linking; this resulted in
lower performance than we had anticipated. However,
when the mismatch between the training and evaluation
data was less pronounced, such as for slot filling, the re-
sulting system was more competitive.

References

A. Berger, S. Della Pietra, and V. Della Pietra. 1996. A
maximum entropy approach to natural language pro-
cessing. Computational Linguistics, 22(1):39-71.

Daniel Bikel, Vittorio Castelli, Radu Florian, Xiaoqiang

Luo, Scott McCarley, Todd Ward, and Imed Zitouni.
2008. IBM ACE’08 system description. In Proceed-
ings of ACE’08, Alexandria, VA, May.

William W. Cohen, Pradeep Ravikumar, and Stephen
Fienberg. 2003. A comparison of string metrics for
matching names and records. In KDD Workshop on
Data Cleaning and Object Consolidation.

R. Florian, H. Hassan, A. Ittycheriah, H. Jing, N. Kamb-
hatla, X. Luo, N Nicolov, and S Roukos. 2004. A
statistical model for multilingual entity detection and
tracking. In Proceedings of the Human Language
Technology Conference of the North American Chap-
ter of the Association for Computational Linguistics:
HLT-NAACL 2004, pages 1-8.

Nanda Kambhatla. 2004. Combining lexical, syntactic,
and semantic features with maximum entropy models
for extracting relations. In Proceedings of the ACL
2004 on Interactive poster and demonstration sessions,
page 22, Morristown, NJ, USA. Association for Com-
putational Linguistics.

NIST. 2008a. Ace (automatic content ex-
traction) english annotation guidelines for enti-
ties. http://projects.ldc.upenn.edu/ace/docs/English-
Entities-Guidelines_v6.6.pdf.

NIST. 2008Db. Ace (automatic content ex-
traction) english annotation guidelines for rela-
tions. http://projects.ldc.upenn.edu/ace/docs/English-
Relations-Guidelines_v6.2.pdf.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez.
2006. Semantics and complexity of sparql. CoRR,
abs/cs/0605124.

Appendix: KLUE entities, events, and
relations

KLUE defines 36 types of entities, namely: AGE,
ANIMAL, AWARD, CARDINAL, DATE, DEGREE,
DISEASE, DURATION, EMAIL, EVENT, FACIL-
ITY, FOOD, GEOLOGICALOBIJ, GPE, LAW, LO-
CATION, MEASURE, MONEY, ORDINAL, OR-
GAN, ORGANIZATION, PEOPLE, PERCENT,
PERSON, PERSONPEOPLE, PHONE, PLANT,
PRODUCT, SUBSTANCE, TICKER, TIME, TI-
TLEWORK, VEHICLE, WEAPON, WEATHER, and
WEB.

KLUE defines 17 types of events, namely:
EVENT-AWARD, EVENT-BUSINESS, EVENT-
COMMUNICATION, EVENT-CRIME, EVENT-
CUSTODY, EVENT-DEMONSTRATION,
EVENT-DISASTER, EVENT-EDUCATION,
EVENT-ELECTION, EVENT-LEGAL, EVENT-
LEGISLATION, EVENT-MEETING, EVENT-
PERFORMANCE, EVENT-PERSONNEL, EVENT-

SPORTS, EVENT-VIOLENCE, and the -catch-all
category EVENT.

Finally, KLUE defines 47 types of relations:
affectedBy, affiliatedWith, agentOf,
authorOf, awardedBy, awardedTo, basedlIn,
before, bornAt, bornOn, capitalOf,
citizenOf, clientOf, colleague,
competitor, diedAt, diedOf, diedOn,
dissolvedOn, educatedAt, employedBy,
founderOf, foundedOn, hasAttribute,
instrumentOf, locatedAt, managerOf,
memberOf, near, overlaps, ownerOf,
parentOf, participantiIn, partner,
partoOf, partOfMany, playsRoleOf,
populationOf, productOf, relative,
residesIn, shareholdersOf, siblingOf,
spokespersonFor, spouseOf, subsidiaryOf,
and t imeOf.

