
 ABSTRACT

The TCAR team developed multiple systems in 
just a matter of weeks for both participating in 
the TAC-KBP evaluation under the entity linking 
and  the  slot  filling  paradigms.   TCAR's  entity 
linking  processes  consisted  of  one  that 
leveraged information retrieval and a separate 
that  sought  to  appeal  to  extraction-based 
techniques.  With regard to slot filling, since the 
TAC evaluation was touted as a task that would 
appeal  to  both  the  question  answering  and 
content  extraction  communities,  we  opted  to 
build two systems where the first made use of 
our  question answering system and the  latter 
exploited relation-finding from a number of our 
content  extraction systems.  We here provide 
detailed descriptions of  our systems and their 
performance at TAC-KBP.
 

1. INTRODUCTION

Automatic knowledge base population (KBP) is a 
challenging problem which advances the state of 
the art in language processing while fusing the 
efforts  from  multiple  communities.   As 
represented  by  the  TAC-KBP  organizers,  KBP 
draws heavily upon techniques that have been 
studied  and  analyzed  through  previous  NIST 
evaluations,  such  as  automatic  content 
extraction (ACE), automatic question answering 
(QA), and information retrieval (IR).  Given our 
interest in each of these areas, and particularly 
having  a  serious  desire  to  help  foster  KBP 
efforts, we elected to participate in this year's 
evaluation.   Our  goal  in  participation  was 
primarily  to  spend  several  weeks  of  research 
experimenting with KBP in a number of different 
directions  and  gain  serious  experience  in  the 
difficulties and pitfalls of the field.  

We are keenly interested in content extraction 
capabilities, so it took a primary role for us in 
each task where we participated.  Yet since the 
claim had been that KBP draws upon ACE, QA, 
and IR technologies, we likewise desired to study 
each of these capabilities and discover the kinds 
of  KBP performance that could be realized by 
using such tools.    Thus, for entity linking, we 
chose to develop two distinct systems with one 
built largely on IR principles and a separate one 
which sought to leverage content extraction.  In 
terms  of  slot  filling,  we  likewise  created  two 
systems--one  based  on  our  moderately-
performing QA system and a separate one that 
would try to leverage content extraction.

We recognized, based on past experience, that 
many  participant  sites  would  have  interest  in 
leveraging  the  Internet  and  versions  of 
Wikipedia itself as a means of improving their 
performance.  Yet we have a stronger interest in 
determining  the information that can actually 
be  drawn from a  set  of  documents  provided. 
Hence, we intentionally disregarded use of the 
Web  for  the  purposes  of  our  research  and 
instead focused our efforts on the core systems.

In this paper, we will describe the systems that 
we prototyped in this effort and we will discuss 
the  merits  and  weaknesses  of  each  of  these 
processes.  We will also comment on the overall 
performance of each system.  We had, and will 
identify  herein,  a  number  of  performance 
problems  that  are  consistent  with  pilot-year 
experiences  for  many  evaluations.   Yet  more 
importantly,  we  mention  limitations  to  our 
systems  which  are  actual  weaknesses  in  the 
algorithms themselves.  Lastly, we will indicate 
some of our future directions in these areas.

2. CREATING TASK RESOURCES

Before providing descriptions of the systems, it 
is  beneficial  to first provide the reader with a 
explanation  of  the  resources  which  were 
developed  and  exploited  to  support  various 
tasks.   Specifically,  we made use  of  tools  for 
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content  extraction,  topic  tagging,  information 
retrieval, and question answering, and we also 
created  auxiliary  resources  for  specific  tasks. 
Each of these resources are described here, and 
each was made available to potentially any of 
our core entity linking or slot filling systems.

2.1. Extraction-related Capabilities
As  was  mentioned,  one  of  our  core  research 
areas is content extraction.  Correspondingly, we 
made use of,  and in some cases expanded, a 
number of extraction resources identified here.

2.1.1. PhoenixIDF
For entity tagging, we made use of our hybrid 
entity tagger, PhoenixIDF.  This tagger uses the 
statistical substrate of an older version of BBN's 
Identifinder  [1]  but  its  language analytics  has 
been  replaced  with  a  new  TCAR-provided 
substrate of language-universal processing.  It is 
a hybrid system because it also augments the 
statistical processes with rule-based processing 
to enhance overall performance.

PhoenixIDF's inventory of entity tags are heavily 
based on the general  tag sets defined by the 
ACE program [2].  Perhaps  one exception  that 
should be mentioned here is that PhoenixIDF has 
separated adjectival tags describing nationality 
(such  as  American,  Iraqi,  etc.)  from  nominal 
person references of ACE.  For the purposes of 
this evaluation, PhoenixIDF also was extended to 
incorporate  two  new  types  of  tags:  the 
"Occupation"  and  the  "Age"  classes.   Since 
origin,  occupation,  and  age  would  all  be  of 
interest  for  PERSON entities,  these new entity 
classes are needed additions.

2.1.2. CARDS
TCAR  also  has  created  a  rule-based  relation 
finding system called "CARDS" (Coreference and 
Relation Detection System).  CARDS uses hand-
crafted  templates  to  identify  lexical  patterns 
that  express  relations.  The  templates  use 
information  from  all  downstream  processes: 
tokenization,  sentence  segmentation,  part  of 
speech tagging, named entity recognition (NER), 
nominal  mention  recognition,  coreference 
resolution  and  word  lexicons.   Several  new 
relations  were  built  with  CARDS  for  this 
evaluation  like  Person-died_of-Cause_Of_Death 
and Person-charged_with-Charge.

2.1.3. LCC's CiceroCustom
We  made  use  of  LCC's  CiceroCustom  [3] 
trainable  extraction  suite  for  some  entity 
tagging and especially for relation-finding.  Two 
TAC  Person  slots,  “cause  of  death”  and 

“charges”, required the development of entity-
tagging  classes  other  than  those  available  in 
PhoenixIDF.  These  classes  were  therefore 
developed using Cicero Custom. 

