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Abstract

Within this article, we present the application
of the AutoSummENG and MeMoG meth-
ods within the TAC 2011 AESOP challenge.
Both evaluation methods are based on n-gram
graphs. The experiments indicate that both
methods offer very high performance in dif-
ferent aspects of evaluation, without the need
of deep analysis or preprocessing. The results
also imply some interesting open problems
and point to further directions of study, related
to negative examples of good summaries.

1 Introduction

Automatic methods for the evaluation of summaries
exist for some time now (Hovy et al., 2005b; Lin,
2004; Zhou et al., 2006; Schilder and Kondadadi,
2009) and correlate highly to the measure of respon-
siveness. This measure, first appearing within the
DUC community (see e.g., (Dang, 2005)), is ex-
pected to represent a measure of information com-
pleteness and linguistic quality for a given text, as
a human assesses it. Even though the correlation of
the automatic methods to the human grades is high
on the system level, until recently there were some
other desired characteristics that did not coexist in a
single automatic method. More precisely:

• No preprocessing. A method that does not re-
quire language-dependent preprocessing or re-
sources (thesauri, lexica, etc.).

• Full automation. A method should not re-
quire human intervention, apart from the hu-
man model summaries.

• Context-sensitivity. A method should take into
account contextual information, so that well-
formedness of text is taken into account. Well-
formedness can be loosely defined as the qual-
ity of a text that allows easy reading. A text that
is a random sequence of words would lack this
quality, even if the words are on topic.

The AutoSummENG method (Giannakopoulos et
al., 2008) (AUTOmatic SUMMary Evaluation based
on N-gram Graphs), holds all these qualities, while
bearing results with high correlation to the respon-
siveness measure, which indicates correlation to hu-
man judgment.

In the following paragraphs, we introduce the ba-
sic notions and algorithms for the representation of
texts through n-gram graphs (Section 2). We then
describe the methodology for the comparison and
how this comparison leads to the grading of sum-
maries and systems (Section 4). We present exper-
imental results on the TAC2011 AESOP task (Sec-
tion 5) and conclude the paper (Section 6) with the
lessons learned and future directions.

2 System Overview

The AutoSummENG system (Giannakopoulos et al.,
2008) is based upon the JInsect library1 of “n-
gram graph”-based text processing. For our ex-
periments in TAC 2011, we applied the AutoSum-
mENG method, as well as the Merge Model Graph
(MeMoG) variation over the TAC 2011 AESOP task
data. Thus, the study refers to two methods:

1See http://sourceforge.net/projects/
jinsect and http://www.ontosum.org for more
information.

http://sourceforge.net/projects/jinsect
http://sourceforge.net/projects/jinsect
http://www.ontosum.org


• The first method is the original AutoSum-
mENG, for default parameters of Lmin, LMAX
and Dwin for this year’s corpus. This method
creates an n-gram graph representation of the
evaluated text and another n-gram graph per
model summary. Then, the measure of Value
Similarity is used to compare the similarity of
the evaluated text to each model summary. The
average of these similarities is considered to
represent the overall performance of the sum-
mary text.

• The second method, instead of comparing the
graph representation of the evaluated summary
text to the graph representation of individual
model texts and averaging over them, calcu-
lates the merged graph of all model texts. Then,
it compares the evaluated summary graph to
this overall model graph. We term this variation
the Merged Model Graph method (MeMoG)
and it aims to non-linearly combine the content
of texts into one representative whole.

In order to introduce the reader to the method
and its alternatives, we need to recapitulate the basic
concepts of AutoSummENG and the n-gram graph
representation theory.

3 Representation and Basic Algorithms

In the domain of natural language processing, there
have been a number of methods using n-grams.
An n-gram is a, possibly ordered, set of words
or characters, containing n elements (see Example
3.1). N-grams have been used in summarization
and summary evaluation (Banko and Vanderwende,
2004; Lin and Hovy, 2003; Copeck and Szpakowicz,
2004). In the automatic summarization domain, n-
grams mostly appear as word n-grams, as happens in
the ROUGE/BE family of evaluator methods (Hovy
et al., 2005a; Lin, 2004).

