
WebTLab: A cooccurrence-based approach to KBP 2010
Entity-Linking task

Norberto Fernández, Jesus A. Fisteus, Luis Śanchez, Eduardo Mart́ın
{berto,jaf,luiss,emartin}@it.uc3m.es

Web Technologies Laboratory (WebTLab)
Department of Telematic Engineering

Universidad Carlos III de Madrid
Universidad 30, Legańes, Madrid, Spain

Abstract

In this paper we describe the approach fol-
lowed and results obtained in the KBP-
Entity Linking task of TAC 2010 by the
Web Technologies Laboratory (WebTLab).
The system implemented for the task is
based on the intuition that instances in a
knowledge base typically cooccur in docu-
ments with other related instances (for ex-
ample, Obama and USA). Based on that in-
tuition, the proposed system takes advan-
tage of the information provided by the
Wikipedia link structure to compute in-
stance cooccurrence estimates, and uses
them for disambiguation purposes, com-
binined with more classical techniques
from the information retrieval community.

1 Introduction

This notebook paper describes the approach fol-
lowed and results obtained in the KBP-Entity
Linking task of TAC 2010 by the Web Technolo-
gies Laboratory1 (WebTLab). The system im-
plemented for the task is inspired by the follow-
ing principle (that we call thesemantic coherence
principle): As instances in a knowledge base typ-
ically cooccur in documents with other related in-
stances (for example, Obama and USA or Pau
Gasol and Los Angeles Lakers) the occurrence
of a certain instance in a document gives infor-
mation about the occurrence of other instances.
That is, in order to know which is the best in-
stance in the KBP KB (Knowledge Base) for the
entity in the query, we use as context the other
instances that are mentioned by the document the
query refers to. To achieve this goal, our system
proceeds through the following stages:

1http://webtlab.it.uc3m.es/index.html

1. It uses a combination of named entity recog-
nizing tools to detect the entities (persons,
locations, organizations) that appear in the
document referred by the query.

2. The system looks for candidate instances for
each named entity. An extended knowledge
base was built with that purpose. It merges
the instances in the KBP KB with informa-
tion from their associated Wikipedia arti-
cles. For each instance in the extended KB, a
set of labels, obtained from Wikipedia redi-
rections, anchors and disambiguation pages,
is also stored. All the extended KB entries
are indexed by Lucene2. For each named
entity in the input document, the text of the
named entity is used to query the index, ob-
taining the potential candidate instances in
the extended KB.

3. A ranking process is carried out to decide
which is the best candidate instance for each
entity (including the one in the query). Due
to the semantic coherence principle, the oc-
currence of a certain instance depends on
the occurrence of other instances in the doc-
ument. Therefore, all the entities have to
be disambiguated at the same time. A
PageRank-like algorithm (Fernández et al.,
2007; Ferńandez et al., 2006) is used to
achieve this goal. This algorithm uses as
input the Lucene scores for the candidates
(obtained in the previous stage) and infor-
mation about instance cooccurrence. In par-
ticular, estimates about the cooccurrence of
each pair A, B of instances in the extended

2We used Lucene version 3.0.1 available at
http://lucene.apache.org/ (27/Oct/2010)

KB are computed by counting the number
of articles in Wikipedia than link both to A
and B, as well as the direct links between A
and B. The algorithm produces a score for
each pair (entity, candidate). Taking into ac-
count these scores, a configured threshold,
and the origin of the candidates (KBP KB,
Wikipedia) the algorithm chooses a candi-
date or NIL.

Three different runs were submitted that dif-
fer in configuration parameters. Our best run
achieved a 0.7698 accuracy over all queries, ac-
cording to the official results.

The rest of this paper describes our system in
depth: Section 2 describes the components of
our system and the different processing stages
and information sources. Section 3 shows the re-
sults obtained by the system in the competition.
Finally, section 4 provides some concluding re-
marks and future lines of development of the sys-
tem.

