

NUS-I2R: Learning a Combined System for Entity Linking

 Wei Zhang† Yan Chuan Sim‡ Jian Su‡

 Chew Lim Tan†

†School of Computing
National University of Singapore

{z-wei, tancl}
@comp.nus.edu.sg

 ‡ Institute for Infocomm Research
{ycsim, sujian}

@i2r.a-star.edu.sg

Abstract

In this paper, we report the joint participation of
NUS and I2R team in Knowledge Base Popula-
tion at Text analysis conference 2010. For Entity
Linking, we analyze IR approaches and SVM
classification in the disambiguation stage and
develop a supervised learner for combining these
approaches. The combined system performs bet-
ter than the individual components and achieves
results much better than the median. Further-
more, according to our error analysis, quite some
errors are caused due to the different Wikipedia
version is used, which hinder our system to
show significant better performance.

1 Introduction

The aim of Knowledge Base Population (KBP)
track at Text Analysis Conference (TAC) 2010 is
to automatically discover information about named
entities and to incorporate this information in a
structured Knowledge Base (KB). The task has
been broken down into two sub tasks: Entity Link-
ing and Slot Filling. We participate in the first sub
task.

Given a knowledge base and a document collec-
tion, the Entity Linking task is to determine for
each name string and the document it appears in,
which knowledge base entity is being referred to,
or if the entity is not present in the reference KB.

KBP track 2010 is a follow-up to the KBP eval-
uation at TAC 2009. The Entity Linking sub task
has been explored by several researchers. The gen-
eral approach for Entity Linking consists of two
stages: name variation and entity disambiguation.
Name variation is used to find variations for each
entity in KB and to generate an entity candidate

set. Entity disambiguation is to link an entity men-
tion with the real world entity it refers to. The cru-
cial component of Entity Linking is the disambigu-
ation process. Varma et al. (2009) reported a dis-
ambiguation algorithm to rank the entity candi-
dates using a search engine. Han and Zhao (2009)
ranked the candidates based on BOW and Wikipe-
dia semantic knowledge similarity. Zheng et al.
(2010) proposed a learning to rank algorithm for
disambiguation. Zhang et al. (2010) used an SVM
classifier for Entity Linking. Dredze et al. (2010)
used the ranking SVM algorithm as the candidate
ranker.

In this paper, we describe NUS and I2R joint
participation in TAC 2010 where we used a com-
bined Entity Linking system. Based on the simi-
larity between the contextual information of doc-
ument and entities in KB, we develop several enti-
ty linking systems using different IR approaches
(Lucene and Ranking SVM) and SVM classifica-
tion. Finally, these systems are combined using a
supervised learning method.

The remainder of the paper is organized as fol-
lows. In section 2 we detail our algorithm includ-
ing name variation and entity disambiguation. Sec-
tion 3 describes the experimental setup and results.
Finally, Section 4 concludes the paper.

2 Algorithm

In this section we describe our algorithm for both
challenges of Entity Linking: name variation and
entity disambiguation.

2.1 Name Variation

The aim of Name Variation stage is to build a
Name Dictionary that contains the name variations

of entities in KB and to generate a candidate set
using this Name Dictionary.

Name Dictionary Creation. We use Wikipedia
to build our Name Dictionary since Wikipedia is
the largest encyclopedia in the world and surpasses
other knowledge bases in its coverage of concepts
and up-to-date content. We obtain information
from Wikipedia using Java Wikipedia Library 1
(Zesch et al. 2008).

Firstly, we map the entities in KB to the entity
page in Wikipedia. Next, we retrieve the corres-
ponding redirect pages, disambiguation pages and
Wikipedia pages containing the anchor text. Final-
ly, the titles of the redirect pages and disambigua-
tion, as well as the anchor text are used to con-
struct the Name Dictionary. In Name Dictionary,
the KB entities are indexed by the name variation
string.