2.1.4. SERIF
One of our major tools in this effort was the BBN 
SERIF  system  [4].   At  past  ACE  evaluations, 
SERIF was consistently a top-performing system. 
We  were  able  to  leverage  that  system  to 
produce relations  and coreference analysis  as 
well  as  to  obtain  high-quality  constituency 
parses.  We worked with BBN to get SERIF to be 
able  to  incorporate  and  pass  through 
PhoenixIDF's entity-tagged input,  and to make 
SERIF better able to process Wiki documents. 

2.2. Information Retrieval Tools
Major  components  for  both  entity  linking  and 
slot filling were based on information retrieval 
techniques.   We  used  commonly-available 
resources  for  these  processes.   In  particular, 
three of our four systems leveraged information 
retrieval from the CMU/UMass Lemur Toolkit [5]. 
The fourth of our systems took advantage of the 
Apache Lucene [6].  In each of these cases, we 
made  no  changes  to  the  base  systems 
themselves and treated each as a black box.

2.3. Topic/Concept Taggers
Our hope was that if we could topically annotate 
the raw TAC-KBP documents,  and perhaps the 
knowledge  base  nodes  themselves,  we  would 
likely  get  better  entity  disambiguation.   To 
explore  this  possibility,  we  employed  two 
different kinds of topical or concept taggers that 
are mentioned here.

2.3.1.  Semantic Forests
In the 1990s, we developed a high-speed topic 
tagger called Semantic  Forests that  leveraged 
statistics  and  machine  readable  dictionaries 
(MRD) to  produce topical  lists.   This  resource 
was  demonstrated  as  a  mechanism  for 
information  retrieval  at  past  TRECs  and  is 
described in greater detail in those contexts [7].

For  this  evaluation,  we  extended  Semantic 
Forests'  breadth  of  "knowledge."   Semantic 
Forests'  original  MRD  in  English  previously 
incorporated about 65,000 terms,  yet  none of 
these  included  more  modern  terminology. 
Assuming TAC-KBP would require a system with 
more up-to-date information, we expanded the 
MRD by incorporating freely-available knowledge 
in Wiktionary and Wikipedia.  We extracted all of 
the  new  terms  available  in  a  mid-2008 
Wiktionary  and  morphed these  into  dictionary 



entries of the kind desired by Semantic Forests. 
We  then  extracted  titles  with  first  sentences 
from  the  March  2008  Wikipedia  dump  as  a 
means of creating yet other dictionary entries. 
When  completed,  the  new  Semantic  Forest 
dictionary consisted of approximately 2.2 million 
dictionary entries.  Semantic Forests was used 
to tag the entire raw document collection.

2.3.2.  Zymurgy Concepts
We  also  made  use  of  our  Zymurgy  concept 
analysis  technology.   This  system  produces 
document characterizations in terms of ontology 
concepts that are explicitly or implicitly referred 
to in the document. Zymurgy's ontology is  an 
extension of the OMEGA ontology developed by 
USC/ISI [8].   Zymurgy also has the potential of 
concept-based clustering.  For the purposes of 
this evaluation, Zymurgy was used to annotate a 
portion of the raw document collection as well as 
some raw text portions of the knowledge base, 
and provide some content clustering based on 
these automatic annotations.

2.4. Question Answering Tools
Since  question  answering  bears  a  strong 
resemblance to slot filling,  another one of the 
resources we used was our question answering 
system, QACTIS.  This system was described in 
detail  at  past  TREC  evaluations  [9].   Since 
modifications of QACTIS were a significant effort 
for  slot  filling,  more  detailed  of  these 
modifications will be provided later.

2.5. Auxiliary Resources
In addition to resources that came in the form of 
analytics  and  their  corresponding  output,  we 
also rapidly developed two resources that would 
be of benefit to the entity linking task itself.  

2.5.1  Evaluation resources
Before  the  TAC-KBP  coordinator  released  an 
entity-with-link  development  set,  we  were 
concerned  that  we  would  not  be  able  to 
adequately test our systems without some truth 
data.   Therefore,  we  ran  PhoenixIDF  on  the 
entire collection and identified all  entities that 
occurred between 5 and 100 times.  Starting at 
those  that  occurred  100  times  and  working 
down,  we  used  various  models  of  our 
information  retrieval  engines  to  look  for,  vet, 
and create an entity-with-link development set 
of over 300 elements.  This collection attempted 
to balance entities that had no link with those 
that  had  links,  and  there  was  very  little 
repetition of real-world entities in this collection. 
This  development  set  proved  very  helpful  in 
creating our systems, though, as we discovered 

at  test  time,  it  had  significantly  fewer 
organizations  (and  especially,  acronyms)  than 
were used in the final test collection.  When the 
TAC coordinator later provided about 300 new 
entities and links, this provided us with a total of 
over 600 development links.

2.5.2.  Name Aliases
We  also  developed  a  rudimentary  name-
equivalence  list  for  persons  for  helping  to 
identify  English name variants.   This  resource 
was developed first by identifying those names 
from  speech  pronunciation  dictionaries  that 
were  spelled  differently  but  have  the  same 
pronunciation (such as "Jon" and "John.")  It was 
then augmented with common nicknames.

2.5.3.  Relation Patterns 
For the benefit of slot filling, we also devised a 
process  to  help  us  recognize  textual  contexts 
which might give rise to legitimate slot fills.  We 
used the KB and the 1.2 million documents to 
help in this endeavor.  Assume X is the title of a 
KB node, S is the slot to fill, and Y fills X's slot S 
(i.e.,  Y=S(X)).   We  searched  the  document 
collection for the co-occurrence of X and Y within 
a narrow window of each other and created a 
repository of these that we collated by  S.  The 
application of these will be described later.