Example 3.1 Examples of n-grams from the sen-
tence: This is a sentence.
Word unigrams: this, is, a, sentence
Word bi-grams: this is, is a, a sentence
Character bi-grams: th, hi, is, s , a, ...
Character 4-grams: this, his , is , ...

3.1 Extracting N-grams

To extract the n-grams (Sn) of a text T l, we follow
the (elementary) algorithm indicated as algorithm 1.
The algorithm’s complexity is linear to the size |T |
of the input text T .

Input: text T
Output: n-gram set SSn

// T is the text we analyze
SSn ← ∅;1

for all i in [1,length(T)-n+1] do2

SSn ← SSn ∪ Si,i+n−13

end4
Algorithm 1: Extraction of n-grams

The algorithm applies no preprocessing (such as
extraction of spaces, punctuation or lemmatization).
Furthermore, it obviously extracts overlapping parts
of text, as the sliding window of size n is shifted
by one position and not by n positions at a time.
This technique is used to avoid the problem of seg-
menting the text. The redundancy apparent in this
approach proves to be useful similarly to a convolu-
tion function: summing similarities over a scrolling
window may prove useful when you do not know
exactly where to start matching two strings.

In the case of summary evaluation we may com-
pare common n-grams between a peer (judged) sum-
mary and a model summary. The extracted, overlap-
ping n-grams are certain to match corresponding n-
grams of the model summary, if such n-grams exist.
That would not be the case for a method where the
text would be segmented in equally sized n-grams.

Example 3.2 Application of our method to the sen-
tence we have used above, with a requested n-gram
size of 3 would return:
{‘Do ’, ‘o y’, ‘ yo’, ‘you’, ‘ou ’, ‘u l’, ‘ li’, ‘lik’, ‘ike’,
‘ke ’, ‘e t’, ‘ th’, ‘thi’, ‘his’, ‘is ’, ‘s s’, ‘ su’, ‘sum’,
‘umm’, ‘mma’, ‘mar’, ‘ary’, ‘ry?’}
while an algorithm taking disjoint n-grams would
return
{‘Do ’, ‘you’, ‘ li’, ‘ke ’, ‘thi’, ‘s s’, ‘umm’, ‘ary’}
(and ‘?’ would probably be omitted). The segmen-
tation has reduced the number of existing n-grams
examined, based on the disjointness prerequisite.

The n-gram graph is a graph G =
{V G, EG, L,W}, where V G is the set of ver-



tices, EG is the set of edges, L is a function
assigning a label to each vertex and to each edge
and W is a function assigning a weight to ev-
ery edge. The graph has n-grams as its vertices
vG ∈ V G. The edges eG ∈ EG (the superscript G
will be omitted where easily assumed) connecting
the n-grams indicate proximity of the corresponding
vertex n-grams.

The edges are weighted by the number of co-
occurrences of their respective n-grams within a
given window in the source text of the graph. We
note that the meaning of distance and window size
changes by whether we use character or word n-
grams. In this work we use character n-grams, which
have been shown to perform better than their word
counterpart (Giannakopoulos et al., 2008).

The labeling function L for edges assigns to each
edge the concatenation of the labels of its corre-
sponding vertices’ labels in a predefined order: for
directed graphs the order is the order of the edge di-
rection while in undirected graphs the order can be
the lexicographic order of the vertices’ labels. To en-
sure that no duplicate vertices exist, we require that
the labeling function is an one-to-one function.

More formally:

Definition 3.3 if S = {S1, S2, ...}, Sk 6=
Sl, for k 6= l, k, l ∈ N is the set of distinct
n-grams extracted from a text T l, and Si is the i-th
extracted n-gram, then G = {V G, EG, L,W} is
a graph where V G = S is the set of vertices v,
EG is the set of edges e of the form e = {v1, v2},
L : V G → L is a function assigning a label l(v)
from the set of possible labels L to each vertex v
and W : EG → R is a function assigning a weight
w(e) to every edge.