Candidates Generation. Using the Name Dic-
tionary created, we can retrieve the candidate enti-
ties in the KB that share the same query mention.
Moreover, if the name in the query is an acronym,
expanding it can effectively reduce the ambigui-
tion of the mention. Thus, before the retrieval
process, we expand the acronym queries from the
document where the acronym is located.

As Schwartz and Hearst’s (2003) algorithm only
allows expansions that are in parenthesis adjacent
to the acronym or acronym in parenthesis adjacent
to the expansion (e.g. Israeli Air Force (IAF) or
IAF (Israeli Air Force)), we extend it to a more
robust algorithm that can find expansions in the
whole document.

2.2 Entity Disambiguation

The disambiguation stage is to link the mention
with the KB entity it refers to in the candidate set.
If the entity to which the mention refers to is not
present in KB, nil will be returned.

In this Section, we will describe three systems
for disambiguation, as well as a combined system.

2.2.1 Lucene2 System (LS)

In this system, we treat disambiguation as a rank-
ing problem to select a single correct candidate for
a query. As the approach in the paper of Varma et
al. (2009), we use Lucene to index the Wikipedia
text of the candidate entities. Each candidate entity

1 http://www.ukp.tu-darmstadt.de/software/jwpl/
2 http://lucene.apache.org/java/docs/

is indexed as a separate document. In query formu-
lation process, we extract all the paragraphs that
contain the query mention, and remove the stop
words. After that, we form a Boolean “OR” query
of all the tokens. Finally, this query is given to the
candidate entity index and the relevance score for
each entity is calculated by Lucene. The entity
with the highest score is considered as the answer.

 2.2.2 Supervised Systems

Ranking SVM3. Supervised machine learning me-
thods are also popular for ranking problems. We
use a ranking SVM algorithm (Joachims, 2002) for
disambiguation. In our learning framework, the
instance is formed by a list of feature vectors. Each
feature vector depends on both the query and a
candidate entity. For training instance, we define
an ordered constraint, where the score for the fea-
ture vector of correct candidate is greater than the
scores for the feature vectors of incorrect candi-
date. The ranking SVM approach is to learn a
ranker where the correct candidate should receive a
higher score than all other candidates. During test-
ing step, the score for each entity in candidate set
is given by the supervised SVM ranker.

SVM Classification. We can also consider dis-
ambiguation as a classification issue: deciding
whether a mention refers to an entity using an
SVM binary classifier. In this learning framework,
the training or testing instance is formed by (query,
entity) pair. The instance is positive if the entity is
the correct entity, otherwise it is negative. Based
on the training instances, a binary classifier is gen-
erated using SVM learning algorithm. During dis-
ambiguation, (query, entity) is presented to the
classifier which then returns a class label and the
corresponding score.

Each (query, entity) pair is represented by a fea-
ture vector described below.

Features for Ranking and Classification. We
selected features for both ranking SVM and SVM
classification which have been shown to be helpful
in previous works and tasks.

Exact Equal Surface. The feature is 1 if the men-
tion in query is same as the title of the candidate.
Otherwise, the feature value is set to 0.

3http://www.cs.cornell.edu/People/tj/svm_light/svm_ran
k.html

Start With Query. The feature value is 1 if the
title string of the candidate starts with the men-
tion string of the query and the Exact Equal Sur-
face feature is 0. Otherwise, the feature value is
set to 0.

End With Query. The feature value is 1 if the
title string of the candidate ends with the men-
tion string of the query and the Exact Equal Sur-
face feature is 0. In other case, the feature value
is set to 0.

Equal Word Num. The feature value is the num-
ber of same words between the title string of
candidate entity and the mention string of the
query.

Miss Word Num. The feature value is the num-
ber of different words between the title string of
candidate entity and the mention string of the
query.

Bag of Words (BOW). We use token-based fea-
tures to measure the similarity between the query
document and the Wikipedia text of candidate
entity. The cosine similarity metric (standard
tf.idf weighting) is used.

Similarity Rank. The feature value is the in-
verted rank of candidate’s tf.idf weight in the
candidate set.

All Words in Text. The feature value is 1 if all
words in the title of candidate exist in query
document. Otherwise, the feature value is 0.

