
DAI Approaches to the TAC-KBP 2011 Entity Linking Task

Danuta Ploch, Leonhard Hennig, Ernesto William De Luca, Sahin Albayrak
DAI-Labor, TU Berlin

Berlin, Germany
firstname.lastname@dai-labor.de

Abstract

This paper describes the DAI approach to the
TAC-KBP 2011 Entity Linking Task, which
this year introduced the subtask of creating
novel knowledge base (KB) entries from name
mentions referring to entities unknown to the
KB (NIL clustering). For the entity linking
task, our system uses disambiguation features
that are based on KB information as well as on
semantic similarity relations between named
entities identified in the document context and
in KB entries. To solve the NIL clustering
task we implemented a three-stage approach
which aims to improve upon an initial name
mention string similarity clustering by intro-
ducing separate clustering steps for ambiguity
and synonymy resolution. We describe imple-
mentation details of our system, and present a
preliminary analysis of the results.

1 Introduction

The TAC Knowledge Base Population (KBP) track
promotes research that supports the automatic dis-
covery of information about named entities (NE)
as found in unstructured texts, and the incorpora-
tion of this information into a given knowledge base
(KB). Entity linking is an important first step to-
wards addressing these goals. It aims to determine
the correct KB entry for a name mention (of a per-
son, an organization or a geopolitical entity) found
in a document, or to decide that the entity referred
to is not a part of the KB (NIL detection). The
reference KB made available for the track is based
on an October 2008 snapshot of the English ver-
sion of Wikipedia, and encompasses approximately

800K entries derived from Wikipedia pages contain-
ing semistructured infoboxes. The task of entity
linking raises several challenges: The name mention
strings found in text can be ambiguous because en-
tities may share the same name. Furthermore, the
same entity can be referred to by different names,
such as nicknames, aliases, and abbreviations. Thus,
simple string matching does not suffice to solve this
task.

In addition, the TAC-KBP 2011 challenge intro-
duced the subtask of creating novel KB entries from
entities determined to be NIL during the entity link-
ing process. Addressing this task required systems
to find ways to cluster name mentions referring to
the same, unknown entity, in order to augment the
KB with valid entries only.

The DAI-Lab of TU Berlin participated in the
monolingual entity linking task at TAC 2011, which
considers name mentions in English source docu-
ments. This paper describes the system we built
for this task, our results, and comments on our ap-
proaches. We will first describe our approach to
entity linking and NIL detection, and subsequently
give details of our implementation of NIL cluster-
ing.

2 Entity Linking

Our approach to entity linking and NIL detection
employs a three-step process. In the first phase, we
generate a set of potentially correct KB entries (can-
didates) given a query, where a query is defined as a
specific name mention in a given document. Then,
we classify each candidate to determine the likeli-
hood that it is the KB entry corresponding to the



query name mention, thus inducing a ranking on the
candidates. Finally, we employ another classifica-
tion step to detect queries referring to NIL entities.
Each of these steps is described in more detail below.

2.1 Candidate Generation

Given a query name mention s, the task of the candi-
date generation component is to retrieve a set of can-
didate entities E(s) from the KB. Similar to many
other systems, this step is geared towards high re-
call, and prefers a larger candidate set over a smaller
one (McNamee et al., 2010; Lehmann et al., 2010).

Our approach to candidate selection is based on
an inverted index of surface forms (name variants)
and the named entities they refer to. The inverted
index allows us to efficiently determine which enti-
ties share a word in common with the query name.
We construct this index by processing a Wikipedia
snapshot from May 2010. For each Wikipedia arti-
cle describing a concept (i.e. any article that is not
a redirect page, a disambiguation page, or any other
kind of meta page), we collect a set of surface forms
from normalized article titles, redirect page titles,
disambiguation pages and the anchor texts of inter-
nal Wikipedia links (Cucerzan, 2007). We normal-
ize titles by lower-casing, and removing punctuation
as well as appositives. Redirect pages provide alter-
nate spellings, abbreviations and synonymous forms
of the named entity’s name. Disambiguation pages
often specify more general name variants, and list
ambiguous acronyms. Anchor texts offer a rich va-
riety of surface forms for a given named entity, but
often also contain noise (erroneous links, rare mis-
spellings, uncommon referents). The final index
contains separate fields for “title”, “redirect” and
“form” name variants, which allows us to assign dif-
ferent weights to matches with each of these fields.
The index also contains separate, tokenized versions
of these fields in order to enable partial matches of
multi-word expressions (e.g., ‘George W. Bush’ and
‘George Bush’). The final index covers more than 3
million concepts and 6.7 million distinct name vari-
ants.1

1Note that we do not discard low-frequency surface forms or
forms referring with low frequency to a particular entity. Dis-
carding such spurious matches may however be beneficial to re-
duce the size of the index and to reduce noise when generating
the candidate list.

