
USFD at KBP 2011: Entity Linking, Slot Filling and Temporal Bounding

Amev Burman, Arun Jayapal, Sathish Kannan, Madhu Kavilikatta
Ayman Alhelbawy, Leon Derczynski, Robert Gaizauskas

Natural Language Processing Group
Department of Computer Science

University of Sheffield
Sheffield, S1 4DP, UK

1 Introduction

This paper describes the University of Sheffield’s
entry in the 2011 TAC KBP entity linking and slot
filling tasks (Ji et al., 2011). We chose to participate
in the monolingual entity linking task, the mono-
lingual slot filling task and the temporal slot fill-
ing tasks. Our team consisted of five MSc students,
two PhD students and one more senior academic.
For the MSc students, their participation in the track
formed the core of their MSc dissertation project,
which they began in February 2011 and finished at
the end of August 2011. None of them had any
prior experience in human language technologies or
machine learning before their programme started in
October 2010. For the two PhD students partici-
pation was relevant to their ongoing PhD research.
This team organization allowed us to muster consid-
erable manpower without dedicated external fund-
ing and within a limited period time; but of course
there were inevitable issues with co-ordination of ef-
fort and of getting up to speed. The students found
participation to be an excellent and very enjoyable
learning experience.

Insofar as any common theme emerges from our
approaches to the three tasks it is an effort to learn
from and exploit data wherever possible: in entity
linking we learn thresholds for nil prediction and ac-
quire lists of name variants from data; in slot filling
we learn entity recognizers and relation extractors;
in temporal slot filling we use time and event anno-
tators that are learned from data.

The rest of this paper describes our approach and
related investigations in more detail. Sections 2
and 3 describe in detail our approaches to the EL
and SF tasks respectively, and Section 4 summarises

our temporal slot filling approach.

2 Entity Linking Task

The entity linking task is to associate a queried
named entity mention, as contextualized within a
given document, with a knowledge base (KB) node
in a provided knowledge base which describes the
same real world entity. If there is no such node the
entity should be linked to Nil. There are three main
challenges in this task. The first challenge is the am-
biguity and multiplicity of names: the same named
entity string can occur in different contexts with dif-
ferent meaning (e.g. Norfolk can refer to a city in
the United States or the United Kingdom); further-
more, the same named entity may be denoted using
various strings, including, e.g. acronyms (USA) and
nick names (Uncle Sam). The second challenge is
that the queried named entity may not be found in
the knowledge base at all. The final challenge is to
cluster all Nil linked mentions.

2.1 System Processing

Our system consists of four stage model, as shown
in Figure 1:

1. Candidate Generation: In this stage, all KB
nodes which might possibly be linked to the
query entity are retrieved.

2. Nil Predictor: In this stage, a binary classifier
is applied to decide whether the query mention
should be linked to a KB node or not.

3. Candidate Selection: In this stage, for each
query mention that is to be linked to the KB,
one candidate from the candidate set is selected
as the link for the query mention.



Figure 1: Flow Chart of the Initial Approach for Entity Linking

4. Nil Mention Clustering: In this stage, all Nil
linked query mentions are clustered so that
each cluster contains all mentions that should
be linked to a single KB node, i.e. pertain to
the same entity.

2.1.1 Candidate Generation
The main objective of the candidate generation

process is to reduce the search space of potential link
targets from the full KB to a small subset of plausi-
ble candidate nodes within it. The query mention
is used, both as a single phrase and as the set of its
constituent tokens, to search for the query string in
the titles and body text of the KB node.

Variant name extraction We extracted different
name forms for the same named entity mention from
a Wikipedia dump. Hyper-links, redirect pages and
disambiguation pages are used to associate different
named entity mentions with the same entity (Reddy
et al., 2010; Varma et al., 2009). This repository of
suggested name variants is then used in query expan-
sion to extend the queries regarding a given entity to
all of its possible names. Since the mention of the
entity is not yet disambiguated, it is not necessary
for all suggested name variants to be accurate.