2 The WebTLab approach

The system that the WebTLab team submitted for
evaluation to KBP 2010 consists of a set of com-
ponents that are connected in a document pro-
cessing pipeline. Within this pipeline, each com-
ponent (except the first one) uses as input the re-
sults of the previous component plus additional
information obtained from configuration, and/or
from data sources generated by preprocessing the
KBP knowledge base and the Wikipedia.

The architecture of the system showing all its
components and information sources is depicted
in figure 1. The next sections describe with more
detail the functionality provided by each com-
ponent and the information stored in each data
source.

2.1 Document fetcher

The main goal of this component is to process
the input XML file that contains the evalua-
tion queries, and trigger the processing of those
queries one by one. For each query, the con-
tents of the context file are fetched from the lo-
cal filesystem and are provided to the next com-
ponent in the pipeline (docXML in figure 1), to-
gether with the query information: query identi-

fier, entity text, and document identifier (queryId,
entTextanddocIdrespectively in figure 1).

2.2 Text preprocessor

This component was implemented in order to
prepare the XML text of the original document
for later processing stages. The XML format in
the original corpus includes some elements (for
instance,TRAILER) that are optional, and thus,
are not found in all the documents. The text
preprocessor transforms the input format into the
TREC XML format, so that later stages can ex-
pect a regular document structure. An example
of the resultant XML structure is shown below:

<DOC>
<DOCNO>The docId goes here</DOCNO>
<TEXT>

The text contents of all original
tags are included here

</TEXT>
</DOC>

The output of this component includes the
query information as provided by the previous
component plus a new elementdocTextthat con-
tains the TREC XML text generated by the pre-
processor.

2.3 Entity finder

Taking as input the contents of theTEXT ele-
ment as provided by the text preprocessor, the en-
tity finder component uses natural language pro-
cessing tools to find occurrences of named enti-
ties (persons, locations, organizations). The im-
plemented system uses a combination of three
free, open source tools to carry out this task:
University of Sheffield’s GATE (Cunningham
et al., 2002), Stanford’s Named Entity Recog-
nizer (NER) (Finkel et al., 2005) and University
of Illinois at Urbana-Champaign’s LbjNerTag-
ger (Ratinov and Roth, 2009). The entity finder
processes the input text with all these named en-
tity recognizers, and obtains the list of the enti-
ties detected by each one. Then, the component
mixes the results, selecting the entities detected
by at least two recognizers, to generate the defini-
tive output entity list (entitiesin figure 1).

2.4 Entity filter

While most of the documents included in the
KBP collection are relatively small (few kilo-
bytes) there are some outliers that are specially

 Lookup Table
<docId, path>

KBP corpus

Queries file

queryId,
 entText,
 docId

queryId,
entText,
 docId,
docXML

queryId,
entText,
 docId,
docText

queryId,
entText,
 docId,
entities

queryId,
entText,
 docId,
filtEntities

 queryId,
 entText,
 docId,
filtInstances,
 weights

 queryId,
 entText,
 docId,
rankInstances

 queryId,
 entText,
 docId,
instanceId

queryId,
entText,
 docId,
filtEntities

...

...

IFindWiki.idx ICooc.idx KBPKB.tbl
<id,name>

 queryId,
 entText,
 docId,
candInstances,
 pagerank,
 scores

Instance
Selector

InstanceInstanceInstance

Document
Preprocessor Finder Filter

Entity EntityText
Fetcher

Finder Filter Ranker

Figure 1: Document processing pipeline architecture.

big3. When analyzing these documents with the
entity finder, many entities are detected4 which
may result in an overload for the next components
of the pipeline. To avoid such overload, the entity
filter component filters out some entities so that
at most 100 are handed to the next components.
In order to select the entities to be removed, the
filter takes into account the relative position of
the entities with respect to the first occurrence in
the document of the target entity (the text of the
query), keeping those entities that appear nearer
to it.