In our implementation, the edges E are assigned
weights of ci,j where ci,j is the number of times a
given pair Si, Sj of n-grams happen to be neighbors
in a string within some distance Dwin of each other.
The distance between two strings in a text is the ab-
solute difference of the positions of their first char-
acters in the text. The vertices vi, vj corresponding
to n-grams Si, Sj that are located within this dis-
tance Dwin are connected by a corresponding edge
e ≡ {vi, vj}.

The n-gram graph extracted with the above pro-
cess from a given string, actually represents a com-

pressed form of the string. In fact, the graph is a
model of the string, describing the neighborhood re-
lations between n-grams in the string. Each edge
describes one restriction, based on the n-gram graph
parameters n,Dwin. Thus, e.g., the edge e =<
a, b, 2.0 > in a graph G with n = 1, Dwin = 3 de-
clares that the text the edge came from contains two
co-occurrences of letters a and b within a distance of
3 from each other.

From a given graph G, in the general case, we can
generate a multitude of texts. These texts are the set
of possible texts that may conform to all the neigh-
borhood restrictions that the graph edges imply. As
an example:

Example 3.4 The trivial, symmetric, n-gram graph
of n = 1, Dwin = 1, with V = {a, b}, E = {<
a, b, 1.0 >} has two possible source texts: ab, ba.

This lack of one-to-one mapping between graph and
text offers some generalization ability to the n-gram
graph representation, which can be important when
comparing texts that may have been expressed simi-
larly, but not identically.

The set of texts an n-gram graph represents cannot
be trivially calculated: it is a Constraint Satisfaction
problem, with each edge posing a constraint. It is
also possible that a given n-gram graph can represent
no texts, if there exist no solutions that conform to
all the edge-implied constraints. Of course, an n-
gram graph that is created from a given text, always
represents at least one text: its source.

In the summary evaluation domain, we can rep-
resent peer summaries and model summaries as n-
gram graphs and compare them in the n-gram graph
domain, taking advantage of the n-gram graph gen-
eralization ability. However, if one has more than
one model summary available, one may wish to cre-
ate a representative graph for all model summaries
together. This can be achieved as described in
the following section, through the Merged Model
Graph.

3.2 MeMoG: The Merged Model Graph

Given two instances of n-gram graph representa-
tion G1, G2, there is a number of operators that can
be applied on G1, G2 to provide the n-gram graph
equivalent of union, intersection and other such op-
erators of set theory (Giannakopoulos, 2009). In



our applications we have used the update operator U
(similar to the merging operator), which allows the
creation of a “centroid” graph. The update function
U(G1, G2, l) takes as input two graphs, one that is
considered to be the pre-existing graph G1 and one
that is considered to be the new graph G2. The func-
tion also has a parameter called the learning factor
l ∈ [0, 1], which determines the sensitivity of G1 to
the change G2 brings.

Focusing on the weighting function of the graph,
resulting from the application of U(G1, G2, l), the
higher the value of learning factor, the higher the
impact of the new graph to the resulting graph of
the update. More precisely, a value of l = 0 indi-
cates that G1 will completely ignore the (considered
new) graph G2. A value of l = 1 indicates that the
weights of the edges of G1 will be assigned the val-
ues of the new graph’s edges’ weights. A value of
0.5 gives us the merging operator. The definition of
the weighting performed in the graph resulting from
U is:

W i(e) = W 1(e) + (W 2(e)−W 1(e))× l (1)

The U function allows using graphs to model a
whole set of documents: in our case the model set.
The model graph creation process comprises the ini-
tialization of a graph with the first document of the
model set and the updating of that initial graph with
the graphs of following model summaries. Espe-
cially, when one wants the overall graph’s edges to
hold weights averaging the weights of all the indi-
vidual graphs that have contributed to it, then the
i-th new graph that updates the overall graph should
use a learning factor of l = 1

i , i > 1. This gives a
graph that has a role similar to the centroid of a set
of vectors: it functions as a representative graph for
the set its constituent graphs.

