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Abstract

This paper describes our Recognizing Tex-
tual Entailment (RTE) system developed
at University of Ballarat, Australia for par-
ticipation in the Text Analysis Conference
RTE 2010 competition. This year, we
participated in the Main task and used
a machine learning approach for learn-
ing textual entailment relationships using
parse-free lexical semantic features. For
this, we employed FrameNet and WordNet
resources to extract event-based and se-
mantic features from both hypotheses and
texts. Our system also used the longest
common substring of lemmas when learn-
ing the entailment relationships.

1 Introduction

Recognizing Textual Entailment (RTE) is for-
mally described as automatically recognizing the
relationship between a hypothesis and a text.
The hypothesis (H) is a succinct piece of text
and the text (T ) includes a few sentences the
meaning of which may or may not entail the
truth/falsity of H. If the truth of H can be
inferred from the evidence in T , then the rela-
tionship is denoted by T → H.

With this view of RTE, a number of ap-
proaches to RTE have been developed in re-
cent years. Systems that make use of mor-
phological and lexical variations (Braz et al.,
2005; Pazienza et al., 2005; Rodrigo et al.,
2008), classical or plausible logic (Akhmatova
and Molla, 2006; Tatu and Moldovan, 2005;

Clark and Harrison, 2008), syntactic depen-
dency trees (Lin and Pantel, 2001; Kouylekov
and Magnini, 2005; Yatbaz, 2008), paraphrase
detection (Bosma and Callison-Burch, 2006),
and semantic roles (Braz et al., 2005) are among
many existing RTE systems. Some other sys-
tems take a machine learning approach to learn
entailment relationships (Corley and Mihalcea,
2005; Hickl et al., 2006; Mac Cartney et al.,
2006; Zanzotto and Moschitti, 2006; Zanzotto
et al., 2009; Ageno et al., 2008).

In 2010, the RTE challenge, conducted by the
RTE Organizing Committee of the Text Analy-
sis Conference (TAC), consisted of a Main task
and a Novelty Detection task. The main task
was concerned with the identification of all sen-
tences that entail an hypothesis among a set of
sentences retrieved by Lucene from a text cor-
pus. The novelty detection task included the
judgement of whether the information in a hy-
pothesis was novel with respect to the informa-
tion contained in the text corpus1.

We participated in the RTE 2010 main task
and our system followed the machine learning-
based RTE strand. Our system extracted lexi-
cal and semantic features from texts. For this,
we employed FrameNet (Baker et al., 1998) and
WordNet (Miller et al., 1990) resources to ex-
tract event-based and semantic features from
the lemmas of the hypotheses and texts. The

1See RTE-6 tasks guidelines available at
http://www.nist.gov/tac/2010/RTE/RTE6 Main
NoveltyDetection Task Guidelines.pdf for more de-

tails.



longest common substring of lemmas was also
used as a lexical feature.

In the next section, we describe the general
structure of our RTE system participated in the
TAC RTE 2010 competition. This is then fol-
lowed by introducing the different textual fea-
tures that our system used for learning the en-
tailment relationships. We will then report the
results of our system evaluated by TAC and fi-
nally conclude the paper.

2 UB.dmirg 2010 system overview

In the main task of the RTE 2010 challenge (i.e.,
recognizing textual entailment within a corpus),
for each hypothesis, a set of candidate entailing
sentences were retrieved by Lucene from the cor-
pus. RTE systems were then required to identify
all the sentences that entail a given hypothesis
among the candidate sentences. In order to par-
ticipate in this task, we:

• Developed a system to extract features from
hypotheses and sentences (known as texts),
• Used a ready machine learning system to

classify the entailment relationships be-
tween hypotheses and texts,
• Developed a system, given the class labels

for each pair and their feature vectors, to
align the two and put the feature vectors
and their class labels into a repository, and
• Developed a system, given the class labels

and feature vectors, to generate appropriate
XML output according to the requirements
of TAC for evaluation files.

Figure 1 shows a more fine-grained schematic
overview of our work in the RTE 2010 main task.
Given a T/H pair, the analysis started with lem-
matizing both the hypothesis and text. The lem-
mas were then feed to our feature extractor pro-
gram that used FrameNet and WordNet lexical
resources to extract lexical, semantic, and event-
based features and generate a feature vector for
the pair. The feature vector was then added to a
feature vector repository. The machine learning-
based classification system received the feature
vectors and in the training session, it generated
classifier model. In the test session, however, the

learning classification system produced class la-
bels for the test set which were then aligned with
the feature vectors of the pairs. The aligned
repository was then processed by our other pro-
gram to generate the final evaluation file in the
XML format required by TAC.