3. ENTITY LINKING SYSTEM 

Figure 1 depicts the general TCAR entity linking 
system  architecture  for  the  TAC  competition. 
The task was to develop a correlation algorithm 
that links a given entity from a given document 
to  a  specific  Wikipedia  page  from  a  set  of 
860,000 Wikipedia pages.   We developed two 
basic  types  of  correlation  algorithms:   an 
information retrieval (IR) based system and an 
information extraction based system.
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1.2 million 
documents
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Figure 1  TAC entity linking system consists of 
correlation algorithms that  link  a  given entity 
from  a  reference  document  to  a  specific 
Wikipedia page.



3.1 Information Retrieval Based Linking
3.1.1.  Resource Usage
Figure 2 illustrates various resources each of the 
entity  linking  systems  used.   The  document 
repository  contains  the  following  for  each 
document:  entities,  relations,  within-document 
co-references,  and  parses  from  the  various 
extractors.   Also,  the  repository  contains 
semantics  of  each  document  using  semantic 
topics/concepts  from  Semantic  Forests  and 
Zymurgy.   The  Wikipedia  repository  contains 
similarly-extracted  information  from  the  text 
associated with each Wikipedia page.  We wrote 
algorithms  to  determine  the  Wikipedia  node's 
title  and  whether  the  node  represented  a 
person, organization, or geopolitical entity.  The 
relation  names  from  the  document  and 
Wikipedia repositories were mapped to one of 
the TAC relations.

Figure 2  TAC entity linking system consists of 
context  information  about  documents,  Wiki 
pages, lists, and indexes.

We also leveraged the previously-mentioned list 
of  name  variants  and  augmented  it  with 
nicknames and acronyms which  originated from 
within-document co-reference chains  and their 
various name parts. We also wrote a script to 
strip diacritics and accents from foreign names. 
Although we likewise converted the documents 
into overlapping n-grams to be used with n-gram 
based  queries,  we  were  not  able  to  fully 
integrate these resources for our competition so 
we will not further describe them here.  

Our IR-based system used multiple indexes of 
the document and Wikipedia repositories, each 
built  using  the  Lemur  information  retrieval 
system.  Our "Main" index is an index of all 1.2 

million documents in the document repository, 
with  the  stop  words  removed.   We  built  the 
remaining  Lemur  indexes  from  the  860,000 
Wikipedia pages.  Our "Wiki Titles" indexes the 
Wikipedia  page  titles.   The  "Wiki  Titles  and 
Name Slots" index is similar, but contains values 
from Wikipedia page alternate name slots.  The 
"Wiki KB" index contains information from the 
Wikipedia  title,  Wikipedia  slots,  and Wikipedia 
text,  with  stop  words  removed.   Our  "JOINT" 
index  contains  information  from  both  the 
document repository (Main index) and from the 
Wikipedia repository ("Wiki KB" index).

3.1.2. Overall System Description
The  IR-based  linking  system uses  information 
form Figure 2 to see if either the Wikipedia node 
that corresponds to the given entity or that no 
node  corresponds  to  the  given  entity.   The 
system consists of filtering and analysis phases, 
as Figure 3 depicts.  The filtering phase consists 
of  generating  a  ranked  list  of  fifteen  out  of 
860,000  potential  Wikipedia  nodes  that  could 
link  to  the  entity  in  the  reference  document; 
and, the analysis phase consists of selecting the 
particular  Wikipedia  from  the  set  of  fifteen 
Wikipedia nodes.

Our filter phase consists of identifying and re-
ranking the top fifteen Wikipedia KB nodes most 
likely to match the query entity from among the 
entire set of 860,000 Wikipedia nodes.  The first 
step in this process is to retrieve a set of fifteen 
candidate nodes based on how likely the query 
entity name matched the Wikipedia node titles 
through  a  Lemur  search  of  the  "Wiki  Titles" 
index.  Bear in mind that the query entity name 
might  differ  significantly  from the  Wiki  nodes 
due to the inclusion of name variants, appostive 
information, acronyms, and abbreviations.  We 
further  reduce  our  retrieved  set  of  candidate 
nodes  by  removing  all  Wikipedia  pages  that 
were  not  about  a  person,  organization,  or 
geopolitical entity.

Our  second  filtering  step  expands  the  initial 
query  beyond  the  entity  name;  the  query 
includes  semantic  information  about  the 
reference document.  This semantic information 
uses output from Semantic Forests and Zymurgy 
to respectively identify semantic concepts from 
the  reference document.   The system queries 
the  JOINT index  using  the  entity  name  and 
semantic  concepts  from  the  reference 
document.   The  system then  returns  the  top 
fifteen  documents  and  Wikipedia  nodes  from 
both the document and Wikipedia repositories. 
The  system  again  removes  Wikipedia  nodes 
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from  this  set  that  are  not  about  a  person, 
organization,  or  geopolitical  entity.   The  JOINT 
index allows for the system to return NIL if no 
Wikipedia  nodes emerge in  the set  of  fifteen; 
and, the  JOINT index query returns documents 
similar  to  both  the  reference  documents  and 
reference  name.   Although  we  submitted  a 
system that uses semantic information from the 
reference  document  using  both  Semantic 
Forests  and  Zymurgy  algorithms,  we  also 
submitted a system that uses only the semantic 
information from reference document using only 
the  Semantic  Forests  algorithm.   Either  way, 
recall was statistically indistinguishable between 
using Semantic Forests or Zymurgy; but in each 
case, recall  was 1 to 2% better with semantic 
terms than without.  However,  using Zymurgy's 
clustering capability between both the reference 
document and candidate wiki  nodes,  we were 
able to advance in the ranking those candidate 
pages that were more similar in topic and in the 
inventory of explicit and implicit concepts.