4 From Graph Matching to Summary
Evaluation

Graph similarity calculation methods can be classi-
fied into two main categories.

Isomorphism-based Isomorphism is a bijective
mapping between the vertex set of two graphs
V1, V2, such that all mapped vertices are equiv-
alent, and every pair of vertices from V1 shares

the same state of neighborhood, as their corre-
sponding vertices of V2. In other words, in two
isomorphic graphs all the nodes of one graph
have their unique equivalent in the other graph,
and the graphs also have identical connections
between equivalent nodes. Based on the iso-
morphism, a common subgraph can be defined
between V1, V2, as a subgraph of V1 having
an isomorphic equivalent graph V3, which is a
subgraph of V2 as well. The maximum com-
mon subgraph of V1 and V2 is defined as the
common subgraph with the maximum number
of vertices. For more formal definitions and
an excellent introduction to the error-tolerant
graph matching, i.e., fuzzy graph matching,
see (Bunke, 1998).

Given the definition of the maximum common
subgraph, a series of distance measures have
been defined using various methods of calcu-
lation for the maximum common subgraph, or
similar constructs like the Maximum Common
Edge Subgraph, or Maximum Common In-
duced Graph (also see (Raymond et al., 2002)).

Edit-distance Based Edit distance has been used in
fuzzy string matching for some time now, us-
ing many variations (see (Navarro, 2001) for a
survey on approximate string matching). The
edit distance between two strings corresponds
to the minimum number of edit character oper-
ations (namely insertion, deletion and replace-
ment) needed to transform one string to the
other. Based on this concept, a similar distance
can be used for graphs (Bunke, 1998). The edit
operations for graphs’ nodes are node deletion,
insertion and substitution. The same three op-
erations can by applied on edges, giving edge
deletion, insertion and substitution.

Using a transformation from text to graph, the
aforementioned graph matching methods can be
used as a means to indicate text similarity.

We have applied the Value Similarity calculation
(Giannakopoulos et al., 2008), which offers graded
similarity indication between two document graphs.
Moreover, in order to compare a whole set of docu-
ments (model summaries) to a single evaluated text
(evaluated summary) we represent the set of docu-



ments with a single graph, as we show in the fol-
lowing sections, whether be it an n-gram graph or a
hierarchical proximity graph.

To compare two texts (or character sequences in
general) T1 and T2 e.g., for the task of summary
evaluation against a gold standard text, we need to
compare the texts’ representations. Given that the
representation of a text Ti is a set of graphs Gi, con-
taining graphs of various ranks, we use the Value
Similarity (VS) for every n-gram rank, indicating
how many of the edges contained in graph Gi are
contained in graph Gj , considering also the weights
of the matching edges. In this measure each match-
ing edge e having weight wi

e in graph Gi contributes
VR(e)

max(|Gi|,|Gj |) to the sum, while not matching edges
do not contribute (consider that for an edge e /∈ Gi

we define wi
e = 0). The ValueRatio (VR) scaling

factor is defined as:

VR(e) =
min(wi

e, w
j
e)

max(wi
e, w

j
e)

(2)

The equation indicates that the ValueRatio takes val-
ues in [0, 1], and is symmetric. Thus, the full equa-
tion for VS is:

VS(Gi, Gj) =

∑
e∈Gi

min(wi
e,w

j
e)

max(wi
e,w

j
e)

max(|Gi|, |Gj |)
(3)

VS is a measure converging to 1 for graphs that share
both the edges and similar weights, which means
that a value of VS = 1 indicates perfect match
between the compared graphs. Another important
measure is the Normalized Value Similarity (NVS),
which is computed as:

NVS(Gi, Gj) =
V S

min(|Gi|,|Gj |)
max(|Gi|,|Gj |)

(4)

The fraction SS(Gi, Gj) = min(|Gi|,|Gj |)
max(|Gi|,|Gj |) , is also

called Size Similarity. The NVS is a measure of sim-
ilarity where the ratio of sizes of the two compared
graphs does not play a role. In the TAC case there is
no real difference, however, because the SS factor is
almost constant and equal to 1: the summaries have
an almost fixed size. Thus, VS is equivalent to NVS.