Query Generation We generated sets of queries
according to two different strategies. The first strat-

egy is based on name variants, using the previously
built repository of Wikipedia name variants. The
second strategy uses additional named entity (NE)
mentions for query expansion: the Stanford NE rec-
ognizer (Finkel et al., 2005) is used to find NE men-
tions in the query document, and generates a query
containing the query entity mention plus all the NE
mentions found in the query document,

Retrieval After query generation, we performed
document retrieval using Lucene. All knowledge
base nodes, titles, and wiki-text were included in the
Lucene index. Documents are represented as in the
Vector Space Model (VSM). For ranking results, we
use the default Lucene similarity function which is
closely related to cosine similarity .

2.1.2 Nil Prediction

In many cases, a named entity mention is not ex-
pected to appear in the knowledge base. We need
to detect these cases and mark them with a NIL
link. The NIL link is assigned after generating a
candidate list (see Varma et al. (2009), Radford et
al. (2010)).

If the generated candidate list is empty, then the
query mention is linked to NIL. If the candidate list
is not empty, we use two techniques to find a candi-
date. The first just chooses the highest ranked can-



Data Set α Precision Recall F1 Accuracy
TAC 2009 5.9 59.42 80.18 68.26 68.01
TAC 2010 5.9 75.36 77.65 76.48 78.36
TAC 2011 5.9 74.83 66.90 70.64 72.22

Table 1: Performance of Nil Predictor using highest score candidate

Data Set β Precision Recall F1 Accuracy
TAC 2009 0.16 54.74 64.84 59.36 61.91
TAC 2010 0.16 57.92 62.35 60.06 62.40
TAC 2011 0.16 54.69 31.14 39.68 52.71

Table 2: Performance of Nil Predictor using difference between two highest scored candidates

didate, i.e. the highest scoring candidate using the
Lucene similarity score. If the the highest scoring
candidate score is above some threshold α then the
candidate is selected and if it is under the thresh-
old, the predictor links the mention to NIL. The sec-
ond technique calculates the difference between the
scores of two highest scoring candidates, then com-
pares this difference with some threshold β; if the
difference exceeds the threshold the highest scoring
candidate is selected, otherwise the query mention is
linked to NIL.. Results of these two techniques are
shown in Tables 1 and 2.

Parameter Setting for Nil Matching To find the
best thresholds, a Naı̈ve Bayes classifier is trained
using the TAC 2010 training data. We created train-
ing data as follows. For each query in the training
set, we generate a candidate list and the highest scor-
ing document is used as a feature vector. If it is the
correct candidate then the output is set to true else
the output set to false. From this set of instances a
classifier is learned to get the best threshold.

2.1.3 Candidate Selection
The candidate selection stage will run only on a

non-empty candidate list, since an empty candidate
list means linking the query mention to NIL. For
each query, the highest-scoring candidate is selected
as the correct candidate.

2.1.4 Nil Clustering
A simple clustering technique is applied. The

Levenshtein distance is measured between the dif-
ferent mentions and if the distance is under a thresh-
old α, the mentions are grouped into the same clus-

ter. Two experiments are carried out and results are
presented in Table 3. As shown clustering accord-
ing to the string equality achieves better results than
allowing a distance of one.

Data Set: The TAC2011 data set contains 2250 in-
stances of which 1126 must be linked to “Nil”. In
the gold standard, the 1126 Nil instances are clus-
tered into 814 clusters. Only those 1126 instances
are sent to the clustering module to check its perfor-
mance separately, regardless of Nil predictor perfor-
mance.

Evaluation Metric: “All Pair Counting Mea-
sures” are used to evaluate the similarity between
two clustering algorithm’s results. This metric ex-
amines how likely the algorithms are to group or
separate a pair of data points together in different
clusters. These measures are able to compare clus-
terings with different numbers of clusters.

