Predicting Summary Quality using Limited Human Input

Annie Louis & Ani Nenkova University of Pennsylvania

Four resource-poor methods to predict summary quality

- Evaluation using only the input
 - High input-summary similarity = better summary
 - Predicting when systems would do badly
- Evaluation using system output
 - Adding pseudo-models to human models
 - Wisdom of the crowds
 - all systems' output make a great model

Results apply only to automatic summaries

- Numbers we report are not the officially distributed ones from the AESOP track
- Two uberbaselines—human summaries were included which invalidated the results computed
- Correlations were recomputed
- Only difference—uberbaselines excluded

TAC '09 AESOP Data

- 44 multi-document inputs
- 2 tasks
 - Query focused
 - Update
- 53 automatic systems
 - 52 peers, 1 automatic baseline
- 2 oracle systems
 - Not used in our work

Human Scores

- Pyramid evaluation
 - Multiple human summaries 4 models in TAC '09
 - Can provide feedback about why a summary is bad
 - Significant annotation effort

Responsiveness scores

- Combined measure of content and linguistic quality
- Direct human judgements
- Scale 1 10

Comparing predictions with human judgements

- System-level ~ which system is better overall?
 - Average predicted scores for a system over the test set
 - Average human scores
 - Correlation between rankings

Input-level ~ which summary is better for an input?

- Correlation between rankings of summaries for each individual input
- % of inputs with significant correlations

1. Input-summary similarity

 Evaluate content selection using no human models at all

Intuitive measure of summary quality

- Evaluation on non-standard test sets
 - With no model summaries
- Likely to be a good objective function for content selection
- But many ways to measure similarity
 - KL, JS divergence
 - Cosine similarity
 - Topic word similarity
 - Frequency based summary likelihood

UPenn at TAC '08

- Analysis of different input-summary similarity metrics [TAC '08, EMNLP '09]
- Performance varies with different features
 - Best features ~ information-theoretic measures
 - Worst ~ frequency based metrics
- Top features were highly predictive of human scores
 - Best correlation at system-level ~ 0.89

Best predictor - Jensen Shannon divergence

- Distance between 2 probability distributions
 - As average KL divergence from their mean distribution

Low divergence ~ better summary quality

$$JS(Inp \parallel Summ) = \frac{1}{2}[KL(Inp \parallel A) + KL(Summ \parallel A)]$$

 $A = \frac{Inp + Summ}{2}$, mean distributi on of Input and Summary

Regression metric

- A range of distributional similarity and other features
 - KL divergence
 - JS divergence
 - Cosine similarity
 - Topic signature based features
 - Summary likelihood under a frequency based model

Top 2 features on '09 – validated findings from last year

Query Task

Update Task

	Pyramid	Resp.	Pyramid	Resp.
JS divergence	-0.74	-0.71	-0.72	-0.61
Regression	0.77	0.67	0.71	0.54

Best performance on '08: JS = 0.89 with pyramid scores

- Good content can be predicted from the input
- Information-theoretic features provide good estimates

2. Summarization difficulty of the source text

 Average system performance on an input can be predicted with good accuracies

Some inputs are more difficult for systems

- Systems ignore properties of individual inputs
 Very low average performance on certain inputs
- Input difficulty can be measured by a number of features [ACL '08, EMNLP '09]
- Can predict when average system performance will be below the mean value

Defining what is easy/difficult for systems

Difficult input

- Most systems perform poorly
- Low average system score
- 2 classes easy, difficult
 - Above/below mean average system score
 - Equal number of inputs in both classes

Good indicators of difficult inputs

- Large vocabulary size
- Fewer descriptive words hard to identify through frequency and repetition
- Low redundancy between input documents
- No clear topic
- 6 significant features
- Good accuracies in identifying difficult inputs
 - 10% above baseline

Predictions on TAC '09 data

	All inputs	Extremes
Query task	61.36	60.00
Update task	59.09	75.00

* Extremes – 10 each most easy and difficult

Trained on DUC 2002-2004

- Properties of input predictive of average system performance
- Specialized content selection necessary to smooth out variations

3. System summaries + Human models

Pseudo-models for summary evaluation

System level – one model is enough

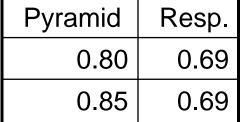
Another likely setup on non-standard test sets