Figure  3:   TAC  system  components  for 
Information Retrieval based linking approach.

The  system  next  re-ranks  the  initial  set  of 
Wikipedia  nodes provided by  the  "Wiki  Titles" 
query based on rankings from the  Joint corpus 
query.   The  system  only  considers  Wikipedia 
pages that occur in both the Wiki Title and JOINT 
index  query  sets.   If  there  are  no  Wikipedia 
pages in common, the system just returns the 
Wiki Title query set.

The analysis  phase consists  of  comparing  the 
entity name to the ranked list of at most fifteen 
Wikipedia nodes from the filtering phase.  The 
Wikipedia nodes are processed in ranked order 
using  the  Wikipedia  content  matcher.   The 
matcher first creates a set of names from the 
given  Wikipedia  node  title,  slot,  or  extracted 
from the text.  Generally, the Wikipedia node is 
returned,  if  one  of  these  names matches  the 

entity name according to the name variant list 
mentioned earlier.  However, if the entity name 
matches an extracted name from the text body 
and  this  extracted  name  links  to  another 
Wikipedia  node,  that  other  Wikipedia  node  is 
returned instead.  The system returns NIL when 
no names associated with the set of Wikipedia 
nodes match the entity name. 

3.2  Linking from Extraction-Matching
Our extraction-based linking system used a four 
step process to link entities to their knowledge 
base  (KB)  entries.   These  system  leveraged 
entity  and  relation  extraction  on  the  corpus, 
indexed the knowledge base, searched the KB 
index, and analyzed the search results.

3.2.1. Corpus Content Extraction
Our system made use of the entity extraction of 
PhoenixIDF,  and  the  relation  and  coreference 
extractions of SERIF and CARDS.

3.2.2. Indexing the Knowledge Base
We uses Apache Lucene to index the knowledge 
base ahead of time.  The KB ID was used as the 
document “name” and the  fields  included the 
entity name, and other attributes (or facts).  

3.2.3.  Searching the KB Index
The query provided by the TAC contest contains 
an entity (e) and exemplar document (d).  The 
query is built using a two step process.  First, 
combining  various  forms  of  e,  and  second 
finding relations  (r)  of  e within  d.  Finally,  the 
query is run against the KB index.  The details of 
which are described below. 

The results of extraction of d were searched for 
occurrences of  e (a “fuzzy” match with an edit 
distance of 2 was used to account for variations 
in spelling).  Then the extraction were searched 
for  coreferences  of  e (excluding  pronouns) 
yielding set of strings that are considered to be 
aliases of  e.   A set of attributes (a)  was then 
collected using any extracted relation to e (or a 
coreference of e) within d.

Finally, a Lucene query was created.  The query 
searched for e, and aliases of e in the name field 
and for  any attributes that match  a.   “Fuzzy” 
edit  distance  matches  were  used  for  name 
searches to account for variations in spelling.

3.2.4. Analyzing the Search Results
Lucene allows search criteria to be weighted and 
each result receives a hit score. Heavier weight 
is given to matches that matched e and aliases 
more exactly.  The attributes were used to break 



ties where there are similar names for the same 
value of e or where no e is found.  If the Lucene 
results  did  not  include  any  values  with  a  hit 
score greater than the threshold of 1.8 then it 
was assumed that that entity did not exist in the 
KB and the response should be null.

Advantages to this approach were that it  was 
relatively  easy  to  create  using  the  available 
tools we had readily available.    This  solution 
was  also  created  in  with  about  30  hours  of 
design and development effort and is scalable.

4. SLOT FILLING SYSTEM

As  mentioned  previously,  we  were  very 
interested  in  exercising  various  aspects  of 
human language  technology  as  we developed 
our KBP system.  For slot filling, whose goal was 
to identify new KB information as distilled from 
the 1.2 million documents, we chose to build two 
types of systems: one that would be based on 
question answering and another that would be 
built  using  content  extraction  engines.   By 
building  both,  we would  get  a  sense of  what 
both  the  ACE  and  the  QA communities  could 
bring to bear on the general slot-filling task and, 
likewise, what level of effort would be required.

4.1.  Question-answering Based Slot filling
Our first methodology for attempting to fill slots 
was based on the premise that slot-filling as a 
process  is  very  similar  to  process  of 
automatically  answering  questions.   We 
therefore built  one  slot-filling  algorithm  using 
QACTIS,  our  question answerer.   We assumed 
that the overall TAC evaluation would likely be 
heavily  dominated  by  NIL  answers  (and,  as 
discovered after the evaluation, this turned out 
to be quite true).  QACTIS, on the other hand, 
tries  to  produce  a  non-NIL  answer  for  every 
question  that  is  posed  to  it.   Therefore,  we 
recognized that  we  would  likely significantly 
overgenerate  slot  fills,  but  we  were  very 
interested in seeing the results that would come 
about  through such  a  mechanism.   Our  hope 
was that this version of a slot-filler would favor 
recall even if not high precision.

In previous TREC-QA competitions, participants 
were given a target entity or event, E, and it was 
expected that every subsequent question that 
would be asked would be about E.  For this TAC-
KBP competition, we equated  E with  the user-
selected entity as depicted in Figure 4.  This E 
value  was  submitted to  a  wrapper  script  that 
was  developed  specifically  for  this  task,  and 
which will be described here. 

User-Selected Entity (E)

 
Final Answer

Figure 4: Slot Filling by Answering Questions

4.1.1.  Wrapping QACTIS
Rather  than  expecting  a  series  of  follow-on 
questions about E as in past TREC's, the wrapper 
script  we  built  around  QACTIS  automatically 
generated a sequence of questions in attempts 
to fill each potential slot for E.   For example, if E 
were  a  person,  the  system  would  generate 
questions such as:

● What is the alternate_name of E?
● How old is E?
● When was E born?
● What nationality is E?
● When did E die?
● Where was E born?