2.5 Instance finder

The main goal of this component is to obtain
a set of candidate instances from the extended
knowledge base for each entity obtained at the
previous stage. As said in the introductory sec-
tion, our approach uses the official KBP knowl-
edge base, but also takes advantage of informa-
tion from Wikipedia.

Using a dump downloaded from the offi-

3For example, the size of document
LTW ENG 20070309.0062.LDC2009T13.sgm is 968K

4The document LTWENG 20070309.0062.LDC2009T13.sgm
contains more than 2500 named entities according to our
experiments

cial English Wikipedia website5 (the one dated
01/30/2010 to be more precise), a Lucene index
was built (IFindWiki.idx in figure 1). Each entry
in the index represents a Wikipedia article (ignor-
ing disambiguation pages and pages with special
namespaces –User, Talk, File, etc–, with redirec-
tions resolved). The following fields are stored
for each entry:

• Fields for literal queries:

– source The name of the Wikipedia
page.

– anchors, redirects and disambigua-
tion These fields contain, respectively,
the concatenated, tab separated, text
of the link anchors, names of redirect
pages, and names of disambiguation
pages that point to the Wikipedia page
of the index entry.

All these strings can be considered as poten-
tial alternate labels for the topic represented
by the entry. These fields are intended to
be used for literal queries. That is, Lucene
matches values in these fields only if there is

5http://en.wikipedia.org/wiki/Wikipedia:Databasedownload
(27/Oct/2010)

a perfect match between the text in the query
and one of the entries in the source, anchors,
redirects or disambiguations fields.

• Fields for non-literal queries:

– source-parsed, anchors-
parsed, redirects-parsed and
disambiguation-parsed These fields
contain the same information as the
non-parsed ones described above.
However, on the contrary to them,
these fields are processed word by
word. Therefore, it is not necessary to
exactly match the text of the query: the
relevance of an entry depends on the
occurrences of the words in the query
inside these fields.

• Fields for other purposes:

– identifiers The associated identifier in
the official KB or an automatically gen-
erated one if the Wikipedia page is
not included in the official KB. In or-
der to define the mapping between the
Wikipedia pages and the official KB
entries, the names of the pages are
compared with the names of the KB
entries. If an exact match is found,
a mapping is defined. One problem
that we found with this approach was
due to redirections: in our system we
treat pages with redirections as alter-
native representations of the same en-
try. As the Wikipedia version that
we used (dated 01/30/2010) is differ-
ent to the one the official KB was
built from (dated October 2008), it
happens that some redirection pages
have changed, and Wikipedia pages
that originally were different (and thus
have different entries in the official
KB) are now redirected (and thus have
a single entry in our index). The con-
sequence is that a single entry in our
index may have two or more differ-
ent official KB identifiers. An exam-
ple of this situation is theAngikuni
Lake, which appears in the official KB
as two separate entriesAngikuni Lake

and Lake Angikune, while in the ver-
sion of Wikipedia we used they repre-
sent the same entry (Lake Angikuneis
just a redirection toAngikuni Lake). In
these cases, the identitifers of both en-
tries in the KBP KB are stored in this
field, separated by whitespace.

– pagerank Given the graph structure
of the Wikipedia dump, the PageRank
value of each page was computed and
stored in the index for later use.

In order to find the most adequate candidate
instances for each entity in the input, the instance
finder component queries the Lucene index by us-
ing the entity text as query. As Lucene provides
many query capabilities6, several ways of using
the text of the entity are possible.

When designing the specific queries for
Lucene, our goal was to maximize precision. Due
to this, we started by looking for exact matches
of the entity text in the index (the non-parsed
fields). Obviously, maximizing precision comes
at the cost of reducing recall. Therefore, no exact
matches were found for some entities in the first
prototype of the system. To address this limita-
tion, the final system relied on a three-stage query
mechanism. Each stage uses a query with more
relaxed conditions than the previous one, and is
executed only when the previous stage does not
produce any results. The queries run in the three
stages are shown in table 1.