The set of candidates is then determined by per-
forming a search on the name variant fields. We im-
plement a weighted search that assigns a large score
to exact title matches, an intermediate score to redi-
rect matches, and finally a low score for all other
fields.2 We limit the candidate set to the N high-
est scoring results according to the relevance score
computed by the index search. We also considered a
fuzzy search on the title and redirect fields in order
to find KB entries with approximate string similar-
ity to the surface form. However, this lowered the
overall accuracy of our approach, and is therefore
not included in the submitted system. We found that
even though we do not explicitly search for approx-
imate string similarity matches (e.g. misspellings),
the rich set of name variants provided by Wikipedia
typically still allows us to identify such matches.

The index we utilize to look up candidates is de-
rived from a more recent snapshot of Wikipedia than
the one used for constructing the TAC KB. Our can-
didate generation strategy may therefore return can-
didates not contained in the reference KB. To elim-
inate these invalid candidates, we introduce a post-
processing step which removes all candidates from
the set whose URL does not map to a valid KB entry.

2.2 Candidate Ranking
Given the set of candidates obtained in the previous
step, the system needs to identify which of the can-
didates is the correct referent. Furthermore, in some
cases none of the candidates is correct, and thus the
system must decide if the query refers to a NIL en-
tity. We cast candidate ranking and NIL detection as
two separate classification tasks: The candidate clas-
sifier decides for each candidate if it corresponds to
the target entity. Each candidate is represented as a
feature vector encoding contextual and KB knowl-
edge as well as comparisons of the two (see Sec-
tion 2.3). The NIL detection classifier is based on
features derived from the atomic features all candi-
dates of a given query.

2.3 Features
Our system implements the entity linking approach
presented earlier in Ploch (2011). It uses several dif-
ferent disambiguation features that are based on KB

2In our experiments, we found the best performance for the
weights title = 9, redirect = 6 and other = 3.



Name Type Value Feature
SFP KB Real Probability of candidate entity for a given surface form
CS KB Real TF-IDF weighted score for KB name given query name
BOW Context Real TF weighted cosine similarity score for the document’s text and the full Wikipedia article text

of a KB entity
EC Context Real TF weighted cosine similarity score for document context NEs and the NEs linked with a KB

entity
LC IN Context Real TF weighted cosine similarity score for incoming links of document context NEs found in

Wikipedia, and the incoming links of a KB entity
LC ALL Context Real TF weighted cosine similarity score for incoming and outgoing links of document context NEs

found in Wikipedia, and the incoming and outgoing links of a KB entity
CR Context Real PageRank score of KB entities computed based on a document graph of potential candidates

of all NEs in a document

Table 1: Entity linking features

information as well as on semantic similarity rela-
tions between named entities identified in a docu-
ment and the candidates’ KB entries. In addition,
we investigate a feature which aims to resolve all
ambiguous entity mentions in a document at once,
a problem which has largely been ignored in NED
research. Table 1 lists a summary of the features.

All our features are based on resources created
prior to running experiments, i.e. we do not consider
any features that require web access during runtime
(such as executing a Google query).

2.3.1 KB features

The first group of features focuses on information
available in the KB, and ignores document context.
The surface form popularity (SFP) feature encodes
the likelihood with which a particular surface form
refers to a given target entity. The entity distribution
for a given surface form is determined from the link
frequencies of internal Wikipedia anchors, including
redirect and disambiguation pages (Han and Zhao,
2009).

The second KB-derived feature is based on our
use of an inverted index for candidate generation.
The candidate selection score (CS) is simply the
relevance score of each KB entity as calculated by
the weighted index search, which uses a modified
tf-idf weighting scheme over index fields.3 We
found this feature to be very useful in our exper-
iments on KBP 2009 and KBP 2010 datasets (see
also Ploch (2011)).