2.1 Lemmatizer

Prior to feature extraction, all text and hypothe-
sis terms were lemmatized using the TreeTagger
lemmatizer (Schmid, 1994). This step was nec-
essary in our system in order to normalize the
terms in both texts and hypotheses and make
it possible for the system to find that, for in-
stance, both terms “collapsed” and “collapsing”
are of the same root “collapse” and can be in-
terpreted as an exact term match. In this year’s
competition, we did not remove stop words af-
ter lemmatization. The main reason for this was
to maintain the structure of the sentences espe-
cially for when the longest common substring
was calculated.

2.2 Feature extractor

The feature extractor function utilized the two
aforementioned lexical resources, FrameNet and
WordNet and extracts a number of lexical, se-
mantic, and parse-free event-based features from
both texts and hypotheses and generated a fea-
ture vector for each T/H pair. The feature vec-
tors included the hypothesis identifier, the hy-
pothesis topic identifier, the sentence (text) doc-
ument (in the corpus) identifier, the sentence
identifier, the lexical, semantic, and event-based
feature values, and the evaluation result (class
label).

The lexical features that we used were the
total number of exact terms that matched be-
tween the text and hypothesis and also the
longest common subsequence (LCS) of text and
hypothesis lemmas. These features are among
similarity-based features explained in (Bur-
chardt et al., 2009).

The semantic features that we utilized were
extracted by using WordNet lexical ontology.
These features included:
– Synonyms: The total number of synonym
terms that matched between the text and hy-
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Figure 1: The schematic overview of UB.dmirg 2010 RTE system

pothesis term sets. This feature can overcome
lexical paraphrasing.

– Hypernyms/Hyponyms: The total number
of hypernyms and hyponyms that matched be-
tween the text and hypothesis term sets. The
analysis of hypernym and hyponym matching
took a directional approach. The procedure
is formulated in Equation 1 where sh/t is the
set of hypernyms or hyponyms for the hypoth-
esis/text and nh/t represents the total number
of terms ti in the hypothesis/text. Hypernyms
and hyponyms were extracted up to three links
in WordNet. The idea behind using this direc-
tional approach was that WordNet hyponyms
entail WordNet hypernyms e.g. “female person”
lexically entails “person” but not vice versa.

This feature was designated to overcome the
problem related to texts and hypotheses formu-
lating concepts at different levels of conceptual
abstraction. For instance, using this feature, it
is possible to recognize the entailment relation-
ship between “Jack was in a European country
last year.” and “Jack was in France last year.”
since “France” is a “European country” accord-
ing to WordNet.

hyper/hypo score(h, t) = |sh ∩ st|

sh =
nh⋃
i=1

hypernyms(ti), st =
nt⋃

i=1

hyponyms(ti)

(1)

– Antonyms: The antonym score was calcu-
lated using Equation 2 where sh/t is the set of
exact terms or antonyms for the hypothesis/text
term ti. A similar attribute has been used as a
trigger-based feature in (Burchardt et al., 2009).
This feature can capture indications of contra-
diction or no-entailment relationships.

ant score(h, t) = |sh ∩ st|

sh =
nh⋃
i=1

ti, st =
nt⋃

i=1

antonyms(ti)
(2)

– Antonyms/Hyponyms: This feature was
measured using Equation 3 where sh/t is the
set of hyponyms or antonyms for the hypoth-
esis/text term ti. This feature extended the
last feature (antonyms) by looking for the occur-
rences of the antonyms of more specific terms of
hypotheses in texts.



ant/hypo score(h, t) = |sh ∩ st|

sh =
nh⋃
i=1

hyponyms(ti), st =
nt⋃

i=1

antonyms(ti)
(3)

We made use of FrameNet to extract two
types of event-based features, namely ebf and
inter ebf. The ebf feature is the total number
of FrameNet frames that are evoked both by
text and hypothesis terms. To measure this,
we used Equation 4 where the set of all frames
that contain each hypothesis/text term was cre-
ated by a term look-up procedure in FrameNet
XML database. The union set of all framesets
for all hypothesis/text terms was then created.
The cardinality of the intersection of the two
union sets was the score assigned to ebf. This
method did not rely on any shallow semantic
parser and/or word sense disambiguation pro-
cedure to evoke FrameNet frames; instead, was
only based on fetching the names of frames that
contain certain terms.