The Rand index (Rand, 1971) computes similar-
ity between the system output clusters (output of the
clustering algorithm) and the clusters found in a gold
standard. So, the Rand index measures the percent-
age of correct decisions – pairs of data points that are
clustered together in both system output and gold
standard, or, clustered in different clusters in both
system output and gold standard – made by the al-
gorithm. It can be computed using the following for-
mula:

RI =
Tp+ Tn

Tp+ Tn+ Fp+ Fn



Levenshtein distance RI Precision Recall F1
0 99.98 95.06 99.15 97.06
1 99.98 92.22 99.21 95.59

Table 3: Performance of Nil Clustering

2.2 Evaluation

In this section we provide a short description of dif-
ferent runs and their results. All experiments are
evaluated using the B-Cubed+ and micro average
scoring metrics. In our experimental setup, a thresh-
old α = 5.9 is used in Nil-Predictor and Levenshtein
distance = 0 is used for Nil clustering. The stan-
dard scorer released by the TAC organizers is used
to evaluate each run, with results in Table 4. Dif-
ferent query schemes are used in different runs as
follows.

1. Wiki-text is not used, with search limited to
nodes titles only. The search scheme used in
this run uses query mention only.

2. Wiki-text is used. The search scheme used in
this run uses the query mention and the differ-
ent name variants for the query mention.

3. Wiki-text is used, The search scheme used in
this run uses the query mention and the differ-
ent name variants for the query mention. Also,
it uses the query document named entities rec-
ognized by the NER system to search within
the wiki-text of the node.

3 Slot Filling Task

There are a number of different features that can de-
scribe an entity. For an organisation, one might talk
about its leaders, its size, and place of origin. For a
person, one might talk about their gender, their age,
or their religious alignment. These feature types can
be seen as ‘slots’, the values of which can be used to
describe an entity.

The slot-filling task is to find values for a set of
slots for each of a given list of entities, based on
a knowledge base of structured data and a source
collection of millions of documents of unstructured
text. In this section, we discuss our approach to slot
filling.

3.1 System Processing

Our system is structured as a pipeline. For each en-
tity/slot pair, we begin by selecting documents that
are likely to bear slot values, using query formula-
tion (Section 3.1.2) and then information retrieval
(Section 3.1.1) steps. After this, we examine the
top ranking returned texts and, using learned clas-
sifiers, attempt to extract all standard named entity
mentions plus mentions of other entity types that can
occur as slot values (Section 3.1.3). Then we run a
learned slot-specific relation extractor over the sen-
tences containing an occurrence of the target entity
and an entity of the type required as a value for the
queried slot, yielding a list of candidate slot values
(Section 3.1.4). We then rank these candidate slot
values and return a slot value, or list of slot values in
the case of list-valued slots, from the best candidates
(Section 3.1.5).

3.1.1 Preprocessing and Indexing
Information Retrieval (IR) was used to address the

tasks of Slot Filling (SF) and Entity Linking (EL)
primarily because it helps in choosing the right set
of documents and hence reduces the number of doc-
uments that need to be processed further down the
pipeline. Two variations of IR were used in the SF
task: document retrieval (DR) and passage retrieval
(PR).

The documents were parsed to extract text and
their parent elements using JDOM and then indexed
using Lucene. We used Lucene’s standard analyzer
for indexing and stopword removal. The parent el-
ement of the text is used as field name. This gives
the flexibility of searching the document using fields
and document structure as well as just body (Baeza-
Yates et al., 1999). Instead of returning the text
of the document, the pointers or paths of the doc-
ument were returned when a search is performed.
For searching and ranking, Lucene’s default settings
were used.