In all the queries the Lucene boosts coefficients
were configured so that thesourcefield had a x10
boost, theredirects, disambiguationandanchors
fields had a x5 boost and theparsedfields have
the default x1 boosting.

The number of results returned by the queries
was limited to a maximum (200 in our experi-
ments). When more results were obtained, those
with the lowest Lucene scores were dropped.

The output of this component is the list of can-
didates for each input named entity. For each can-
didate, the score given by Lucene to it and the
value of itspagerankfield are also provided to
the next component. This output is represented

6More information on Lucene query ca-
pabilities and operators may be found in
http://lucene.apache.org/java/30 1/queryparsersyntax.html
(27/Oct/2010)

Stage Fields queried Query conditions

1
source, anchors,

Quoted query
redirects, disambiguation

2

source, anchors, Lucene’s FuzzySearch
redirects, disambiguation (similarity threshold 0.8)

source-parsed, anchors-parsed,
Quoted query

redirects-parsed, disambiguation-parsed

3
source-parsed, anchors-parsed, Unquoted query and

redirects-parsed, disambiguation-parsedLucene proximity operator (∼ 2)

Table 1: Queries run at each stage of the instance finder component

with the elementscandInstances, pagerankand
scoresin figure 1.

2.6 Instance filter

This component limits the maximum number of
candidate instances to be handed to the following
components of the processing pipeline, to avoid
potential overloads. To select the candidates that
will survive the filtering process, the algorithm
uses the following criteria:

• The target entity (the text of the query)
should keep more candidates than the rest
of the entities (context entities), to minimize
the probability of filtering out the correct
candidate from the list.

• The number of candidates for the target en-
tity should depend on the mechanism used
to obtain them. As seen in section 2.5, can-
didate instances may come from different
query stages. As the first stages are based
on more restrictive queries, it is expected
that they also produce more reliable results.
Thus, depending on the specific stage the
candidates for the target entity come from,
different thresholds for the maximum num-
ber of candidates are set (lesser when results
are poorer, to avoid introducing too much
noise in the system).

• When selecting the final candidates, both the
scores provided by Lucene and the PageR-
ank field in theIFindWiki.idxindex are taken
into account (the instance finder component
ranks them using only the Lucene informa-
tion).

The algorithm implemented in the instance fil-
ter computes first new weights for all the can-
didates of each entity, by linerly combining the
Lucene scores and PageRank values with coef-
ficients αL and αPR respectively. Candidates
are then re-ranked using those weights and fil-
tered: the entities other than the target one retain
at most 15 candidates, whereas the target entity
keeps 200 candidates in case they have been ob-
tained in the first query stage, or only 30 if they
have been obtained in the second or third stages.

The identifiers of the candidates that survive
the filtering process (elementfiltInstancesin fig-
ure 1) and their new weights (weights in fig-
ure 1) are provided to the next component in the
pipeline.

2.7 Instance ranker

The result of the execution of the instance filter
component is a (maybe empty) list of candidate
instances for each named entity, with a weight
associated to each candidate. As the final goal of
the KBP entity linking system is to define a single
assignment entity-instance (or entity-NIL), a de-
cision process that selects the best candidate for
each entity is needed.

The main goal of the instance ranker is to rank
the set of candidates for each entity returned by
the entity filter. This rank is later used by the
next component in the processing pipeline (the
instance selector, see section 2.8) to choose a sin-
gle instance (or NIL) for the target entity.

The algorithm implemented in the instance
ranker is an adaptation of the IdRank algo-
rithm described in (Ferńandez et al., 2007)
and (Ferńandez et al., 2006). Basically, the prin-
ciple that inspires the algorithm is thesemantic

coherenceprinciple: as instances typically cooc-
cur in documents with other related instances (for
example,ObamaandUSAor Pau GasolandLos
Angeles Lakers), the occurrence of a certain in-
stance gives information about the occurrence of
other instances. There is, however, a difficulty
with this approach: In order to use instance cooc-
currence information for disambiguation, the ac-
tual instances that appear in the document need
to be known. However, only the entities, not
the instances, are known. Moreover, due to the
semantic coherence principle stated above, the
occurrence of a certain instance depends on the
occurrence of other instances in the document.
There is, therefore, a recursive problem. It has
to be addressed by defining the assignments en-
tity/instance not only for the target entity but for
all the entities. That is, all the entities need to be
disambiguated at the same time.