The overall similarity VSO of the sets G1,G2 is
computed as the weighted sum of the VS over all

ranks:

VSO(G1,G2) =

∑
r∈[Lmin,LMAX]

r × VSr∑
r∈[Lmin,LMAX]

r
(5)

where VSr is the VS measure for extracted graphs
of rank r in G, and Lmin, LMAX are arbitrary chosen
minimum and maximum n-gram ranks.

The similarity function calculation has a complex-
ity of O(|G1| × |G2|), due to the fact that for each
edge in G1 one needs to lookup its identical edge in
G2. The similarity function calculation has a com-
plexity of O(|G1| × |G2|), due to the fact that for
each edge in G1 one needs to lookup its identical
edge in G2. If an index is maintained with the edges’
labels or the vertices’ labels, this complexity can be
diminished, which is the case in our implementation.
Therefore, for every edge in the smallest of the two
graphs, we perform a low complexity lookup in the
edges of the biggest graph. If an edge is found we
perform the calculation of the edge’s contribution to
the similarity sum. Otherwise, we continue with the
next edge from the small graph. This gives a real
complexity that is O(hmin(|G1|, |G2|)), where h is
the constant time for a hash map lookup, if the edges
are hashed. If the vertices are hashed, then the com-
plexity is O(hmin(|G1|, |G2|) degree(G2)), where
the degree(G2) function returns the maximum num-
ber of edges connected to a single node in G2.

In the AutoSummENG case, the grade of a sum-
mary is the average of the similarities to the model
summaries — using the corresponding n-gram graph
representations. In the case of MeMoG, there is only
one similarity measurement, which is set to be the
summary score. The performance of a summariza-
tion system is calculated as the average of its sum-
mary scores.

5 Experiments

The presented methods have been applied as part of
the Automatically Evaluating Summaries Of Peers
(AESOP) task of TAC2011:

The AESOP task is to automatically score
a summary for a given metric. AE-
SOP complements the basic summariza-
tion task by building a collection of auto-
matic evaluation tools that support devel-
opment of summarization systems.



More precisely, the purpose of the AESOP task
was “to create an automatic scoring metric for sum-
maries, that would correlate highly with one or more
of three manual methods of evaluating summaries,
as applied in the TAC 2012 Guided Summarization
task”. The manual methods were the following:

• Pyramid method (modified pyramid score)
(Passonneau et al., 2006).

• Overall Readability: NIST described this mea-
sure, based on the assessors guidelines, as
follows: “The assessor will give a readabil-
ity/fluency score to each summary. The score
reflects the fluency and readability of the sum-
mary (independently of whether it contains
any relevant information) and is based on fac-
tors such as the summary’s grammaticality,
non-redundancy, referential clarity, focus, and
structure and coherence”2.

• Overall Responsiveness (Dang and Owczarzak,
2008).

The scoring metrics (better “measures”) are to
evaluate summaries including both model (i.e., hu-
man generated) and automatic (non-model) sum-
maries, produced within the TAC 2011 Guided Sum-
marization task3.

In the Guided Summarization task, 8 human sum-
marizers produced a total of 352 model summaries,
and 51 automatic summarizers produced a total of
4,488 automatic summaries. Included in the set of
automatic summarizers were two baseline summa-
rizers. The first returns all the leading sentences (up
to 100 words) in the most recent document. Sum-
marizer 2 is actually the MEAD automatic summa-
rizer4, with all default settings. The set of automatic
summarizers for AESOP also contains a completely
unresponsive “dummy” summarizer from NIST, un-
der Summarizer ID 7.

The summaries are split into Main (or Initial)
Summaries (Set A) and Update Summaries (Set B),

2From http://www.nist.gov/tac/2011/
Summarization/Guided-Summ.2011.guidelines.
html on Oct, 20th 2011.