For passage retrieval, various design choices were



Run Micro Average Bˆ3 Precision Bˆ3 Recall Bˆ3 F1
1 49.2 46.2 48.8 47.5
2 43.6 40.8 43.2 42.0
3 46.8 44.0 45.6 44.8

Table 4: Results of Three runs for entity linking task

considered (Roberts and Gaizauskas, 2004) and a
two stage process was selected. In the two stage
process, the original index built for DR is used to
retrieve the top n documents and the plain text (any
text between two SGML elements) is extracted as a
separate passage. A temporary mini-index is then
built on the fly from these passages. From the tem-
porary index, the top n passages are retrieved for
a given query. Instead of returning the text of the
passages, the location of the passage (element re-
trieval) in the document is returned as a passage off-
set within a document referenced by a file system
pointer. Two versions of passage systems were cre-
ated, one that removes stop-words while indexing
and searching and other that keeps the stop words.
For ranking, Lucene’s default settings were used.

Finally the IR system and the query formulation
strategies were evaluated on the DR task to deter-
mine the optimal number of top ranked documents
to retrieve for further processing down the pipeline
and for PR. This evaluation is further discussed in
Section 3.2 below.

3.1.2 Query Formulation

This step generates a query for the IR system that
attempts to retrieve the best documents for a given
entity and slot type.

Variant name extraction Variant names are the
alternate names of an entity (persons or organiza-
tions only for the slot filling task in 2011) which are
different from their formal name. These include var-
ious name forms such as stage names, nick names
and abbreviations. Many people have an alias; some
people even have more than one alias. In several
cases people are better known to the world by their
alias names rather than their original name. For ex-
ample, Tom Cruise is well known to the world as
an actor, but his original name is Thomas Cruise
Mapother IV. Alias names are very helpful to dis-
ambiguate the named entity, but in some cases the

alias names are also shared among multiple people.
For example, MJ is the alias name for both Michael
Jackson (Pop Singer) and Michael Jordan (Basket-
ball player).

Variant name forms are used for query formula-
tion. The methods used in the slot filling task for ex-
tracting variant name forms from a Wikipedia page
are:

• Extract all the name attributes from the in-
fobox, such as nickname, birth name, stage
name and alias name.

• Extract the title and all bold text from the first
paragraph of the article page.

• Extract the abbreviations of the entity name by
finding patterns like “(ABC)” consisting of all
capital letters appearing after the given entity
name. For example, TCS is an abbreviation of
the entity Tata Consultancy Service in case of
the following pattern Tata Consultancy Service,
(TCS).

• Extract all redirect names that refer to the
given entity. For example, the name ‘King
of Pop’ automatically redirects to the entity
named ‘Michael Jackson’.

• In the case of ambiguous names extract all the
possible entity names that share the same given
name from the disambiguation page.

A variant name dictionary was created by apply-
ing all the above methods to every entity in the
Wikipedia dump. Each line of the dictionary con-
tains the entity article title name as in Wikipedia fol-
lowed by one of the variant name forms. This dic-
tionary is then used at query time to find the variant
name forms of the given entity.

Slot keyword collection The query formulation
stage deals with developing a query to retrieve the
relevant documents or passages for each slot of each
entity. Our approach is as follows:



1. Collect manually (by referring to public
sources such as Wikipedia) a list of keywords
for each slot query. Some example keywords
for the per:countries of residence slot query
are ‘house in’, ‘occupies’, ‘lodges in’, ‘resides
in’, ‘home in’, ‘grew up in’ and ‘brought up in’.

2. Extract all the alternate names of the given
entity name the variant name dictionary (Sec-
tion 3.1.2).

3. Formulate a query for each slot of an entity
by including terms for entity mention, vari-
ant names and keywords collected for the slot
query in the first step. These terms are inter-
connected by using Boolean operators.