Fortunately, as shown in (Fernández et al.,
2007) and (Ferńandez et al., 2006), the diffi-
culty described above can be addressed by a
PageRank-like algorithm. In PageRank, which is
targeted at ranking web pages,a page has high
rank if the sum of the ranks of the pages that link
to it is high(Page et al., 1998). In our case, we are
interested in ranking the possible identities (can-
didate instances) associated with a certain entity
in the document. So, paraphrasing the sentence
above, it can be said thatan instance has a high
rank if the sum of the ranks in the document of the
instances that typically cooccur with it is high.

As it is explained in (Ferńandez et al., 2007),
the principle stated above can be mathematically
represented by the following matricial equation:

R = (1 − α)AR + αE (1)

Where, if N represents the total number of
non-duplicate candidate instances for all the enti-
ties in the document:

• A is a matrixA ∈ MNxN whereaij ∈ R

represents the strength of the relationship
that Ij has withIi, that is, the proportional
part of theIj ranking which is given toIi.
Those coefficients are computed by using
instance cooccurrence information, as will
be described later.

• R is a vectorR ∈ R
N that represents the

ranking of the candidates in the context doc-
ument. The elementRi represents the rank-
ing of a specific candidate instanceIi.

• E is a vectorE ∈ R
N that corresponds to a

source of rank. As it is shown in (Fernández
et al., 2007), each componentEi can be used
to adjust the rank of a certain instanceIi

(give an a priori weight to certain candi-
dates).

• α is a configuration parameter so thatα ∈
[0, 1].

This matricial equation can be solved with dif-
ferent numerical methods, like thepower method,
as proposed in (Page et al., 1998). A description
of the power method can be found at (Mathews
and Fink, 2004).

In our approach, two candidate instances are
considered to cooccur when Wikipedia pages
that link to them exist. For instance, the in-
stance referring toItaly is considered to cooccur
with the instance forEuropean Unionbecause
the Wikipedia page forRomepoints to both the
pages of Italy and the European Union. Addition-
aly, two instances are also considered to cooccur
when a direct link exists between the Wikipedia
pages of the candidate instances (at least in one
of the directions). For instance according to
this principle,Barack ObamaandColumbia Uni-
versity are also considered to cooccur, because
there is a direct link from the Wikipedia page for
Obama to the page of the University.

The cooccurrence information that is needed
by the instance ranker component is stored in a
Lucene index, represented asICooc.idx in fig-
ure 1. The entries stored into the index, each
of them representing a Wikipedia page (ignor-
ing disambiguation pages and pages with special
namespaces -User, Talk, File, etc- and resolving
redirections) consists of the following fields:

• sourceThe name of the Wikipedia page as
a keyword.

• destination This field represents the con-
catenated text of the different names of the
Wikipedia pages that are pointed by the
links in the source page (outgoing links). In
order to separate the different names the tab-
ulator character is used.

Taking into account the two different contribu-
tions to the cooccurrence information described
above, the equation (1) has been adapted to:

R = (kLAL + kCAC)R + kEE (2)

Again, if N represents the total number of non-
duplicate candidate instances for all the entities in
the document:

• AC is a matrixAC ∈ MNxN . The values of
AC , aC

ij are computed using the information
in theICooc.idxindex as follows:

aC
ij =

0.0 i = j
|Q(d = Ii, d = Ij)|/|Q(d = Ij)| i 6= j

(3)

