
A Simple Distant Supervision Approach for the TAC-KBP Slot Filling Task

Mihai Surdeanu, David McClosky, Julie Tibshirani, John Bauer,
Angel X. Chang, Valentin I. Spitkovsky, Christopher D. Manning

Computer Science Department
Stanford University, Stanford, CA 94305

{mihais,mcclosky,jtibs,horatio,angelx,vals,manning}@stanford.edu

Abstract

This paper describes the design and imple-
mentation of the slot filling system prepared
by Stanford’s natural language processing
group for the 2010 Knowledge Base Popula-
tion (KBP) track at the Text Analysis Con-
ference (TAC). Our system relies on a simple
distant supervision approach using mainly re-
sources furnished by the track organizers: we
used slot examples from the provided knowl-
edge base, which we mapped to documents
from several corpora, i.e., those distributed by
the organizers, Wikipedia, and web snippets.
Our implementation attained the median rank
among all participating systems.

1 Introduction

This paper describes the slot filling system prepared
by Stanford’s natural language processing (NLP)
group for the Knowledge Base Population (KBP)
track of the 2010 Text Analysis Conference (TAC).
Our system adapts the distant supervision approach
of Mintz et al. (2009) to the KBP slot filling con-
text. We: (a) extract slot (or relation) instances from
a knowledge base; (b) map these instances to sen-
tences in document collections; and (c) train a sta-
tistical model using these examples. However, there
are several significant differences between our ap-
proach and that of Mintz et al. (2009): (a) we use
mainly the resources provided by the task organiz-
ers, i.e., Wikipedia infoboxes and the KBP corpus,
instead of Freebase;1 (b) we implement a one-to-
many mapping from infobox elements to KBP slots

1http://www.freebase.com/

since Wikipedia infoboxes do not align with the
KBP slot types; and (c) we couple the slot extrac-
tion component with an information retrieval (IR)
system to accommodate the large document collec-
tion provided.

Figure 1 summarizes our system’s architecture.
For clarity, we present two distinct execution flows:
one for training the slot classifier, and one for evalu-
ating the entire system.

2 Training

2.1 Mapping Infobox Fields to KBP Slot Types

We used the Wikipedia infoboxes provided by
the task organizers as our source of distant su-
pervision. However, these infoboxes contain
arbitrary fields that map to none, one, or more
KBP slot types. For example, the infobox field
University:established maps one-to-
one to the KBP slot type org:founded. But
the infobox field Writer:children maps
to either zero, one, or more per:children
slots. For example, we disregard the infobox
field (Writer:children, “John Steinbeck”,
“3”) because the text “3” cannot contain a
name. On the other hand, we map the field
(Writer:children, “Mark Twain”, “Langdon,
Susie”) to two KBP slots: (per:children,
“Mark Twain”, “Langdon”) and (per:children,
“Mark Twain”, “Susie”). In the same vein, we map
the infobox field (University:address,
“MIT”, “Cambridge, Mass.”) to two KBP
fields: (org:city of headquarters,
“MIT”, “Cambridge”) and



Infobox	  KB	  	  

Map	  infobox	  fields	  to	  KBP	  slots	  
(one	  to	  many	  mapping)	  

IR:	  find	  relevant	  sentences	  
Query:	  enAty	  name	  +	  slot	  value	  

Extract	  +/-‐	  slot	  candidates	  

Train	  mulAclass	  classifier	  

Map	  KBP	  	  
slots	  to	  	  
fine-‐grained	  
NE	  labels	  

KBP	  query:	  enAty	  name	  

IR:	  find	  relevant	  sentences	  
Query:	  enAty	  name	  +	  trigger	  words	  

Extract	  slot	  candidates	  

Classify	  candidates	  

Inference	  (greedy,	  local)	  

Training	   Evalua,on	  

Extracted	  
slots	  

Figure 1: Architecture of the slot filling system.

(org:stateorprovince of headquarters,
“MIT”, “Mass.”), and the field
(Politician:office, “Barack Obama”,
“President of the United States”) to two slots:
(per:title, “Barack Obama”, “president”) and
(per:employee of, “Barack Obama”, “United
States”). All these conversions are implemented
with deterministic rules, customized for each
infobox field type.

2.2 Retrieving Relevant Sentences
We retrieve sentences that contain the previously
generated slot instances by querying all our docu-
ment collections with a set of queries, where each
query contains an entity name and one slot value,
e.g., “Barack Obama” AND “United States” for the
previous example. From the documents retrieved,
we keep only sentences that contain both the entity
name and the slot value. We retrieved up to 100 sen-
tences per entity.