4. The formulated query is then fed into the IR
component and the top n documents retrieved.

3.1.3 Entity Identification
Given the top n documents returned by the pre-

vious phase of the system, the next task is to iden-
tify potential slot values. To do this we used entity
recognizers trained over existing annotated datasets
plus some additional datasets we developed. For a
few awkward slot value types we developed regu-
lar expression based matchers to identify candidate
slot fills. We have also developed a restricted coref-
erence algorithm for identifying coreferring entity
mentions, particularly mentions coreferring with the
query (target) entity,

Named Entity Recognition The Stanford Named
Entity Recognition (NER) tool (Finkel et al., 2005)
was used to find named entities. It is a supervised
learning conditional random field based approach
which comes with a pre-trained model for three en-
tity classes. Because we needed a broader range
of entity classes we re-trained the classifier using
the MUC6 and MUC7 datasets 1 and NLTK (Bird
et al., 2009) gazetteers. Training the classifier was
not straightforward as the source data had to be re-
formatted into the format recognized by Stanford
NER. The MUC datasets provided training data for
the entities Location, Person, Organization, Time,
Person, Money, Percent, Date, Number and Ordi-
nal. More classes were added to the MUC training
dataset since the slot-filling task required nationality,
religion, country, state, city and cause-of-death slot

1LDC refs. LDC2001T02, LDC2003T13

fill types to be tagged as well. For country, state and
city, which can be viewed as sub-types of type loca-
tion we semi-automatically adapted the MUC train-
ing data by finding all location entities in the data,
looking them up in a gazetteer and then manually
adding their sub-type. For nationalities, causes of
death and religion, we extracted lists of nationalities,
causes of death and religions from Wikipedia. In the
case of nationality and causes of death we searched
for instances of these in the MUC data and then la-
belled them to provide training data. For religion,
however, because there were so few instances in the
MUC corpus and because of issues in training di-
rectly on Wikipedia text, we used a post-classifier
list matching technique to identify religions.

The trained classifier was used to identify and tag
all mentions of the entity types it knew about in the
documents and/or passages returned by the search
engine. These tagged documents were then passed
on to the co-reference resolution system. After some
analysis we discovered that in some cases the target
entity supplied in the quey was not being correctly
tagged by the entity tagger. Therefore we added a
final phase to our entity identifier in which all occur-
rences of the target entity were identified and tagged
with the correct type, regardless of whether they had
or had not been tagged correctly by the CRF entity
tagger. s

Restricted Co-reference Resolution To identify
the correct slot fill for an entity requires not just
identifying mentions which are of the correct slot
fill type but of ensuring that the mention stands in
the appropriate relation to the target entity – so, to
find Whistler’s mother requires not only finding en-
tities of type PERSON, but also determining that
the person found stands the relation “mother-of” to
Whistler. Our approach to relation identification, de-
scribed in the next section, relies on the relation be-
ing expressed in a sentence in which both the candi-
date slot fill and the target entity occur. However,
since references to the target entity or to the slot
fill may be anaphoric, ability to perform coreference
resolution is required.

Off-the-shelf co-reference resolvers, such as the
Stanford CRF-based coreference tool, proved too
slow to complete slot-filling runs in a reasonable
timeframe. Therefore, we designed a custom al-



gorithm to do limited heuristic coreference to suit
the slot-filling task. Our algorithm is limited in two
ways. First, it only considers coreferring references
to the target entity and ignores any coreference to
candidate slot fills or between any other entities in
the text. Second, only a limited set of anaphors is
considered. In the case of target entities of type
PERSON the only anaphors considered are personal
and possessive pronouns such as he, she, his and her.
In these cases it also helps to identify whether the
target entity is male or female. We trained the max-
imum entropy classifier provided with NLTK with
a list of male names and female names also from
NLTK. The last and second to last characters for
each name were taken as features for training the
classifier. Based on the output produced by the clas-
sifier, the system decides whether certain pronouns
are candidate anaphors for resolving with the target
entity. For example, when the output produced by
the classifier for the PERSON entity Michael Jack-
son is male, only mentions of he and his will be con-
sidered as candidate anaphors.

When the target entity is of type ORGANIZA-
TION, only the pronoun it or common nouns refer-
ring to types of organization, such as company, club,
society, guild, association, etc. are considered as po-
tential anaphors. A list of such organization nouns
is extracted from GATE.