The term|Q(d = Ii, d = Ij)| represents
the total number of documents returned by
Lucene by queryingICooc.idxwith a query
that looks in thedestinationfield for the
quoted name of the instanceIj and for the
quoted name ofIi. Thus, the number of in-
dex entries that include links to both pages
is obtained. The term|Q(d = Ij)| rep-
resents the total number of results returned
by Lucene when querying the index with a
query that looks in thedestinationfield with
the quoted name of the instanceIj , that is,
the number of documents that contain links
to Ij . Thus, theaC

ij values can be interpreted
as an estimation ofP (Ii/Ij). TheAC ma-
trix is later normalized by dividing it by its
norm one, so that||AC ||1 = 1. Note that,
as in real life, the strength of relations be-
tween instances is not required to be sym-
metric. That is, it is not always the case that
aC

ij = aC
ji and thatP (Ii/Ij) = P (Ij/Ii).

• AL is the matrix that carries data about
direct links in a Wikipedia page to other
Wikipedia page (in contrast toAC that is
built based on the coocurrence of links to
two Wikipedia pages in a third one). Intu-
itively, it is clear that the instances that are
mentioned in a Wikipedia page are related to
the instance represented by such Wikipedia
page. However, how to compute context
similarities from this intuition is not clear.
We present here the initial approach we have

followed for KBP 2010, although other pos-
sibilities could be explored in the future.

The idea that we have explored in this pa-
per is to assume that if a certain Wikipedia
article links many times to another one, and
the instance represented by the first article is
likely to occur in the document being pro-
cessed (that is, it has a high ranking value),
then it is also likely that the pointed article
and its associated instance (which is also a
candidate) is also present.

Specifically,AL is a matrixAL ∈ MNxN ,
whose values,aL

ij , are computed using the
information in theICooc.idxindex using the
following formula:

aL
ij =

0.0 ∄Ij → Ii or i = j
score(Q(s = Ij , d = Ii)) ∃Ij → Ii

(4)

Where the→ symbol is used to repre-
sent a link between two instances (link be-
tween the Wikipedia pages of the instances
in the direction indicated by the arrow),
and score(Q(s = Ij , d = Ii)) repre-
sents the Lucene score obtained by query-
ing ICooc.idxwith a query that looks in the
sourcefield for the quoted name ofIj , and in
the fielddestinationwith the quoted name of
the instanceIi. TheAL matrix is later nor-
malized by dividing it by its norm one, so
that ||AL||1 = 1. Again, it is not always the
case thataL

ij = aL
ji, and thus theAL matrix

is not symmetric.

• R is a vectorR ∈ R
N that represents the

ranking of the candidates in the context of
document. The elementRi represents the
ranking of a specific candidate instanceIi.

• E is a vectorE ∈ R
N . The value of the ele-

mentEi is the weight for the instanceIi that
the instance filter component provides to the
instance ranker. As it might happen that the
same instanceIi is candidate for several dif-
ferent entities with several different weights,
the maximum weight across all entities is as-
signed. E is normalized so that||E||1 = 1.

• kL, kC andkE are configuration parameters
so thatkL, kC , kE ∈ [0, 1] andkL + kC +
kE = 1.

Using the power method, the matricial equa-
tion (2) is solved, obtaining the vector R. Once
R is computed, the ranking of each candidate in-
stance in the context of the document being an-
alyzed is known: The weight of the instanceIi

is simply the component i of the vector R. For
each entity in the document, the algorithm returns
a vector with all the pairs (candidate instance,
weight) for the entity (seerankInstancesin fig-
ure 1), which is processed by the next component
in the pipeline.

2.8 Instance selector

The goals of this last component of the process-
ing pipeline are twofold:

1. Selecting the concrete candidate instance to
be assigned to the target entity by using the
information provided by the instance ranker.
When several candidates are available for
the target entity, the weights provided by the
instance ranker component for the two can-
didates with highest rank are compared by
computing the coefficient:

Plausibility =
TopInstanceWeight

SecondInstanceWeight
(5)

In case the weight of the second instance is
similar to the one of the first instance, that
is, when the coefficient is below a config-
urable threshold, NIL is returned instead of
the top ranked instance, because there is less
confidence about the result.