We used three document collections for sentence
retrieval during training:

1. The official document corpus provided by the
task organizers.

2. Snippets of Wikipedia articles from the 2009

TAC-KBP Evaluation Reference Knowledge
Base. These snippets are often prefixes of
the complete articles. Nevertheless, they are
extremely useful because they correspond to
the Wikipedia pages of the infoboxes we used
for distant supervision, so we expect most of
the slots to have a match in these texts. To
maximize the number of relevant sentences ex-
tracted, in this corpus we employed a shal-
low and fast coreference resolution with re-
placement: for person pages, we replaced all
animate pronouns, possessive and otherwise,
with the article’s title. For organizations, we
did the same for inanimate pronouns and also
searched for possible abbreviations of the arti-
cle title. For example, for the article titled “In-
ternational Business Machines”, we replaced
all instances of “IBM” and “I.B.M.” with the
full title. For both people and organizations, we
replaced non-empty subsequences of the article
title with the complete title, for improved uni-
formity.

3. A complete Wikipedia snapshot from Novem-
ber 2008.

Note that, with the exception of the second corpus,



we did not use coreference resolution in this shared
task, requiring an exact string match between entity
names and slot values in text, to consider a sentence
as relevant for a given slot.

2.3 Extracting Positive and Negative Slot
Candidates

Following Mintz et al. (2009), we pretend that all
sentences containing an entity name and a known
slot value are positive example for the correspond-
ing slot types.2 We consider as negative slot exam-
ples all entity mentions extracted by a named entity
recognizer that do not match a known slot value. Ad-
ditionally, these mentions must appear in the same
sentence with the entity whose slots are currently
modeled, and have a type known to match a KBP
slot. For example, if the current entity modeled is
“Apple” in the sentence “As Apple launched the first
subscription app for iPad with News Corp., Google
announced catchup steps for Android.”, the ORGA-
NIZATION mentions “News Corp.” and “Google”
become negative slot examples because they do not
match a known slot for “Apple”. The mapping from
KBP slot types to named entity (NE) labels was per-
formed manually, and is released with this paper.3

We extract slot candidates using the Named En-
tity Recognizer (NER) from the Stanford CoreNLP
package.4 We extended the NER with a series of la-
bels specific to KBP, e.g., countries, provinces, dis-
eases, religions, etc. All these additional classes
were recognized using static lists manually built
by mining the Web. These lists are available for
download at: http://www.surdeanu.name/mihai/
kbp2010/ner_extensions.txt.

This process generated approximately 190K pos-
itive slot examples and 900K negative examples.

2.4 Training the Slot Classifier

We trained the slot classifier using a single multi-
class logistic regression with L2 regularization. To

2This assumption is often wrong. For example, if we see
that a conference was held in Austin, TX, we will learn that
host cities tend to be capitals, which neither follows logically,
nor happens to be true, in general.

3http://www.surdeanu.name/mihai/kbp2010/
slots_to_ne.txt

4http://nlp.stanford.edu/software/
corenlp.shtml

control for the excessive number of negative exam-
ples, we subsampled them with a probability of 0.5,
i.e., we used only half of the negative examples.

The classifier features were inspired by previous
work (Surdeanu and Ciaramita, 2007; Mintz et al.,
2009; Riedel et al., 2010) and include:

• Information about the entity and slot candidate,
e.g., the NE label of the slot candidate, and
words included in the slot candidate.

• Surface features: textual order of the entity and
slot candidate, number of words between en-
tity and slot, words immediately to the left and
right of the entity and slot, the NE mentions
seen between the entities and slots, and, finally,
words that appear between the entity and slot
candidate.

• Syntactic features: the path from an entity to
the slot in the constituent parse tree, and de-
pendency path between entity and slot (both
lexicalized and unlexicalized). The constituent
trees and dependency graphs were built using
the parser from the Stanford CoreNLP package.

3 Evaluation

3.1 Retrieving Relevant Sentences

At run-time we retrieve candidate sentences using,
for each entity, a set of queries that couple the entity
name with specific trigger words for each slot type.
For example, for the org:alternate names
slot type, we use trigger words such as “called”,
“formerly” and “known as”. These lists of trigger
words were built manually and are available in their
entirety.5

In addition to the three document collections men-
tioned in the previous sub-section, during evalua-
tion we used also a web-based corpus. This corpus
was constructed as follows. For each evaluation en-
tity we constructed a set of web queries by concate-
nating the entity name with each trigger word (or
phrase) from the above list. For each query, we re-
trieved up to 100 snippets from Google.6 We created
one separate document for the results of each query.

5http://www.surdeanu.name/mihai/kbp2010/
trigger_words.txt

6http://www.google.com/



As in the training setup, we retrieved up to 100
sentences per entity from the other three static doc-
ument collections.

3.2 Candidate Extraction, Classification, and
Inference

During evaluation, we consider as slot candidates all
NEs that have a type known to correspond to a slot
type and that appear in the same sentence with the
evaluation entity. For each slot candidate we pick
the label proposed by our multiclass slot classifier
independently of the other candidates. In case of
conflicts, i.e., multiple extractions proposed for the
same slot, we select the candidate with the highest
classifier confidence. In this work, we treat single
and list slots identically, i.e., we output at most
one extraction per slot.