 
For some multivalued fields, the wrapper script 
generated multiple questions with the intent of 
filling only one slot.  For example, for the spouse 
of E, the system posed questions:

● Who is the husband of E?
● Who is the wife of E?

After  QACTIS  attempted  to  respond  to  these 
questions, the wrapper merge-sorted the results 
from each set based on QACTIS scores, and then 
returned the M best results.  The value of M was 
specific to the type of question.  For fields where 
only one answer would be possible, M was set to 
1.   Otherwise,  M was  chosen  to  be  a  fixed 
number: 2 for spouse; 3 for employee_of, title, 
parents;  5  for  residences,  member_of, 
schools_attended; and 10 for children, siblings, 
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other_family.   Even though it is unlikely that the 
average PERSON entity might have 10 children, 
it has been our experience with QACTIS that it 
will get about 1/3 of its answers correct.  Since 
our goal is recall, we expected that if there are 
about three children on average and we ask for 
10  responses,  we  might  get  all  three.   This 
strategy had also been helpful to us before when 
we used QACTIS on list-style questions.

4.1.2.  QACTIS-specific Modifications
The  wrapper  was  not  the  only  element  that 
changes for our slot filling.  QACTIS had to be 
modified in a number of new ways.  

4.1.2.1.  Resource Consistency:  The version of 
QACTIS that we had used previously at TREC-QA 
competitions  was  designed  to  use  BBN's 
Identifinder  and  the  Charniak  constituency 
parser.   However,  given  our  access  to 
PhoenixIDF  results  and  to  SERIF's  parsing 
output, we needed to make changes to QACTIS 
to  support  these  new  types  of  resources. 
PhoenixIDF's  results  appear  to  be  at  least  as 
useful as the older entity tagger, if not more, so 
the overall system does not appear to have been 
degraded through its use.  On the other hand, 
much of the existing QACTIS code was optimized 
to leverage Charniak parses, so the change in 
parsers did come at some cost which we did not 
measure.  Yet since SERIF's parser is very fast, 
we can definitely see it  as the parser that we 
would like to use for our future studies.

4.1.2.2.  Question-type extensions:  There were 
a  number  of  question  types  that  were 
completely  new  to  QACTIS.   It  was  originally 
optimized on the  basis  of  TREC-QA questions, 
but question about organization subsidiaries or 
parent  companies  almost  never  appeared  in 
TREC-QA.   Since  QACTIS  was  expected  to 
provide an answer for each of these and other 
previously-unseen  questions,  we  needed  to 
improve its ability to answer such questions.  To 
do  this,  we  leveraged  the  relation  patterns 
described earlier.   For each kind of slot, S, with 
which we expected QACTIS to be unfamiliar, we 
analyzed the character sequences from the raw 
documents that illustrate the presence of S and 
we  correspondingly  developed  structure  in 
QACTIS  to  handle  these  situations.   This 
represented over 400 new lines of code.

4.1.2.3.  Person  Name  Handling: In  previous 
versions of QACTIS, person names were mainly 
treated  as  multiword  units.   Just  as  "content 
extraction" is a hyponym of "extraction," QACTIS 
previously treated "John Smith" as a hyponym of 

"Smith."  Since a focus for these new questions 
was on people and relations between them, it 
was incumbent on us to create better analysis of 
people  names  in  order  to  improve  system 
reaction  to  names.   More  specifically,  in  the 
previous  QACTIS,  the  observation  of  "Robert 
Smith"  would  have  been  counted  as  an 
observation "John Smith" because both names 
would  have  fallen  under  the  subcategory  of 
"Smith."   The new system changes in QACTIS 
sought to overcome these.

4.2.  Filling Slots Using Extraction
Our second methodology for  attempting to fill 
slots was based on the premise that slot filling 
can be  seen as  an information extraction (IE) 
task  similar  to  the  ACE  [2]  evaluation.  Each 
entry in the knowledge base constitutes a triple 
consisting  of  <target  entity> <relation  type> 
<filler  value> which matches the  structure of 
ACE Relations and ACE Values. ACE Events were 
also used to fill TAC slots. As the events are not 
strictly  triples,  but  tuples,  the  events  were 
mapped into a set of binary relations to facilitate 
slot filling.  Our suite of extractors included all 
those mentioned in Section2.  Our expectation 
was that the IE approach would produce a high 
precision, but perhaps a lower recall system.

4.2.1. Extraction Mechanisms
The IE based approach consisted of an ordered 
processing  pipeline:  tokenization,  sentence 
segmentation,  part  of  speech  tagging,  named 
entity  recognition  (NER),  nominal  mention 
recognition, coreference resolution, and multiple 
relation/event extractors. The resulting relations 
and events were processed into slot fillers.

4.2.2. Building the extraction system

Figure 5: Slot Filling through extraction



The  first  step  in  constructing  the  extraction 
based system was to understand the guidelines 
of valid fillers for each TAC slot. In the guideline 
analysis  phase, for  each TAC slot  a triple  was 
created  consisting  of  <target  entity  class> 
<relation  type>  <filler  value  class>,  and  the 
first and third elements were mapped to the NER 
classes  that  could  constitute  valid  fillers.  For 
example, the TAC slot “place of birth” for Person 
entities, the <target entity class> could be filled 
by values identified as MUC/ACE type PERSON, 
and <filler value class> could be filled by values 
identified as MUC/ACE type GPE. This is a trivial 
example where a TAC slot filler maps perfectly to 
an existing named entity class. 