3See http://www.nist.gov/tac/2011/
Summarization/Guided-Summ.2011.guidelines.
html for more details on the Guided Summarization task.

4 MEAD summarizer v 3.12, publically available at http:
//www.summarization.com/mead/.

according to the part of the Guided Summarization
Task they fall into5.

The experiments conducted upon the TAC 2011
corpus were based on the application of the Auto-
SummENG and the MeMoG methods on the TAC
corpus. The n-gram graph parameters used for Au-
toSummENG were (Lmin, LMAX, Dwin) = (3, 3, 3),
which seems to offer near-optimal results on many
English corpora. The same parameters were used
for the MeMoG case.

We note that there were two different types of
evaluation: the All Peers and the No Models eval-
uation. In the No Models case, the peer summaries
are evaluated against all model summaries. In the
All Peers case, the model summaries are evalu-
ated against the remaining model summaries; on the
other hand, the peer summaries are evaluated using
jack-knifing against all the model summaries. The
process of jack-knifing is the following. Given that
there are 4 model summaries to evaluate against, the
peer summary is evaluated against all combinations
of the 4 models in groups of 3. The average grade
assigned by all the evaluations is assigned to be the
grade of the summary. The results of the evalua-
tion, concerning the correlation to the Pyramid score
are shown in Tables 1, 2; the results concerning the
correlation to the Overall Responsiveness score are
shown in Tables 3, 4; the results concerning the cor-
relation to the Readability score are shown in Tables
5, 6. All the correlation tests gave a p-value < 10−2,
making the results statistically significant.

Overall, the performance of both AutoSummENG
and MeMoG, when related to ranking (Kendall’s
tau) of All Peers is within the first 4 ranks between
the 25 systems in the AESOP task for Group A over
all peers. However, the performance for Group B
is significantly lower and provides some interesting
ground for research: what is there in Group B that
lowers the performance that much.

Furthermore, the performance drop is increased
in the No Models case, where we see the (base-
line) ROUGE offer very high performance. What
this may imply is that we need to improve our crite-
ria when judging performances between automatic
systems, i.e., when judging the importance of dif-

5See http://www.nist.gov/tac (Last visit: Feb 14,
2011) for more info on the Guided Summarization Task of TAC
2011.

http://www.nist.gov/tac/2011/Summarization/Guided-Summ.2011.guidelines.html
http://www.nist.gov/tac/2011/Summarization/Guided-Summ.2011.guidelines.html
http://www.nist.gov/tac/2011/Summarization/Guided-Summ.2011.guidelines.html
http://www.nist.gov/tac/2011/Summarization/Guided-Summ.2011.guidelines.html
http://www.nist.gov/tac/2011/Summarization/Guided-Summ.2011.guidelines.html
http://www.nist.gov/tac/2011/Summarization/Guided-Summ.2011.guidelines.html
http://www.summarization.com/mead/
http://www.summarization.com/mead/
http://www.nist.gov/tac


Variant (ID) Pearson (Rank) Spearman (Rank) Kendall (Rank)
Group A - All Peers

AutoSummENG (12) 0.842 (10) 0.932 (3) 0.798 (2)
MeMoG (18) 0.951 (4) 0.924 (6) 0.776 (6)

Group B - All Peers
AutoSummENG (12) 0.824 (10) 0.885 (3) 0.723 (2)
MeMoG (18) 0.933 (7) 0.888 (2) 0.723 (2)

Table 1: Correlation of grades to Pyramid score for All Peers

Variant (ID) Pearson (Rank) Spearman (Rank) Kendall (Rank)
Group A - No Models

AutoSummENG (12) 0.974 (2) 0.897 (6) 0.747 (4)
MeMoG (18) 0.964 (8) 0.888 (10) 0.723 (11)

Group B - No Models
AutoSummENG (12) 0.856 (11) 0.825 (5) 0.640 (5)
MeMoG (18) 0.885 (8) 0.824 (6) 0.640 (5)