For both PERSONs and ORGANIZATIONs,
when candidate anaphors are identified the algo-
rithm resolves them to the target entity if a tagged
mention of the target entity is the textually closest
preceding tagged mention of an entity of the target
entity type. For example, he will be coreferred with
Michael Jackson if a tagged instance of Michael
Jackson, or something determined to corefer to it,
is the closest preceding mention of a male entity
of type PERSON. If an intervening male person is
found, then no coreference link is made. When
coreference is established, the anaphor – either pro-
noun or common noun – is labelled as ‘target entity”.

This approach to coreference massively reduces
the complexity of the generalized coreference task,
making it computationally tractable within the in-
ner loop of processing multiple documents per slot
per target entity. Informal evaluation across a small
number of manually examined documents showed
the algorithm performed quite well.

3.1.4 Candidate Slot Value Extraction

The next sub-task is to extract candidate slot fills
by determining if the appropriate relation holds be-
tween a mention of the target entity and a men-
tion of an entity of the appropriate type for the slot.
For example if the slot is date of birth and
the target entity is Michael Jackson then does the
date of birth relation hold between some tex-
tual mention of the target entity Michael Jackson
(potentially an anaphor labelled as target entity) and
some textual mention of an entity tagged as type
DATE.

The general approach we took was to select all
sentences that contained both a target entity mention
as well as a mention of the slot value type and run
a binary relation detection classifier to detect rela-
tions between every potentially related target entity
mention-slot value type mention in the sentence. If
the given relation is detected in the sentence, the slot
value for the relation (e.g. the entity string) is iden-
tified as a candidate value for the slot of the target
entity.

Training the Classifiers A binary relation detec-
tion classifier needed to be trained for each type
of slot. Since there is no data explicitly labelled
with these relations we used a distant supervision
approach (see, e.g., Mintz et al. (2009)). This re-
lied on an external knowledge base – the infoboxes
from Wikipedia – to help train the classifiers. In
this approach, the fact names from the Wikipedia in-
foboxes were mapped to the KBP. These known slot
value pairs from the external knowledge base were
used to extract sentences that contain the target en-
tity and the known slot value. These formed posi-
tive instances. Negative instances were formed from
sentences containing the target entity and an entity
mention of the appropriate type for the slot fill, but
whose value did not match the value taken from the
infobox (e.g. a DATE, but not the date of birth as
specified in the infobox for the target entity). The
classifiers learned from this data were then used on
unknown data to extract slot value pairs.

Feature Set Once the positive and negative train-
ing sentences were extracted, the next step was
to extract feature sets from these sentences which
would then be used by machine learning algorithms



Run Recall Precision F1 Retrieval Co-ref? Slot extractor
1 1.38% 2.43% 0.0176 document no BoW
2 5.08% 4.84% 0.0496 document yes BoW + ngram
3 1.16% 2.97% 0.0167 passage yes BoW + ngram

Table 5: Slot filling results for USFD2011.

to train the classifiers. Simple lexical features and
surface features were included in the feature set.
Some of the features used include:

• Bag of Words: all words in the training data not
tagged as entities were used as binary features
whose value is 1 or 0 for the instance depending
on whether they occur in sentence from which
the training instance is drawn.

• Words in Window: like Bag of Words but only
words between the target entity and candidate
slot value mentions plus two words before and
after are taken as features.

• N-grams: like bag of words, but using bi-grams
instead of unigrams

• Token distance: one of three values – short
(<= 3), medium (> 3 and <= 6) or long
(> 6) – depending on the distance in tokens
between the the target entity and candidate slot
value mentions.

• Entity in between: binary feature indicating
whether there is another entity of the same type
between the candidate slot value mention and
the target entity.

• Target first: binary feature indicating whether
the target entity comes before the candidate slot
value in the sentence?

We experimented with both the Naive Bayes and
Maximum Entropy classifiers in the NLTK. For
technical reasons could not get the maximum en-
tropy classifier working in time for the official test
runs, so our submitted runs used the Naive Bayes
classifiers, which is almost certainly non-optimal
given the non-independence of the features.