Several  TAC  slots  were  narrower  than  their 
corresponding NER classes, and required world 
knowledge to fill properly. The TAC person slots 
“employee  of”  and “member  of”  can both  be 
filled  by  a  MUC/ACE  type  ORGANIZATION. 
However,  depending on the  real-world  type of 
organization  and  the  nature  of  the  person’s 
association it may or may not be a valid filler for 
either TAC slot. The “top members/employees” 
slot  of  TAC  organizations  is  similar  in  that  it 
could  be  filled  by  a  MUC/ACE  type  PERSON 
depending  on  the  real-world  position  of  that 
person  in  the  organization.   The  TAC  slot 
“residences”  also  details  a  constraint  on valid 
fillers that would eliminate many MUC/ACE type 
GPEs;  no  street  addresses,  countries  are  only 
acceptable if accompanied by a city. In this case, 
the constraint is not as much semantic as it is 
structural,  as  there  are  resources  available  to 
determine  the  organizational  level  of  a  given 
GPE string (e.g. GeoNames).

Once  the  possible  fillers  were  determined,  an 
inventory was taken of  all  the relation classes 
that our current suite of extractors produce and 
mapped each relation type to one or more TAC 
slots. This mapping revealed ambiguities where 
a  single  extraction  class  could  be  used  to  fill 
multiple  slots.  For  instance,  the  ACE  Family 
relation could fill the TAC slots: spouse, children, 
parents, siblings, or other family depending on 
the actual relation expressed.

Processing the competition queries was a multi-
step process. First, the query string and example 
document  were  submitted  to  the  information 
retrieval  (IR)  component  to  find  the  15  most 
relevant  documents  from  the  competition 
corpus.  These  15  documents  were  processed 
with  CARDS  to  extract  relations  and  events. 
CARDS incorporated information from the NER 
extractor suite, the relation extractor suite and 

its  own  templates  to  produce  relations.  Any 
events  were  transformed  into  a  set  of  binary 
relations.  All  relations  that  the  query  string 
participated  in  were  identified  via  within-
document  coreference chains.  The mapping of 
relations  to  TAC  slots  was  used  to  produce 
candidates  for  competition  output.  Candidates 
were eliminated with lexical patterns to account 
for  constraints specified in the guidelines.  The 
remaining set of candidates was used to produce 
the competition output.

5. SYSTEM PERFORMANCE

5.1.  Linking Performance
Figure  6  illustrates  the  scores  for  both  the 
information  extraction  (IE)  and  information 
retrieval (IR) approaches to entity linking using 
our internal development data of 600 queries.  
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The best IR-based approach has a recall of 83% 
which indicates that the system filtering phase 
typically has the correct Wikipedia page in the 
set  of  fifteen Wikipedia  pages.   However,  the 
system correctly determines NIL and finds the 
correct page for a precision of 78% from this set 
ranked set of fifteen Wikipedia pages.

Figure  7  depicts  the  results  for  the  three 
systems  submitted  to  TAC-KBP.   "IE"  is  the 
information extraction based system.  "IR-1" is 
the information retrieval based system that uses 
only the semantic forest algorithm to generate 
semantic  words  from the  reference  document 
for  the  filtering  phase.   "IR-2,"  similar  to 
algorithm IR-1,  uses  both the  semantic  words 

Figure 6:  Recall and precision scores on 
internal test data for information extraction 
and information retrieval approaches. 



and  semantic  topics  from  the  reference 
document,  respectively,  using  the  Semantic 
Forests  and  Zymurgy  algorithms  during  the 
filtering phase.  The micro average is the official 
score  from  all  of  the  TAC  2009  3904  test 
queries, micro average non nil is the score from 
queries that should not return NIL,  and  micro 
average nil is the score from queries that should 
return NIL.    Since the TAC 2009 competition 
submitted multiple queries with the same entity 
name string with different reference documents, 
the TAC 2009 scorer computes macro average 
scores.  The macro average scores are similar to 
the  micro  average scores,  but  they  averages 
queries  with  the  same  entity  name  string. 
Figure  7  suggests  that  IR-2  has  marginal 
improvement over algorithm IR-1,  and both IR 
algorithms perform better than the IE algorithm.

Figure 7:  TAC system scores for information 
extraction  algorithm  and  two  information 
retrieval algorithms.

5.2. Slot Filling Performance
We were not able to assemble a development 
set for slot filling, so our primary studies prior to 
the  evaluation  were  based  mostly  on  visual 
inspection.  For that reason, we will focus here 
on evaluation performance.  

As  we  expected,  our  QACTIS-based  system 
provided  better  recall  for  non-NILs  and  our 
content  extraction  system  favored  precision. 
The differences in these two systems are drastic, 
so we will articulate them individually.

5.2.1.  QA-Based Performance
We mentioned before that our QA-based system 
would attempt to fill every single slot.  It would 
only report "NIL" when all searches failed to find 
relevant  information.   Table  1  illustrates  the 
output of our system for attempting to fill  the 
slots for one target entity, "China News Agency."

Table 1.  QA System Result for TAC-KBP SF2
Field Answer

Alternate Names Evening  News  and  Hong 
Kong China News Agency

Political/Religious 
Affiliation

Communist Party
spirituality
Democrat
worship
Buddhism

top 
members/employees

parliamentary 
intelligence
Wenchuan
Xu Dingming
George Shabad
Curley
...
Alvaro de Molina

Founded 1931

Headquarters Qingdao

Founded by Li Changchun
Paul Julius Reuter
Fredy Bush
Tian
Xinhua

Dissolved 1998

#employees About 12,000

Member of Politburo
State

Members Politburo
Xi
Xia

Subsidiaries NIL

Parents NIL

Website www.beijing2008.news.cn

Shareholders CNAC
Xu Minjiong
Dongbei

As can be observed from Table 1, many if not 
most of the answers have the right "shape" of a 
desired slot fill.  Those that do not are in some 
cases the product of the wrapper that we built 
around QACTIS as opposed to QACTIS itself.  
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Nevertheless,  according to  assessors,  the only 
correct answers were those marked by QACTIS 
as "NIL."  In fact, QACTIS was one of the few 
systems  to  even produce  any  output  for  this 
entity.   So either  systems recognized that  no 
information should exist  for this  entity,  or  the 
evaluation  pool  from  the  various  systems  is 
impoverished.  As expected, such situations will 
result in low precision, but hopefully fair recall.  