Table 2: Correlation of grades to Pyramid score without models

Variant (ID) Pearson (Rank) Spearman (Rank) Kendall (Rank)
Group A - All Peers

AutoSummENG (12) 0.815 (10) 0.899 (1) 0.748 (1)
MeMoG (18) 0.963 (3) 0.893 (3) 0.727 (3)

Group B - All Peers
AutoSummENG (12) 0.774 (10) 0.908 (3) 0.753 (3)
MeMoG (18) 0.975 (1) 0.889 (5) 0.726 (6)

Table 3: Correlation of grades to Overall Responsiveness score for All Peers

Variant (ID) Pearson (Rank) Spearman (Rank) Kendall (Rank)
Group A - No Models

AutoSummENG (12) 0.947 (7) 0.845 (1) 0.675 (1)
MeMoG (18) 0.948 (6) 0.845 (2) 0.671 (2)

Group B - No Models
AutoSummENG (12) 0.873 (11) 0.861 (5) 0.686 (5)
MeMoG (18) 0.891 (8) 0.838 (10) 0.668 (9)

Table 4: Correlation of grades to Overall Responsiveness score without models

Variant (ID) Pearson (Rank) Spearman (Rank) Kendall (Rank)
Group A - All Peers

AutoSummENG (12) 0.770 (10) 0.674 (1) 0.513 (2)
MeMoG (18) 0.906 (3) 0.651 (6) 0.494 (5)

Group B - All Peers
AutoSummENG (12) 0.761 (10) 0.609 (6) 0.465 (5)
MeMoG (18) 0.895 (5) 0.595 (7) 0.432 (7)

Table 5: Correlation of grades to Readability score for All Peers



Variant (ID) Pearson (Rank) Spearman (Rank) Kendall (Rank)
Group A - No Models

AutoSummENG (12) 0.794 (2) 0.497 (1) 0.359 (2)
MeMoG (18) 0.791 (3) 0.475 (3) 0.351 (3)

Group B - No Models
AutoSummENG (12) 0.644 (8) 0.399 (4) 0.306 (3)
MeMoG (18) 0.670 (5) 0.394 (5) 0.286 (5)

Table 6: Correlation of grades to Readability score without models

ferent problems in summaries between non-perfect
summarizers.

This may well be related to grading inappro-
priate content, which may need anti-model sum-
maries, providing (possibly) varying cases of bad
summaries. It is possible that using varieties of bad
summaries (one without focus, one without coher-
ence, one with bad content, one with mispellings and
so forth) may provide the additional axes that we can
use to define quality (and the lack of it).

In Tables 7, 8 we illustrate the number of agree-
ments and disagreements (see Appendix A for their
definition) between measures, on whether the differ-
ence in performance between systems is statistically
significant or not.

Thus, the first columns of the first row in Table
7 indicates that the verdict that came by using Au-
toSummENG grades to determine statistically sig-
nificant difference in performance between systems,
agrees 195 times with the verdict when using Pyra-
mid score, while it disagrees 213. There are also
columns for the Responsiveness and the Readability
measure and there is differentiation between Group
A (Main Summaries) and Group B (Update Sum-
maries) texts.

In the All Peers case, MeMoG is the definite
winner between AutoSummENG and MeMoG with
only a single disagreement concerning the Readabil-
ity measure. If not for this one error, MeMoG would
have performed flawlessly.

In the NoModels case, things are not as clear: in
Group A, AutoSummENG performs better, while
MeMoG wins the day in Group B. Both methods
perform well — 1 disagreement for every 5 agree-
ments — concerning the Pyramid and responsive-
ness measures. The ratio falls to 1 disagreement for
every 3 agreements in the Readability case, which

however still remains an acceptable ratio. We stress
that across all measures and all settings (No Model
vs. All Peers) there were only 3 cases where ei-
ther of the measures indicated statistically signifi-
cant difference between two systems, but inversed
ranking. This means that most disagreements were
on whether a system was significantly better than an-
other and not about which one of the two was better.

6 Conclusion

This paper briefly presented the results of applying
AutoSummENG and MeMoG methods for summa-
rization system evaluation on the TAC 2011 corpus.
Both methods offered very good results in different
aspects of the evaluation.