3We utilize Lucene, for the exact scoring see http://
lucene.apache.org/java/3_4_0/scoring.html.

2.3.2 Contextual Features

The group of contextual features is based on an
analysis of the document context and the KB infor-
mation. Many of the features in this group utilize the
graph structure of Wikipedia to enrich the contextual
representation.

We measured the bag-of-words (BOW) similarity
between the query document and a candidate’s KB
text using the cosine similarity with TF-weighted
bag-of-words representations (Bunescu and Pasca,
2006). We performed stemming and removed words
occurring in a stop word list.

The entity context (EC) disambiguation feature
filters the list of words and considers only named
entities, as recognized by the Stanford NE Recog-
nizer (Finkel et al., 2005), to construct the vector
representation of the document context. The named
entities found in the document context are repre-
sented by their corresponding Wikipedia page. If a
named entity is ambiguous, we resolve it to the most
popular KB entry according to the SFP feature de-
scribed above. Candidates are represented by their
(unambiguous) set of incoming and outgoing links.
Vector representations of document and candidate
context are weighted by the frequency of named en-
tities and respectively link occurrences. The similar-
ity between document and KB vectors is then calcu-
lated with the cosine measure.

The link context feature (LC IN) is an extension
of the EC feature. In some documents, there are
very few named entities, and consequently the en-
tity overlap between a document and KB entries
can be very low. We therefore expand the docu-
ment context by including all incoming links of the



Wikipedia pages corresponding to the named enti-
ties found in the document context. The incoming
links correspond to Wikipedia concepts and named
entities related to a named entity found in the doc-
ument context. The feature hence incorporates no-
tions of semantic similarity between named entities
derived from Wikipedia’s graph structure, based on
the assumption that Wikipedia pages that refer to
other Wikipedia pages contain information on the
referenced pages or at least are thematically related
to these pages. As before, we weight vector entries
by their frequency. The representation of KB entries
remains unchanged. As a variant of the LC IN fea-
ture, we extend the document context by including
all incoming and outgoing links of the found named
entities (LC ALL feature).

The features described so far disambiguate every
surface form in a document separately, and resolve
ambiguous context named entities with a simple
popularity-based strategy. The CandidateRank (CR)
feature aims to disambiguate all surface forms found
in a document at once. To this end, we represent
the document as a graph D = (E(S), L(E(S)))
where the nodes E(S) = ∪s∈SE(s) correspond to
the union of all candidates of all surface forms in the
document and L(E(S)) is the set of links between
the candidates, as derived from the links found in
Wikipedia. Thus, the graph D is a document-
specific subgraph of the Wikipedia graph. In our
implementation, edges and vertices are unweighted.
We then compute the PageRank score (Brin and
Page, 1998) for each candidate c ∈ E(S) and
choose for each surface form s the candidate with
the highest PageRank score in D.

2.3.3 NIL Features

The features used to represent an ambiguous
query for the NIL detection classifier are based on
the atomic features computed for the query’s candi-
date set. We calculate several different features, such
as the maximum, mean and minimum, the difference
between maximum and mean, and the difference be-
tween maximum and minimum, of the atomic fea-
tures, using the feature vectors of all candidates in
E(s).

3 NIL Clustering

After the step of entity linking, we cluster all name
mentions of identified NIL entities according to their
referent.4 To solve the NIL clustering task we imple-
mented a three-stage clustering approach which first
groups queries according to their surface form, then
separates queries with ambiguous surface forms and
finally aggregates all queries containing synony-
mous surface forms but referring to the same en-
tity. We decided to introduce steps two and three
to have the possibility of tuning the clustering pa-
rameters according to the subtask of ambiguity and
synonymy resolution. Both steps are implemented
using hierarchical-agglomerative clustering (HAC),
but differ in their linkage criteria and the similar-
ity threshold indicating whether two queries belong
to one cluster. To determine the similarity between
two query documents we represent the documents
as concept vectors and calculate the cosine similar-
ity between them. We calculate the document sim-
ilarity for several features (Section 3.4) separately,
and average the feature similarities to arrive at a fi-
nal similarity value. In the following we describe
each of the stages in more detail.