Note that there is a significant difference between
our approach and previous distantly-supervised
work on relation extraction (Mintz et al., 2009;
Riedel et al., 2010). Both these works model slots
(or relations), where each slot aggregates all men-
tions of the same value, whereas we model each slot
mention individually. To produce a KBP-compliant
output, we merge different mentions with the same
value as follows: (a) we sum all probability scores
proposed by the slot classifier for all mentions with
the same value; (b) we pick the label with the high-
est score; and (c) if the overall score of this label is
larger than 0.75 we report the classifier label, other-
wise we discard the slot.

4 Results

We report scores from out development setup in Ta-
ble 1. For this experiment we used two thirds of
the infoboxes as training data, leaving one third for
testing. We retrieved candidates from the three doc-
ument collections used for training. Note that the
scores in the table are likely to be more conserva-
tive than those in previous works (Mintz et al., 2009;
Riedel et al., 2010), because we report results for
each slot mention, rather than for entire slots or re-
lations. In other words, in our evaluation each in-
dividual mention is scored separately, whereas both
Mintz et al. (2009) and Riedel et al. (2010) consider
a slot as correct if its mentions are classified cor-
rectly on average.

Overall, our system obtains a F1 score of 56.7
in the development set. This value is slightly
higher than the scores obtained by Mintz et
al. (2009) and Riedel et al. (2010) in compara-
ble experiments. As the table indicates, some of
the slot types can be extracted with high accu-
racy, e.g., per:date of birth, whereas oth-
ers are considerably more difficult, e.g., org:top
members/employees.

Nevertheless, our KBP scores on the official test
partition are low. Our system obtained a F1 score
of 14.12 (10.54 precision and 21.41 recall) when the
web snippet collection is used, and 12.25 F1 (24.07;
8.22) without the web snippets. The former config-
uration attained the median rank among all partici-
pating systems.

5 Conclusions and Future Work

This paper introduced a simple application of the
distant supervision approach to the TAC-KBP slot
filling task. With the exception of the pre-existing
slot classifier, this entire system was created in
approximately two calendar weeks. Due to this
tight development schedule, several important issues
were left unexplored. We plan to address the most
important ones in future work:

• We suspect that the drop between our devel-
opment scores and the official KBP scores is
caused by the low recall of the IR module. We
will focus on improving our IR component, i.e.,
develop a distributed implementation capable
of processing more sentences per entity. We
will also improve our trigger word detection
strategy (see, e.g., Chapter 23 in (Jurafsky and
Martin, 2009)).

• We will investigate the contribution of syntac-
tic and discourse processing tools to this task,
e.g., what is the improvement if true corefer-
ence resolution for entity names and slot values
is used? Which syntactic dependency represen-
tation is best for slot extraction?

• Riedel et al. (2010) showed that the assumption
that all sentences that contain an entity name
and known slot values are positive examples
for the relevant slot type is wrong, especially



Label Correct Predicted Actual P R F1
NIL 268,085 289,135 295,590 92.7 90.7 91.7
org:city of headquarters 5,835 9,040 7,514 64.5 77.7 70.5
org:country of headquarters 2,851 4,638 3,725 61.5 76.5 68.2
org:founded 3,896 8,199 6,662 47.5 58.5 52.4
org:parents 1,158 2,292 2,525 50.5 45.9 48.1
org:top members/employees 1,282 3,067 3,596 41.8 35.7 38.5
per:city of birth 1,799 3,920 3,252 45.9 55.3 50.2
per:country of birth 1,984 4,122 3,204 48.1 61.9 54.2
per:date of birth 3,938 5,427 4,362 72.6 90.3 80.5
per:member of 1,771 3,018 2,887 58.7 61.3 60.0
per:title 1,714 3,364 3,054 51.0 56.1 53.4
...
Total 37169 68822 62367 54.0 59.6 56.7

Table 1: Results of the distantly supervised system that two thirds of the KB as training data and the remaining third of
the KB as testing. We score only mentions of slots that appeared at least once in the underlying document collections.
The first rows of the table shows results for the NIL label (i.e., entity mentions that are not known to be slots), followed
by the five most common slots for organization and person entities. The final row is an aggregate of the overall scores
for all slots.

in non-Wikipedia collections. We will investi-
gate models capable of discriminating between
true and false positive slot examples.

References
D. Jurafsky and J.H. Martin. 2009. Speech and Lan-

guage Processing (2nd Edition). Prentice-Hall, Inc.
M. Mintz, S. Bills, R. Snow, and D. Jurafsky. 2009. Dis-

tant supervision for relation extraction without labeled
data In ACL-IJCNLP.

S. Riedel, L. Yao, and A. McCallum. 2010. Modeling
relations and their mentions without labeled text. In
ECML/PKDD.

M. Surdeanu and M. Ciaramita. 2007. Robust Informa-
tion Extraction with Perceptrons. In ACE.