In terms of single-valued slots, out of 255 such 
slots,  the TAC-KBP evaluation set only had 39 
that were non-NIL.  Of the multivalued slots, out 
of 499, only 129 had non-NIL values.  These are 
surprisingly  low numbers.   Of  the  39,  QACTIS 
found only 5, but there were several others for 
which it got no credit because of a last-minute 
Perl  scripting  error  in  QACTIS  that  will  be 
described in Section 6.  Of the 129 non-NIL list 
slots, QACTIS found at least one correct answer 
for 54 (and it got 9 more that were inexact).

Overall,  the  QA-based  system  produced  the 
following scores according to official evaluations:

Table 2.  Slot Filling Results Using QA
Single List Total

Overall Score 0.196 0.237 0.216

TAC median 0.514 0.439 0.461

NIL Score 0.208 0.262

TAC NIL median 0.597 0.558

Non-Nil Score 0.129 0.166

TAC Non-Nil Median 0.154 0.141

Given  the  density  of  NILs  in  the  final  test 
collection,  the  QA-based  system  significantly 
underperformed  in  comparison  to  other 
competitors.  Its  best  result  was  in  the 
identification of non-NIL LIST values (identified in 
bold),  where  it  did  exceed the  median  value. 
Yet the maximum value for this as produced by 
any one evaluated system was 0.292.

5.2.2.  Extraction-Based Performance
The  content  extraction  based  system  only 
generated an answer when it  found a relation 
supporting the answer.  Although no participant 
sites  produced  an  "All-NIL"  (we  had 
contemplated such), such a system would have 
produced the highest score.  This suggest that a 
system  which  favors  reporting  mostly  NIL 
answers and reporting only confident non-NILs is 
likely  to  perform  well.   Our  extraction-based 
system  therefore  performed  well  in  that  it 

actually only produced 12 non-NIL answers and 
seven of these were correct (as underlined):
SF7 per:member_of      Hezbollah
SF7 per:employee_of    Hezbollah
SF13 per:employee_of    parliament
SF15 per:employee_of    Sinica
SF16 per:employee_of    Cathay Pacific Airways
SF16 per:place_of_birth  Hong Kong
SF17 per:origin         Massachusetts
SF17 per:employee_of    State Department
SF22 per:origin         Chinese
SF26 per:headquarters    Hong Kong
SF48 per:children         monarch
SF53 gpe:top_employees Steve Wynn

This system yielded a reasonably good score as 
seen in Table 3.

Table 3.  Slot filling Results through Extraction
Single List Total

Overall Score 0.616 0.558 0.587

TAC median 0.514 0.439 0.461

NIL Score 0.713 0.746

TAC NIL median 0.597 0.558

Non-Nil Score 0.077 0.020

TAC Non-Nil Median 0.154 0.141

There was a huge system problem that occurred 
during our extraction-based process which will 
be described in the next section.  If that problem 
had  not  occurred,  our  performance  in  this 
section would have been significantly higher.  

6. ERROR ANALYSES

It is meaningful to consider the sources of error 
in our system.  We analyzed our linking and slot-
filling results and we here capture information 
about systematic errors and other issues which 
made an impact on overall  system capability.

6.1.  Linking Errors and Missing Processes
Being primarily dependent upon IR, our linking 
systems were fast, but had certain weaknesses.

6.1.1.  Contextual mismatch
If the system found a perfect or nearly perfect 
entity match it would often return it even if the 
context was wrong. Knowledge base nodes that 
repeat  the  entity  name enough  times  will  be 
chosen regardless of the lack of other contextual 
terms in the query. For example, in attempting 
to link "The Lions" to a KB node, a certain node 
about a pair of Canadian mountains called "The 



Lions"  was  erroneously  chosen  every  time 
because of its abundant repetition of the entity 
name.  Disambiguation from the Detroit  Lions 
was  further  hampered  by  the  node's  brief 
mention of a Canadian football team in British 
Columbia  that  was  named  after  these 
mountains.   Error  on  "The  Lions"  alone 
constituted  1% absolute error, and there were 
other errors of this type.

6.1.2.  Mishandling of  Ambiguous Names
Many of our linking errors occurred because our 
system  ultimately  did  not  handle  particularly 
common or  ambiguous  names  well.  This  was 
largely  due  to  the  fact  that  our  600-query 
development set did not match the evaluation 
set well. Our IR systems used weighted queries, 
with the names of query entities being weighted 
very highly and a lesser weight being given to 
concepts extracted from reference documents. 
Our development set consisted almost entirely 
of  full-name queries.  For  such queries,  it  was 
likely  that  the  relevant  documents  would  be 
returned within  the  top  15,  and the  concepts 
would  help  to  disambiguate  the  rarer  case of 
persons  who share  the  same full  names.  The 
evaluation set, however, contained many single-
word  names  and  our  system  performed 
particularly poorly on those. An example of this 
is the query "UT". This term is repeated so often 
in the 1.2 million document repository that no 
KB nodes appeared within the set of documents 
returned  by  the  IR,  and  NIL  was  erroneously 
chosen  every  time.  Absent  such  queries,  our 
performance would increase by 7% (to 65.9%).