Word Category Pair. We consider word-category
pairs as a feature class, i.e., all (w,c) where w is a
word from Bag of Words of document and c is
Wikipedia a category to which candidate entity
belongs.

NE Number Match. The feature value is the
number of the same named entities appearing in
the query document and the Wikipedia text of
candidate.

NE Type. This feature is to guarantee that the
type of entity in document (i.e. Person, Geo-
Political Entity and Organization) is consistent
with the type of entity in KB.

Country in Text Match. The feature value is the
number of same countries appearing in the query
document and Wikipedia text of candidate enti-
ty.

Country in Text Miss. The feature value is the
number of countries that appear in the query
document but do not appear in the Wikipedia
text of the candidate entity.

Country in Title Match. The feature value is the
number of same countries appearing in the title
of candidate and in the query document.

Country in Title Miss. The feature value is the
number of countries that appear in the title of
candidate but do not appear in the query docu-
ment.

City in Title Match. The feature value is the
number of same cities appearing in the title of
candidate and in the query document.

We use case sensitive string comparisons for the
features.

Based on the ranking SVM and SVM classifica-
tion models using the above features, we develop
two supervised systems for disambiguation.

Ranking First System (RFS). In this system,
we rank the candidates using the ranking SVM
model, and the entity with highest rank is chosen
as the answer. As this model always chooses the
highest ranked entity as the answer, it does not re-
turn nil unless the candidate set is empty. Thus, we
use SVM classification model to validate whether
the highest ranked candidate is the true target enti-
ty. The pair of query and highest ranked candidate
is given to the binary classifier. If the class label is
positive, then we return the entity as the answer.
Otherwise, nil will be returned.

Classification First System (CFS). In this sys-
tem, we treat the ranking problem as classification.
We use the SVM classification model to decide if
each (query, entity) pair is positive. There may be
more than 1 candidate that is labeled positive.
Therefore, we employ the ranking SVM model to
rank the positive candidates and the entity with the
highest rank will be chosen.

2.2.3 Supervised combination

After developing the three systems (LS, RFS and
CFS), we combined them into a final system –
combined system (CS) using a supervised method.
In this method, a three-class classifier is used to
judge which systems (LS, RFS or CFS) should be
trusted. SVM is chosen since it is state-of-the-art

Runs All Queries Non-Nil Nil ORG GPE PER
CS 0.7938 0.6353 0.9252 0.7960 0.6876 0.8975

RFS 0.7929 0.6333 0.9252 0.7960 0.6849 0.8975
CFS 0.7907 0.6716 0.8894 0.7947 0.6796 0.8975

Median 0.6836 - - 0.6767 0.5975 0.8449
Highest 0.8680 - - 0.8520 0.7957 0.9601

Table 1: Micro-Averaged Accuracy of Our Runs, Median and Highest

machine learning algorithm. The three features
used in this module are the scores given by the
three systems for their answer. The classes are the
three systems.

3 Experiments and Discussions

3.1 Experimental Setup

Prior to the experiment, we perform pre-processing
on the data. In particular, we perform Named Enti-
ty Recognition using an SVM based system trained
and tested on ACE 2005 with 92.5(P) 84.3(R)
88.2(F). In addition, we use an SVM based corefe-
rence resolver trained and tested on ACE 2005
with 79.5%(P), 66.7%(R) and 72.5%(F).

For our implementation, we use SVMLight 4
learner developed by Joachims (1999). The model
is trained with default learning parameters. The
features’ values are normalized to [0,1] to avoid
noise caused by extreme values.
 Corpora. The training data of KBP 2010 for
Entity Linking has 3,904 newswire queries and
1,500 web queries. We select 1,500 of them as our
training data for supervised combination and the
remaining queries are used for training both rank-
ing SVM and SVM classification. Also, we use the
data automatically created by the approach of
Zhang et al. (2010) for training the SVM models.
The testing data for Entity Linking this year con-
tains 2,250 queries.