Robust system-level rankings on large test sets

Query Task

Update Task

RSU4-recall	Pyramid	Resp.	F
1 model	0.92	0.80	
4 models	0.92	0.79	



Input-level – more models necessary

- Choose one model per input
 - Alphabetical order of model name
- Considerably fewer inputs with significant correlations

Query Task

Update Task

RSU4-recall	Pyramid	Resp.
1 model	84.09	79.54
4 models	95.45	81.82

Pyramid	Resp.
86.36	75.00
100	86.36

Can we improve the evaluation using system output? [Albrecht & Hwa '08]

- Related work in Machine translation
- One human reference translation
- Off-the-shelf systems as pseudo-references
- Features to compare other translations with pseudo-references
- Regression based scoring
- Improved correlations compared to using a single human reference

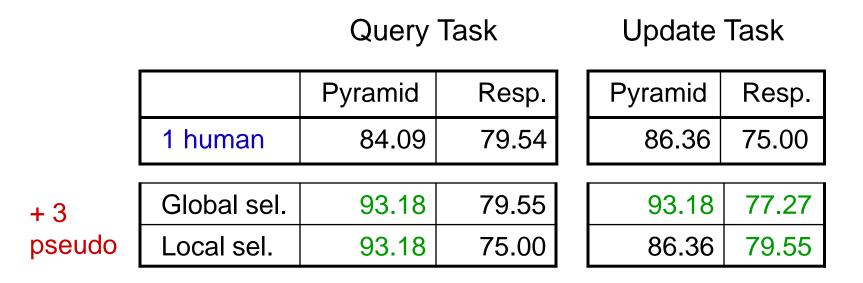
"Pseudo-model" system summaries

- Pseudo-model ~ systems predicted to be best using available model summary
- Compute ranks based on the human model
- Treat top systems as "pseudo-models"

Two selection methods

- Global
 - System level ranking using RSU4
 - Select top 3 systems as pseudo-models
- Local
 - Use top 3 systems for each input as pseudo-models
- Final rankings
 - JS divergence with 1 model + 3 pseudo-models

Mixed results



- Improvements for pyramid
- Not much gains for responsiveness
- On '08 data, local selection was better

4. System summaries only

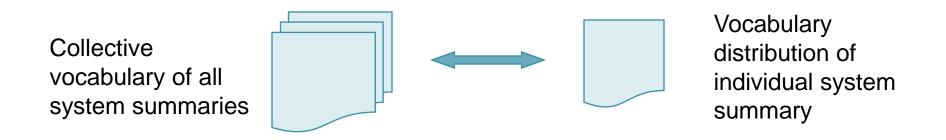
 Collection of system summaries is useful for evaluation

Can system summaries alone be used for evaluation?

- Similar to the pyramid method
 - Common content across multiple human summaries more important
- Different systems ~ different content selection methods
 - Agreement among systems ~ very important content
- Collection of system summaries as a model
 Indicative of what is important?

System summary based evaluation

 Divergence from vocabulary distribution of system summaries



Low divergence ~ higher scores

Very high correlations with human scores

Query Task

Update Task

System-level	Pyramid	Resp.	Pyramid	Resp.
System summaries	-0.93	-0.81	-0.89	-0.79

|--|

- Percentage of inputs with significant correlations
 77 to 90%
- Collective knowledge of systems is useful
 - Possibility of system combination for summarization

Conclusions

- A methods to predict summary quality that use very little or no human input
- Based upon system summaries
 - Pseudo-models: help only for pyramid correlations
 - Collection of system summaries: very indicative of good content
- Based upon the input
 - Input-summary similarity: highly predictive
 - Input difficulty features: predictive of average system performance

References

- Automatically Evaluating Content Selection in Summarization without Human Models
 - Annie Louis & Ani Nenkova, EMNLP 2009
- Performance Confidence Estimation for Automatic Summarization
 - Annie Louis & Ani Nenkova, ACL 2009
- Summary Evaluation without Human Models
 - Annie Louis & Ani Nenkova, TAC 2008
- Can you summarize this? Identifying correlates of input difficulty for generic multi-document summarization
 - Ani Nenkova & Annie Louis, ACL-HLT 2008