6.1.3.  Insufficient time to incorporate acronyms
A last major issue that we knew would be one 
before starting was the handling of  initialisms 
and  acronyms.  We  had  made  a  list  of 
abbreviations and expansions, but we could not 
integrate them before the deadline, so links that 
depended  upon  such  expansions  suffered  as 
well.  Without acronym queries, our performance 
would  have  increased by  an  absolute  3%  (to 
62.0%).  Some of these are the same as the one-
word queries,  so we do not expect the errors 
from Section 6.1.2 and 6.1.3 to be additive. 

6.2. Slot FIlling Errors and Omissions
There were two major errors in our processing of 
slots -- one in each system.  Each of these will 
be  described  as  well  as  an  attempt  to 
characterize the impact of the error.

6.2.1 Flaws in the QA System
In  the  QA-based  system,  the  error  was 
extraordinarily simple and was fixed in exactly 

two  seconds  after  results  went  out  the  door. 
The problem was due to a Perl scripting error. 

The QA system ingests PhoenixIDF output.  Its 
tags  for  nationality  and  occupation  allow  for 
plural answers to be provided (so "presidents" or 
"Americans" would be legal answers).  In the last 
day  before  system submission,  we  wanted to 
make sure that such answers not be marked as 
"Inexact" so we inserted a filter in Perl whose 
task  was  merely  to  eliminate  the  final  "s." 
Unfortunately, the regular expression that was 
used  was  "$term=~s/s//;"  instead  of 
"$term=~s/s$//;"   The  latter  of  these 
expressions tells the system to delete the final 
"s" whereas the former deleted the first 's'.  We 
did  not  recognize  this  fact  until  after  our 
evaluation system had started producing faulty 
values.   Instead of  such  strings  as  "Chinese", 
"President",  "Secretary,"  our  system  was 
producing "Chinee", "Preident", and "ecretary."  

An  analysis  of  our  data  suggests  that  this 
phenomenon occurred at least two dozen times. 
However,  many  of  these  instances  were 
incorrect to begin with, so the errors were not of 
big issue.  Overall, the following were the only 
answers that could have been impacted (where 
italicized words could have been "inexact" and 
boldface could have "correct.")  Since three of 
these  were  single-valued,  these  conceivably 
could have increased the QA system's non-NIL 
slot answering by as much as 7.6% absolute.

SF14: title // miniter
SF15: origin // taiwanee
SF15: title // miniter
SF22: origin // chinee
SF47: origin // pakitani

6.2.2 Major Issues in the Extraction System
In  terms  of  our  extraction-based  slot-filling 
system,  we  had  a  hardware  failure  and  no 
"safety  net"  to  cover  the  problem.   The 
hardware  where  our  system  was  running 
became  overloaded  and  failed  to  report  any 
results whatsoever for 12 entities.  We forgot to 
prepare software that would fill slots with "NIL" 
in  the  absence  of  results.   So,  rather  than 
inserting  "NIL"  for  all  of  the  slots  by  hand  -- 
which we perceived to be unfair -- we therefore 
inserted "NO RESPONSE" for each possible slot 
to impose only error on our system.

We have since rerun and, by ourselves, rescored 
the system as it should have performed.  The 
system would  have  reported  NIL  for  all  slots 
from queries 8, 9, 10, 11, 40, 41, 42, 43, 44, 45, 



46, and 47 except for the "employee_of" slot for 
#8 and the "member_of" slot for #9.  In these 
last  two  cases,  the  answer that  we produced 
was  incorrect.   Overall,  this  would  have 
produced 92 additional correct LIST answers and 
55 additional  correct  SINGLE  slots.   Table  4 
shows how scores would have looked.

Table 4.  Potential Revised Slot filling Scores
Single List Total

Overall Score 0.832 0.743 0.773

TAC median 0.514 0.439 0.461

NIL Score 0.968 0.995

TAC NIL median 0.597 0.558

7. FINAL COMMENT AND DIRECTIONS

Given that the TAC-KBP data was provided on 
June  10,  2009  and  that  entity-linking  results 
were due only one month later and slot-filling 
results were due two weeks after that, there was 
very limited time to put all the energy into these 
two challenging tasks as  one might like.   We 
were able to augment our extractors prior to the 
release of the data; we were able to do some 
lead  studies  in  random  walk  and  other 
techniques for cross-document coreference; and 
at  the  beginning  of  May,  we  had  tried  to 
synthesize a development set  that would look 
like the competition set.  

Yet receiving the actual data was critical in order 
to  make  proper  progress.   For  example,  our 
synthesized set did not resemble the TAC data 
well,  so  we  needed  to  re-run  all  of  our 
annotation  tools  on  the  new  collection  and 
adjust them to suit the data type and start some 
processes largely from scratch.  

In the long run, by the time of the entity linking 
competition,  there  were  several  major 
techniques  that  we  had  been  hoping  to 
incorporate  into  our  evaluation  but  were  not 
able to given the limited time.  We had mostly 
developed  an  entity-linking  mechanism  that 
made use of machine learning which we would 
have been pleased to  leverage,  but  were not 
able to do so this year.  Also, our coreference 
processes did not come to full fruition during the 
limited development time.  We also mentioned 
that  we  had  some  slot-filling  bugs  that  are 
consistent with first-year participation but which 
likely  would  have  been  eliminated  with  more 
development time.  Aside from these, however, 
there  were  a  number  of  slots  which  we  had 

hoped to develop relation-finders and question 
answering capability to support, but ran out of 
time.   We  are  hoping  that  if  we  are  able  to 
participate  again  in  TAC,  we  will  be  able  to 
include these processes. 

Yet  overall  we  were  pleased  to  bring  these 
technologies together to support this new and 
challenging research direction.  We are excited 
by the existence of the TAC-KBP evaluation, and 
we are hoping it will be a catalyst for furthering 
our future research and that of the community.
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