3.1 Initial Clustering

The first step of our clustering algorithms serves as
an initialization step. We cluster all queries by com-
paring their surface form, since the surface form ap-
pears to be a good feature for distinguishing between
different entities. Clustering by surface form (as
tested with former TAC datasets) leads to a strong
baseline and provides a good starting point for fur-
ther refinement steps. A difficulty for this approach
are unintended and slight name variations, emerging
from spelling mistakes or spelling variants. For ex-
ample different texts may either use the British or the
American English way of spelling ‘organisation’, re-
spectively ‘organization’. Making a spelling mistake
the German chancellor ‘Angela Merkel’ could be
referenced by ‘Angela Markel’, or considering case
sensitivity, someone could write ‘Bank Of America’
instead of ‘Bank of America’. With high probabil-
ity, in all examples the authors didn’t intend to use a

4Since each query annotates only one entity mention, we use
the expression query clustering and name mention clustering
synonymously.



Michael 
Jordan 

Michel 
Jordan 

Michael 
Jordan 

Jordan 

Jordan 

Air Jordan 

A 

C B 

Figure 1: Clustering by surface forms. Surface forms
with low Levenshtein distances are considered equal.

“real” synonym. For this reason we treat these kinds
of name variants already in this step and consider
queries with a low string distance to be equal.

To measure the similarity between two surface
forms, we first convert them in a lower-cased form
and then calculate the Levenshtein distance. We
do not normalize the forms or expand acronyms
like (Lehmann et al., 2010) for now, but we will take
it into account in our future work. Surface forms
with a Levenshtein distance lv <= k are consid-
ered equal. Manual optimizations have shown that
a suitable value for this parameter is k = 1. We
cluster names shorter than 4 characters only if they
are exactly equals to avoid grouping together surface
forms like ‘GA’ (denoting Georgia) and ‘PA’ (for
Pennsylvania), or acronyms like ‘USA’ and ‘UPA’
(e.g. for United Productions of America).

Figure 1 illustrates the resulting clusters for an ex-
ample set of queries with the names ‘Michael Jor-
dan’, ‘Michel Jordan’, ‘Jordan’ and ‘Air Jordan’.
The query names form three clusters A,B and C
regardless whether the names in one cluster refer to
the same entity.

3.2 Resolving Ambiguity

Surface forms may be ambiguous. For example the
surface form ‘Michael Jordan’ may denote the bas-
ketball player and the researcher in machine learn-
ing. Looking at one result cluster after the first step,
the (approximately) equal surface forms located in
one cluster, may therefore denote different entities.
For this reason we aim to slightly correct the clus-
tering result of the first step by separating queries
referencing different entities.

Michael 
Jordan 

Michel 
Jordan 

Michael 
Jordan 

Jordan 

Jordan 

Air Jordan 

C1 

B1 

B2 

A1 

A2 

Figure 2: Clustering for ambiguity resolution

Our approach for resolving ambiguity employs a
hierarchical-agglomerative clustering (HAC) algo-
rithm. We apply HAC to each of the clusters of
the first step separately, so that each cluster is split
up into several clusters if its queries are ambiguous
– for each surface form sense an own cluster. We
initialized the algorithm by assigning each query its
own cluster and merged clusters as long as two clus-
ters exceeded a similarity threshold ta. Since our
approach is based on the assumption that there is
one dominant entity, we used a relative low thresh-
old ta = 0.1 to favor bigger clusters and to only sep-
arate “obviously different” queries from the rest. In
addition, we decided to perform single-linkage clus-
tering. Because of its chaining phenomenon we as-
sume to obtain larger clusters.

In Figure 2 the three clusters A,B and C of the
first step were each separated into smaller clusters.
Altogether, the queries were divided into 5 clusters
A1, A2, B1, B2 and C1 in this ambiguity resolving
step.

3.3 Resolving Synonymy

An entity often can be referenced by different
surface forms, for example the basketball player
‘Michael Jordan’ may be denoted by his nickname
‘Air Jordan’. Up to here our clustering algorithm
only considered surface form similarity and resolved
their ambiguity. The goal of this step is to identify
synonyms and to cluster them.