Using ebf, our RTE system can relate a hy-
pothesis and a text that share semantics at the
level of an event or state. This type of scenario-
based similarity may not be captured using other
types of lexical resources.

ebf score(h, t) = |sh ∩ st|

sh/t =
nh/t⋃
i=1

frameset(ti), frameset(ti) =
⋃
j

framej

{∃t ∈ framej(termset) | ti = t

∧ framej ∈ FN frames}
(4)

FrameNet frames are inter-related using a
number of frame-to-frame relations explained in
detail in (Ruppenhofer et al., 2005). We used
the inheritance, subframe, using, inchoative-of,
causative-of, precedes, and perspective-on rela-
tions to extract one feature per relation type
that represents another level of event/state-
based textual similarity. We refer to this set
of features as inter ebf. For each type of
frame-to-frame relation, we extracted FrameNet
frames immediately inter-related to those frames

evoked for each hypothesis/text term. A simi-
lar approach to the calculation of ebf was used
to measure the overlap between inter-related
frames evoked. Using inter ebf, the system is
able to recognize whether a hypothesis formu-
lates a scenario that is, for instance, part of a
big picture scenario or event (by measuring the
overlap between inter-related frames according
to the inheritance relationship).

In general, although our features were evoked
on a term-basis procedure, the nature of the fea-
tures and linguistic resources that we have used
ensured that compositional semantics were indi-
rectly taken into consideration.

2.3 Learning classifiers

For classifying the relationships between each
T/H pair, we made use of Waikato Environ-
ment for Knowledge Analysis (WEKA)2. From
a wide range of classification systems in WEKA,
we used three classifiers: i) K-Nearest Neighbor
classifier, ii) Random Forest classifier, and iii)
Bayesian Network classifier.

Each classifier was first trained using the
training data (the development set) and then
used for generating class labels for each T/H pair
in the test set. Since WEKA requires class labels
for both training and test sets, in the training
sessions, we used the gold standard class labels
produced by TAC, whereas in the test sessions,
we pre-produced dummy class labels for the fea-
ture vectors. These dummy class labels where
not used for any other purposes than getting
WEKA to run the classifiers in the test sessions.

2.4 Aligner and output xml generator

After each test session using each classifier was
completed, the class labels were aligned with the
feature vectors using our aligner system. This
system merged each feature vector generated for
each T/H pair with its class label predicted by
the classifier. This was carried out by a sequen-
tial look-up in both class label file and feature
vector repository.

Our other system was then employed to cre-
ate the output XML file3. For each hypothesis

2http://www.cs.waikato.ac.nz/ml/weka/
3The structure of the XML file can be found



in each topic in the test set, the system looked
for all of the sentences (texts) that entailed that
given hypothesis (the class label was “yes”). It
then added one entry, in the appropriate form
required by TAC, to the hypothesis node in the
output evaluation XML file for each sentence la-
bels “yes”.

The key to successful alignment of feature vec-
tors and class labels as well as successfully gen-
erating the output XML file was the use of ap-
propriate feature values that identified the topic,
hypothesis, sentence, and document objects (see
section 2.2).

3 Main system evaluation

3.1 Data

The main task of the RTE 2010 challenge con-
sisted of a development set and a test set. Both
the development set and the test set included
10 topics. Each topic consisted of a number of
T/H pairs to be judged by RTE systems. Ta-
ble 1 shows the statistics of these two datasets.

We used the development set for training pur-
poses in the machine learning-based classifiers
and the test set only for producing the class la-
bels for the feature vectors of the T/H pairs.

3.2 System settings

Our UB.dmirg 2010 submissions included three
different runs with the three machine learning-
based classifiers introduced in section 2.3. Ta-
ble 2 shows the settings of each run.

3.3 Results

Our three submissions to the main task were
evaluated by TAC based on micro-averaged and
macro- averaged precision, recall and f-measure
as well as precision, recall and f-measure for
each topic in the test set. Table 3 shows the
micro-averaged and macro-averaged per topic
measures of our runs. From these results, it can
be see that the UB.dmirg3 run had the high-
est f-measure in terms of both micro-averaged
and macro-averaged per topic measures. In fact,
UB.dmirg3 had high recall measures (i.e. 48.68

at http://www.nist.gov/tac/2010/RTE/RTE6 Main
NoveltyDetection Task Guidelines.pdf

and 49.79) for the two types of measures, al-
though its precision values were comparable to
those of the UB.dmirg1 and UB.dmirg2 runs.

According to TAC, 18 teams participated in
the main task of the 2010 RTE challenge and
submitted a total of 48 runs. The statistics over
all of the runs showed micro-averaged f-measures
48.01, 33.72, and 11.60 as high, medium, and
low bands. Compared to these statistics, the
results of our three runs relied between the low
and medium bands.

More detailed results, based on the precision,
recall, and f-measure values of each run for each
topic, are shown in Table 4.

4 Ablation tests

This year, as mentioned in section 2, our RTE
system used two lexical resources, FrameNet and
WordNet. To measure the contribution of each
resource in our system, we ran two ablation tests
for each run:

• Ablation test 1 (per run): we removed
only the lexical and semantic features, ex-
tracted from T/H pairs using WordNet,
from pair feature vectors and ran the ma-
chine learning-based classifier.
• Ablation test 2 (per run): we removed only

the event-based features, extracted from
T/H pairs using FrameNet, from pair fea-
ture vectors and ran the machine learning-
based classifier.