In practice, two different threshold values
are defined, selecting between them depend-
ing on how the instance finder has found the
candidates. In case the instance candidates
for the target entity have been obtained by
the instance finder in the first query stage,
the threshold (namedσL) is lower (thus the
L) than in case the candidates have been
obtained in second or third query stages
(threshold namedσH , H for high), as these
results are considered less reliable. In or-
der to establish appropriate values forσL

andσH , the system was run with the set of
queries of 2009. Based on the logs of the
system, an auxiliary script analyzed many
combinations of (σL, σH) to determine the
combination of thresholds that would pro-
vide the best results (σL = 1.2 andσH =
2.0). There is no guaratee that these val-
ues will still be optimum for other sets of
queries. However, after having analyzed the
results obtained with the 2010 query set, we
found those values to be optimum also for
that query set.

2. Addressing the problem of multiple iden-
tifier values that was described in sec-
tion 2.5. In case several official KB iden-
tifiers are available for the same candidate,
the name in the official KB associated to
each identifier is looked up in an specific ta-
ble (KBPKB.tbl in figure 1) which contains
the id andnameof all the entries in the offi-
cial KBP KB. A text similarity metrics (the
Levenshtein distance (Levenshtein, 1966))
is then used to compare the different names
with the text of the target entity. The official
KB entry whose name is the most similar to
the text of the query is finally assigned.

3 Evaluation

This section shows the results obtained by our
system in the 2010 entity-linking task. Three dif-
ferent runs were submitted. The differences be-
tween these runs were not in the algorithm, which
was in all the cases the one described in previous
sections, but in the configuration parameters. The
configuration of each run is shown in table 2.

Results achieved by these runs, as reported by
the organizing committee, are summarized in the
following tables: table 3 shows the global results
obtained by the different runs; table 4 shows the
results for each entity type.

As it can be seen by looking at theAll columns
in table 4, the algorithm provides better re-
sults for persons than for organizations and geo-
political entities. One of the reasons that might
explain this fact is that the algorithm is based on
instance cooccurrence information and, whereas
the context for persons is usually well-defined,
for organizations and GPEs it can include many

Run
Instance finder Instance ranker Instance selector
αL αPR kL kC kE σL σH

WebTLab1 0.8 0.2 0.55 0.25 0.2 1.2 2.0
WebTLab2 0.8 0.2 0.55 0.25 0.2 1.05 1.5
WebTLab3 0.8 0.2 0.4 0.4 0.2 1.2 2.0

Table 2: Configuration of the WebTLab annotation system for the three submitted runs

Run 2250 queries 1020 non-NIL 1230 NIL
WebTLab1 0.7698 0.6647 0.8569
WebTLab2 0.7636 0.6098 0.8911
WebTLab3 0.7596 0.6049 0.8878

Table 3: Global results obtained by the different runs (KBP 2010)

Run
ORG GPE PER

All non-NIL NIL All non-NIL NIL All non-NIL NIL
WebTLab1 0.7613 0.6513 0.8363 0.6569 0.6441 0.6829 0.8908 0.7324 0.9535
WebTLab2 0.7707 0.6086 0.8812 0.6262 0.5706 0.7398 0.8935 0.7042 0.9684
WebTLab3 0.7680 0.6053 0.8789 0.6195 0.5666 0.7276 0.8908 0.6948 0.9684

Table 4: Results for each entity type obtained by the different runs (KBP 2010)

different entities for many different periods, and
due to several different reasons.

According to the official results, shown in (Ji et
al., 2010), the WebTLab approach to entity link-
ing ranked 7th among the 16 teams that submit-
ted results to the task. Given that the best team
achieved a 0.8680 total accuracy, and that hu-
man evaluators obtained an agreement rate over
the 90%, our system has a room for improvement
for future editions. However, on the positive side,
the approach that was followed by WebTLab was
an unsupervised one, which may partially explain
the rank of the system, and opens the door to im-
provements based on combining the system with
supervised techniques.