Each cluster of the second step contains entries
for one entity. However, some of these clusters may
refer to the same entity, as for example the clusterA1

and C1 in Figure 2. To resolve synonymous queries
we again employ HAC. We initialize our algorithm



Michael 
Jordan 

Michel 
Jordan 

Michael 
Jordan 

Jordan 

Jordan 

Air Jordan 

E1 

E2 

Figure 3: Clustering for synonymy resolution

at this point with all clusters of the previous step
and perform further clustering in order to merge all
smaller clusters into one bigger cluster which in the
end contains all queries for one entity, even if they
are denoted by synonyms. Analogously to the am-
biguity resolution step we adjusted a threshold for
cluster stopping. This time we selected ts = 0.7 to
be our threshold. We choose a higher threshold than
before to merge only queries with very similar con-
texts which we assume to be synonyms. In contrast
to the previous step we decided to employ average-
linkage clustering to produce balanced clusters.

As shown in Figure 3 the five input clusters
A1, A2, B1, B2 and C1 are merged into two clus-
ters, cluster E1 containing queries for the basketball
player and clusterE2 with queries for the researcher.

3.4 Features

The initial clustering step is based on the Leven-
shtein distance between the surface forms of two
queries. This Levenshtein feature (LV) simply mea-
sures string similarity and does not consider the en-
tity context. When taking into account the entity
context in the ambiguity and synonymy resolution
steps, we utilize a subset of entity linking features
for calculating the similarity between query docu-
ments: the cosine similarity between the word vec-
tors (BOW), the context entities (EC), and the links
between the context entities in Wikipedia (LC IN).
In both clustering steps we employ the same fea-
tures. To calculate the cluster similarity we compute
a combined similarity between query documents by
weighting and averaging the aforementioned NIL

clustering features:

simall(d1, d2) =

∑n
i=1wifi(d1, d2)∑n

i=1wi

We implemented two context construction strate-
gies which differ in the size of the document context
they use. The first strategy calculates all NIL clus-
tering features based on the whole document (CON-
TEXT ALL). Here we assume the entire document
contains relevant information supporting the disam-
biguation of the query name. However, we observed
in several queries of the development dataset that
only the surrounding part of the query name refers
to the target entity and that the remaining docu-
ment parts rather seem to be confusing than help-
ful. Thus, we implemented an additional strategy
(CONTEXT PART) that only takes into account the
sentences where the query name occurs, as well as
the first three sentences of the document, in order
to describe the context of the target entity more pre-
cisely. We included the first three sentences into the
construction process because of the assumption that
in many texts (especially in news) the most impor-
tant information (such as full names of entities) is
concentrated at the beginning of the text.

4 Experiments

We submitted three runs for the monolingual entity
linking task. All runs used the KB article text, but
none required web access during runtime to calcu-
late Internet-based features. The three runs we sub-
mitted varied in the datasets used for training the
classifier models, and in the way the document con-
text was constructed for NIL clustering.

4.1 Training Data

Since our approach to entity linking is based on
supervised learning, we used the KBP 2009 and
KBP 2010 datasets as training data. The KBP 2009
dataset consists of 3904 queries, 69% of which re-
fer to ORG entities, and 16% PER and 15% GPE.
The KBP 2010 dataset has a total of 3750 queries,
with 33% each for GPE, ORG and PER. The KBP
2009 and 2010 datasets differ slightly with respect to
the distribution of KB and NIL queries (KBP 2009
57% NIL, 43% KB, KBP 2010 44% NIL, 56% KB),



Name Type Feature
LV Real Levenshtein distance between two lower-cased query names with more than 3 characters.
BOW Real TF weighted cosine similarity score for texts of query documents
EC Real TF weighted cosine similarity score for context NEs of query documents
LC IN Real TF weighted cosine similarity score for incoming links of the context NEs of query documents

Table 2: NIL clustering features

and our observations suggested that models trained
on the KBP 2009 dataset did not perform well when
tested on the KBP 2010 dataset. We therefore de-
cided to train two separate sets of models for can-
didate ranking and NIL detection. The first set of
models uses only the 3750 queries of the KBP 2010
dataset, whereas the other set is trained on a to-
tal of 7654 example queries, of which 3960 (52%)
were ORG, 1878 (25%) PER, and 1816 (24%) GPE.
In this latter training dataset, NIL and KB queries
roughly equally distributed (51% NIL, 49% KB).