In the future, we plan to combine all the n-gram
graph based methods (AutoSummENG, MeMoG
and HPG (Giannakopoulos and Karkaletsis, 2010)),
through machine learning to devise an overall eval-
uation methodology, adopting to individual target
measures (e.g., readability, content-related, etc.).
We are also thinking of using bad summaries (e.g.,
randomly generated summaries from the original
texts, or human summaries meant to contain a spe-
cific type of error) as negative examples, meant to
provide additional information to the model sum-
maries and act as anti-models. This future direc-
tion is also in accordance to some interesting find-
ings from the organization of the MultiLing Pilot of
TAC2011 (Giannakopoulos et al., 2011): in a lan-
guage with human models that were graded low,
the AutoSummENG method correlated negatively to
human grades. This may imply that information on
what is bad may be as important to what is good for a
given summary and help improve existing measures.

The summarization evaluation domain is just
gaining the momentum required to face its challeng-
ing research problems. Novel thinking and deep



Group A - All Peers
Pyramid Readability Responsiveness

Agreement Disagreement Agreement Disagreement Agreement Disagreement
AutoSummENG (12) 195 213 196 212 195 213
MeMoG (18) 408 0 407 1 408 0

Group B - All Peers
Pyramid Readability Responsiveness

Agreement Disagreement Agreement Disagreement Agreement Disagreement
AutoSummENG (12) 253 155 253 155 253 155
MeMoG (18) 408 0 408 0 408 0

Table 7: Agreement concerning discrimination - All Peers

Group A - No Models
Pyramid Readability Responsiveness

Agreement Disagreement Agreement Disagreement Agreement Disagreement
AutoSummENG (12) 1061 214 920 355 1039 236
MeMoG (18) 1025 250 900 375 1010 266

Group B - No Models
Pyramid Readability Responsiveness

Agreement Disagreement Agreement Disagreement Agreement Disagreement
AutoSummENG (12) 1161 114 1015 260 1164 111
MeMoG (18) 1172 103 1032 243 1183 92

Table 8: Agreement concerning discrimination - No Models

study of previous scientific results are needed to im-
prove the performance of evaluators, which will then
help determine methods to summarize well.
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A Discriminative Power Definitions

The following example and definitions originate
from the README aesop.txt file in the evaluation
results, kindly provided by NIST.

Pyramid
Submission 7
224 294 0
143 820 0
0 0 4

(Column1,Row1) shows the number of pairs of summarizers (X,Y), where
the AESOP metric (Submission 7) and the Pyramid method agree that
summarizer X is significantly better than summarizer Y, or that
summarizer Y is significantly better than summarizer X (here: 224
agreements).

(Column2,Row1) shows the number of pairs of summarizers (X,Y), where
there is a significant difference between X and Y according to the

AESOP metric, but there is no significant difference according to the
Pyramid method (here: 294 disagreements).

(Column1,Row2) shows the number of pairs of summarizers (X,Y), where
there is a significant difference between X and Y according to the
Pyramid method, but there is no significant difference according to
the AESOP metric (here: 143 disagreements).

(Column2,Row2) shows the number of pairs of summarizers (X,Y), where
the AESOP metric and Pyramid method agree that there is no significant
difference between summarizer X and summarizer Y (here: 820
agreements).

(Column3,Row3) shows the number of pairs of summarizers (X,Y), where
the AESOP metric and the Pyramid method both say that summarizer X is
significantly different from summarizer Y, but disagree as to which
summarizer is better (here: 4 disagreements). Either

(1) according to the AESOP metric X < Y,
and according to Pyramid Y < X; or

(2) according to the AESOP metric Y < X,
and according to Pyramid X < Y.

The remaining cells can be ignored.

In this work, we consider as Agreements the sum
of cells (Column1, Row1) + (Column2, Row2)
and as Disagreements the sum of the remaining
cells (Column1, Row2) + (Column2, Row1) +
(Column3, Row3). The data were provided by
NIST.
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