Wikipedia data5 can be freely obtained for re-
search purposes. It is available in the form of data-
base dumps that are released periodically. We use
Wikipedia data to augment the given KB data. This
allows us to derive name variations mentioned in
Section 2.1, and then to build our Name Dictionary.
Furthermore, the Word Category Pair feature is

4 http://www.cs.cornell.edu/People/tj/svm_light/
5 http://download.wikipedia.org

based on Wikipedia’s category information. The
version we used for our experiments was released
on Sep. 02, 2009.

Evaluation. The measure used in KBP-10 to
evaluate the performance of entity linking is mi-
cro-averaged accuracy: the number of correct links
divided by the total number of queries.

3.2 Submissions and Results

We submit three runs with different approaches.
The description of our runs is as below:

• Run 1: Combined System. (CS)
• Run 2: Ranking First System (RFS)
• Run 3: Classification First System (CFS)

Sixteen teams submitted a total of 46 runs to the
TAC 2010 Entity Linking task. Table 1 shows us
the results of our runs, as well as the highest and
median of participants. The micro-averaged accu-
racies are provided for Non-Nil and Nil queries and
each entity type. We obtain the following conclu-
sions from the results:

1) The combined system outperforms the indi-
vidual components and is much better than
the median of participants.

2) In the KBP data set, the ambiguations of dif-
ferent entity types are different, which af-
fects the system’s performance. GPE is
most ambiguous and PER is least ambi-
guous.

Although our system achieves results better than
the median, its performance is 7.42% lower than
the best system. Our system performs at 85.1% on
the 2009 KBP testing data, but its performance for
the testing data this year is reduced. According to
our error analysis, quite some errors are caused due
to the different Wikipedia version is used. The KB
in Entity Linking is derived from Wikipedia re-
leased in Oct. 2008. As mentioned in Section 2.1,
to build the Name Dictionary, we map the entities
in KB to the entity pages in Wikipedia released in

Sep. 2009. Different versions of Wikipedia cause
much mapping failure.

4 Conclusion

This paper describes our NUS-I2R system in de-
tail for TAC 2010 Entity Linking task. We ex-
plored two IR approaches (Lucene and Ranking
SVM) and SVM classification model for Entity
Linking. Meanwhile, a large feature set which can
represent a wide range of information is defined
for supervised learning. We propose a supervised
learning method to combine the different systems.
The combined system outperforms the individual
components.

References

M. Dredze et al. 2010. Entity Disambiguation for
Knowledge Base Population. In Proceeding of 23rd

International Conference on Computational Linguis-
tics (COLING 2010), Beijing.

X. Han and J. Zhao. NLPR_KBP in TAC 2009 KBP
Track: A Two-Stage Method to Entity Linking. In
Proceedings of Test Analysis Conference 2009 (TAC
09)

T. Joachims. 1999. Making large-scale svm learning
practical. In Advances in Kernel Methods - Support
Vector Learning. MIT Press.

T. Joachims. 2002. Optimizing search engines using
clickthrough data. In Knowledge Discovery and Data
Mining (KDD).

A. Schwartz and M. Hearst. 2003. A Simple Algorithm
for Identifying Abbreviation Definitions in Biomedi-
cal Text. In Pacific Symposium on Biocomputing,
Volume 8, pages 451-462

V. Varma et al. 2009. IIIT Hyderabad at TAC 2009. In
Proceeding of Test Analysis Conference 2009 (TAC
09).

T. Zesch, C. Muller and I. Gurevych. 2008. Extractiong
Lexical Semantic Knowledge from Wikipedia and
Wiktionary. In Proceeding of the Conference on
Language Resources and Evaluation (LREC), 2008.

W. Zhang, J. Su, C. L. Tan and W. Wang. 2010. Entity
Linking Leveraging Automatically Generated Anno-
tation. In Proceeding of 23rd International Confe-
rence on Computational Linguistics (COLING 2010),
Beijing.

Z. Zheng, et al. 2010. Learning to Link Entities with
Knowledge Base. In Proceeding of NAACL 2010.
Los Angeles, CA