4.2 Model Training and Parameter Settings
We use a Support Vector Machine classification al-
gorithm (Vapnik, 1995) to train models for both
subtasks of entity linking and NIL detection, uti-
lizing the LibSVM implementation (Chang and Lin,
2001). For training the candidate classifier we label
as a positive example at most one candidate from
the set of candidates for a given surface form s, and
all others as negative. For training the NIL classifier,
we create a single feature vector per query, which we
label as positive if the query refers to a NIL entity.
Both classifiers use a radial basis function kernel,
with parameter settings of C = 32 and γ = 8. Since
the candidate classifier has to learn from a highly
imbalanced dataset (there are many more incorrect
candidates than correct ones), we set the weight of
training errors on positive examples to 6. We exper-
imentally optimized these settings on the KBP 2010
training dataset.

For training the final models, we split each train-
ing dataset into 10 equally-sized folds, and stratify
the folds to ensure a similar distribution of KB and
NIL queries. We normalize all feature values to be
in [0; 1]. For each fold, we trained classifier mod-
els on 90% of the queries, once more using 10-fold
cross validation to find more reasonable accuracy es-
timates. The models with the lowest cross-validation
error were then used for testing the remaining 10%
of the queries. This procedure was repeated for each

RUN Settings
DAI1 - EL models trained on KBP 2010

queries (train + eval)
- CONTEXT ALL for NIL clustering

DAI2 - EL models trained on KBP 2009
and 2010 queries (train + eval)

- CONTEXT ALL for NIL clustering
DAI3 - EL models trained on KBP 2009

and 2010 queries (train + eval)
- CONTEXT PART for NIL clustering

Table 3: Settings for the three runs of the DAI-Lab

test set of queries. For our submitted runs we se-
lected the candidate and NIL classifier with the high-
est entity linking accuracy from the 10 model sets.

We adjusted the weights for our NIL clustering
features on the 2250 KBP 2010 evaluation queries.
We performed a grid search and found w = 1.0 for
the features BOW and EC and w = 0.5 for the fea-
ture LC IN to be the most suitable weights. The
clustering thresholds ta and ts for ambiguity and
synonymy resolution were also adjusted experimen-
tally on that dataset. Observations have shown that
ta = 0.1 and ts = 0.7 delivered the best results.
For the initialization step we set lv = 1 so that only
lower-cased surface forms with a very low Leven-
shtein distance were considered equal and therefore
were clustered.

4.3 Run Details

Our first run (DAI1) uses only the 3750 queries
of the KBP 2010 dataset, whereas the two other
runs (DAI2, DAI3) utilized classifier models trained
on a combined KBP 2009 and KBP 2010 dataset.
The DAI1 and DAI2 runs used the CONTEXT ALL
strategy for context construction for NIL clustering.
The DAI3 run varied from these in that the NIL clus-
tering algorithm used strategy CONTEXT PART for
context construction.



MAA Bˆ3 Prec Bˆ3 Rec Bˆ3 F1
DAI1 0.708 0.666 0.676 0.671
DAI2 0.700 0.659 0.670 0.664
DAI3 0.700 0.665 0.673 0.669
Best - - - 0.846
Median - - - 0.716

Table 4: Bˆ3 scores and micro-averaged accuracy for our
submitted runs (no web) compared to best and median
performance.

ALL KB NIL
DAI1 0.708 0.515 0.900
DAI2 & DAI3 0.700 0.5 0.899

Table 5: Micro-averaged accuracy for KB and NIL
queries. The very low accuracy for KB queries decreases
overall accuracy considerably.

4.4 Results

Table 4 summarizes the results of all three runs. The
performance of the different runs is very similar,
with negligible differences. Bˆ3 precision and recall
values of each of the runs are roughly equal, suggest-
ing that our system strikes a good balance between
these two measures. Overall results are rather low
though, and slightly below the median performance
of the 21 systems which submitted results for this
task.

An error analysis showed that our system pre-
dicted NIL queries far too often. Around 34 % of
the KB queries were classified as NIL, while only
10% of the NIL queries were classified as KB. The
NIL prediction error was especially high for persons
where we classified 60% of the KB queries as NIL.
Our system introduced almost 10% of NIL predic-
tion errors on KB queries due to its candidate selec-
tion method which missed the correct candidate for
106 queries. While the candidate generation strategy
achieved a recall of 96.8% on the KBP 2010 dataset,
and of 92.5% on the combined KBP 2009 and KBP
2010 dataset (see Section 4.1), the candidate recall
on the KBP 2011 dataset dropped to 90.6%. Alto-
gether, the KB accuracy of 50% decreases the over-
all accuracy considerably to 70% (Table 5).