4 Conclusions and future lines

The system presented in this paper combines tra-
ditional information retrieval methods with in-
stance coocurrence information for disambigua-
tion purposes.

Results show that the use of coocurrence infor-
mation provides better results for persons than for
organizations and, especially, geo-political enti-
ties.

Some potential future lines of development of

the system described in the paper are:

• We want to improve the process of collec-
tion of candidate instances which, as we
have explained, is by itself responsible in
our system of the errors in 12,7% of the
queries that have anon-nilcorrect answer.

• We plan to explore different alternatives to
exploit direct links between Wikipedia arti-
cles, as we have discussed in section 2.7.

• In current system implementation we have
relied on Wikipedia links and cooccurrences
among the candidate instances for the in-
put entities as main disambiguation infor-
mation. An aspect we want to explore in
the near future is try to extend the con-
text information not only with instances as-
sociated to named entities, but also detect-
ing in the input documents potential links to
Wikipedia pages about common topics (like
for instanceprogramming language, presi-
dent, etc). Our intuition is that adding these
potential links to the disambiguation pro-
cess may enrich the available information
and provide better results, and aspect that
obviously needs empirical testing.

• The knowledge base provided by TAC or-
ganizers includes for its entries and associ-
ated type (person, GPE, organization or un-
known). The named entity recognizers that
are used within the entity finder component,
also provide a type for each entity. At the
moment our system takes no advantage of
this data, so a potential future line may ad-
dress this limitation, specially taking into
account that the type of entity to be disam-
biguated has an impact on the algorithm re-
sults.

• Finally, combining the unsupervised ap-
proach described in this paper with super-
vised machine learning techniques may be
also a path worth exploring.

Acknowledgments

This work has been partially funded by the
Spanish Government under contract ITACA
(TSI2007-65393-c02-01).

References

H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. 2002. GATE: A framework and graphi-
cal development environment for robust NLP tools
and applications. InProceedings of the 40th An-
niversary Meeting of the Association for Computa-
tional Linguistics.

N. Ferńandez, J. M. Bĺazquez, L. Śanchez, and
V. Luque. 2006. Exploiting Wikipedia in inte-
grating semantic annotation with information re-
trieval. In Proceedings of the 4th International
Atlantic Web Intelligence Conference, AWIC 2006,
Beer-Sheva, Israel, June 2006, volume 23 ofStud-
ies in Computational Intelligence, pages 61–70.
Ed. Springer, June.

N. Ferńandez, J. M. Bĺazquez, L. Śanchez, and
A. Bernardi. 2007. IdentityRank: Named entity
disambiguation in the context of the news project.
In Proceedings of the 4th European Semantic Web
Conference, ESWC, LNCS 4519, pages 640–654.

J. R. Finkel, T. Grenager, and C. Manning. 2005.
Incorporating Non-local Information into Informa-
tion Extraction Systems by Gibbs Sampling. In
Proceedings of the 43nd Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pp.
363-370.

H. Ji, R. Grishman, and H. T. Dang. 2010. Overview
of the TAC 2010 Knowledge Base Population
Track. InProceedings of TAC/KBP 2010.

A. Levenshtein. 1966. Binary codes capable of cor-
recting deletions, insertions and reversals.Soviet
Physics Doklady, 10(8):787–793.

J.H. Mathews and K. D. Fink. 2004.Numerical
Methods using MATLAB. 4th edition. ISBN: 978-
0130652485.

L. Page, S. Brin, R. Motwani, and T. Winograd. 1998.
The PageRank citation ranking: Bringing order to
the web. Technical report, Stanford University,
January.

L. Ratinov and D. Roth. 2009. Design Challenges
and Misconceptions in Named Entity Recognition.
In Proceedings of the 13th Conference on Compu-
tational Natural Language Learning (CoNLL).