Since one requirement, enforced by TAC, for
the ablation tests was to remove only one com-
ponent/resource from the original runs, we did
not submit any run without both FrameNet and
WordNet resources.

The results of the ablation tests shown in Ta-
ble 5 do not reflect what we exactly expected.
When removing either WordNet or FrameNet-
based features from the learning process of the
classifiers, we would have expected lower classi-
fication measures; however, in many cases, the
evaluation measures show an increase without
the features extracted using one of these lexi-
cal resources. The most consistent results were
obtained by UB.dmirg3 ablation tests, where



Table 1: The RTE 2010 main task development and test sets statistics reported by the TAC

Dataset Topic # of hypotheses # of pairs to be judged

Development set Topic 909 (IRA) 21 1169
Topic 912 (Cindy Sheehan) 20 1928
Topic 914 (Egypt attack) 13 944
Topic 916 (US journalist abducted in Iraq) 21 1419
Topic 922 (Patriot Act) 22 1457
Topic 924 (Vioxx) 18 1754
Topic 927 (Peter Jennings) 27 2700
Topic 929 (Hurricane Rita) 19 616
Topic 937 (Dick Cheney) 23 2134
Topic 938 (WTC Memorial) 27 1834

Test set Topic 901 (Kashmir) 27 2205
Topic 902 (Morning-after pill) 26 1655
Topic 907 (Torture and prison abuses) 27 1845
Topic 913 (Ten Commandaments monuments) 20 1816
Topic 918 (Betty Friedan) 23 2098
Topic 928 (Tyco Trial) 28 2055
Topic 931 (Abdul Qadeer Khan) 19 1900
Topic 936 (Justice OConnor) 17 1340
Topic 939 (LA train wreck) 27 2472
Topic 943 (Air India bombings) 29 2586

Table 2: UB.dmirg 2010 system settings for each submitted run

Run Classifier Settings

UB.dmirg1 K-Nearest Neighbor K=1
Distance weighting = none
Search algorithm = linear NN search

UB.dmirg2 Random Forest # of trees = 10
Seed = 1
Max depth = 0

UB.dmirg3 Bayesian Network Estimator = simple estimator
Search algorithm = K2

in both UB.dmirg3 abl-1 and UB.dmirg3 abl-
2, only recall values decreased after removing
one lexical resource. Both of the ablation tests
of UB.dmirg2 show lower precision values com-
pared to the main run whereas the ablation tests
of UB.dmirg1 show the most inconsistent pat-
terns of changes in classification measures.

In general, the nature of the ablation tests
(where one component could be removed at a
time), did not allow for a more fine-grained anal-
ysis of the impact of different individual fea-
tures, but that of the whole lexical resource.
Using more sophisticated methods, such as ma-
chine learning-based feature selection methods,

one may be able to draw more insightful conclu-
sions as to which features may more effectively
be used for this type of RTE. A recent such
study can be found in (Ofoghi and Yearwood,
2010).

5 Concluding remarks

A machine learning-based recognizing textual
entailment system participated in the Text
Analysis Conference (TAC) 2010 was introduced
in this paper. The system, called UB.dmirg
2010, made use of a number of lexical, seman-
tic, and event-based features extracted from
two lexical resources, WordNet and FrameNet.



Table 3: Micro-averaged and macro-averaged per topic measures of UB.dmirg 2010 system reported by TAC

Run
Micro-averaged Macro-averaged per topic

precision recall f-measure precision recall f-measure

UB.dmirg1 12.22 13.44 12.80 12.58 13.42 12.99
UB.dmirg2 18.58 8.89 12.03 19.91 9.05 12.44
UB.dmirg3 11.79 48.68 18.98 12.48 49.79 19.96

The system did not make use of any semantic
parser when extracting event-based features us-
ing FrameNet.

The UB.dmirg 2010 participation in TAC
2010 included three runs in the main task. We
used three learning classifiers, K-Nearest Neigh-
bor classifier, Random Forest classifier, and
Bayesian Network classifier in the three runs.
The results of our main runs, reported by TAC,
showed that UB.dmirg’s results were positioned
between the low and medium bands of the re-
sults of all TAC 2010 participant systems/runs.

We submitted two ablation tests per run
where in the first test, WordNet and in the sec-
ond test, FrameNet was removed from the task.
This meant that the classifiers of our system
did not make use of the features extracted from
WordNet and FrameNet in the two tests per run,
respectively. The results of the ablation tests
were not consistent with what we expected to
see. In many cases, removing the features of one
lexical resource did not result in any decrease in
the classification measures of our system.
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