We run several experiments with the Gold Stan-
dard answers after the challenge. To this end we
used exactly the same system which produced the

Bˆ3 Prec Bˆ3 Rec Bˆ3 F1
All-in-one Baseline 0.002 1.000 0.003
One-in-one Baseline 1.000 0.718 0.836
SF Baseline 0.942 0.993 0.967
SF Initialization 0.920 0.994 0.956
Ambiguity Res. 0.965 0.976 0.971
Synonymy Res. 0.961 0.976 0.969

Table 6: Bˆ3 scores for our post-challenge NIL clustering
experiments using only NIL queries of the Gold Standard
answers.

submitted results. In order to evaluate our NIL
clustering approach independently from the entity
linking task, we considered only the NIL queries
of the Gold Standard answers and run our cluster-
ing algorithm only on these queries. We first cal-
culated a baseline based on surface form similarity
(exact matches of lower-cased query names) which
achieved a Bˆ3 F1-measure of 0.967. Compared to
this strong baseline our system produced approxi-
mately the same result of Bˆ3 F1=0.969. After ex-
amining our system outputs we observed that the
synonymy resolution step slightly decreases the Bˆ3
precision by 0.4% but has no effect on the recall.
We obtained the best results after the ambiguity res-
olution step with Bˆ3 F1=0.971. Table 6 summa-
rizes the post-challenge NIL clustering results. The
results confirm the efficiency of our NIL clustering
approach.

5 Conclusions and Future Work

The DAI-Lab of TU Berlin participated in the mono-
lingual entity linking task at TAC 2011. Our best
run achieved a Bˆ3 F1 measure of 0.671, which
is slightly below the median performance of the
21 systems which submitted results for this task.
We found that we predicted NIL far too often and
that the low accuracy on KB queries decreased the
overall performance significantly. Our NIL cluster-
ing approach evaluated exclusively on correct NIL
queries proved to achieve high Bˆ3-scores. In future
work we plan to improve our candidate generation
strategy by including acronym expansion and alias
detection. We further intend to extend our feature
set and to adjust our SVM parameters to train mod-
els that generalize better for new NED datasets. For
NIL clustering we want to explore if the usage of



different features for the ambiguity and synonymy
resolution steps improves the NIL clustering quality.

References
Sergey Brin and Lawrence Page. 1998. The anatomy of

a large-scale hypertextual Web search engine. In Proc.
of WWW ’07, pages 107–117.

Razvan Bunescu and Marius Pasca. 2006. Using ency-
clopedic knowledge for named entity disambiguation.
In Proc. of EACL-06, pages 9–16.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIB-
SVM: a library for support vector machines. Soft-
ware available at http://www.csie.ntu.edu.
tw/˜cjlin/libsvm.

Silviu Cucerzan. 2007. Large-Scale named entity dis-
ambiguation based on Wikipedia data. In Proc. of
EMNLP-CoNLL, pages 708–716.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs sam-
pling. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, pages
363–370, Ann Arbor, Michigan.

Xianpei Han and Jun Zhao. 2009. Named entity dis-
ambiguation by leveraging wikipedia semantic knowl-
edge. In Proc. of CIKM ’09, pages 215–224, Hong
Kong, China.

John Lehmann, Sean Monahan, Luke Nezda, Arnold
Jung, and Ying Shi. 2010. LCC Approaches to
Knowledge Base Population at TAC 2010. In Proc.
of TAC 2010.

Paul McNamee, Hoa Trang Dang, Heather Simpson,
Patrick Schone, and Stephanie M. Strassel. 2010. An
evaluation of technologies for knowledge base popula-
tion. In Proc. of LREC’10.

Danuta Ploch. 2011. Exploring entity relations for
named entity disambiguation. In Proc. of ACL 2011
Student Session, pages 18–23.

Vladimir N. Vapnik. 1995. The nature of statistical
learning theory. Springer-Verlag New York, Inc., New
York, NY, USA.