3.1.5 Slot Value Selection
The final stage in our system is to select which

candidate slot value (or slot values in the case of list-
valued slots) to return as the correct answer from the
candidate slot values extracted by the relation ex-
tractor in the previous stage. To do this we rank the

candidates identified in the candidate slot value ex-
traction stage. Two factors are considered in rank-
ing the candidates: (1) the number of times a value
has been extracted, and (2) the confidence score pro-
vided for each candidate by the relation extractor
classifier. If any value in the list of possible slot val-
ues occurs more than three times, then the system
uses the number of occurrences as a ranking factor.
Otherwise, the system uses the confidence score as
a ranking factor. In the first case candidate slot val-
ues are sorted on the basis of number of occurrences.
In the second case values are sorted on the basis of
confidence score. In both cases the top n value(s)
are taken as the correct slot value(s) for the given
slot query. We use n = 1 for single-valued slots
n = 3 for list-valued slots.

Once the system selects the final slot value(s), the
final results are written to a file in the format re-
quired by the TAC guidelines.

3.2 Evaluation

We evaluated both overall slot-filling performance,
and also the performance of our query formulation
/ IR components in providing suitable data for slot-
filling.

3.2.1 Overall
We submitted three runs: one with document-

level retrieval, no coreference resolution, and
bag-of-words extractor features; a second with
document-level retrieval, coreference resolution,
and n-gram features; a third with passage-level re-
trieval, coreference resolution, and n-gram features.
Our results are in Table 5.

3.2.2 Query Formulation/Document Retrieval
Evaluation

We evaluated query formulation and document re-
trieval using the coverage and redundancy measures
introduced by Roberts and Gaizauskas (2004), orig-
inally developed for question answering. Coverage



Slots TD NQ LC SC LR SR
All 5 742 0.468 0.252 0.954 0.252
All 10 742 0.534 0.307 1.558 0.307
All 20 742 0.589 0.358 2.434 0.358
All 50 742 0.616 0.391 3.915 0.391

Table 6: Coverage and Redundancy Analysis for All Enti-
ties and All Slots. *TD = Top Docs, NQ = No of Queries,
LC = Lenient Coverage, SC= Strict Coverage, LR = Le-
nient Redundancy and SR = Strict Redundancy.

is the proportion of questions for which answers can
be found from the documents or passages retrieved,
while redundancy is the average number of docu-
ments or passages retrieved which contain answers
for a given question or query. These measures may
be directly carried over to the slot filling task, where
we treat each slot as a question.

The evaluation used the 2010 TAC-KBP data for
all entities and slots; results are shown in Table 6.
Strict and lenient versions of each measure were
used, where for the strict measure both document
ID and response string must match those in the gold
standard, while for the lenient only the response
string must match, i.e. the slot fill must be correct
but the document in which it is found need not be
one which has been judged to contain a correct slot
fill. This follows the original strict and lenient mea-
sures implemented in the tool we used to assist eval-
uation, IR4QA (Sanka, 2005).

The results table shows a clear increase in all mea-
sures as the number of top ranked documents is in-
creased. With the exception of lenient redundancy,
the improvement in the scores from the top 20 to the
50 documents is not very big. Furthermore if 50 doc-
uments are processing through the entire system as
opposed to 20, the additional 30 documents will both
more than double processing times per slot and in-
troduce many more potential distractors for the cor-
rect slot fill (See Section 3.1.5). For these reasons
we chose to limit the number of documents passed
on from this stage in the processing to 20 per slot.
Note that this bounds our slot fill performance to just
under 60%.

3.2.3 Entity Extraction and Coreference
Evaluation

We evaluated our entity extractor as follows. We
selected one entity and one slot for entities of type

DATE PER LOC ORG
+ve 97.5 95 92.5 83.33
-ve 87.5 95 97.5 85

Table 7: Estimated % Training Instances Correct

Dataset DATE PER LOC ORG
Training 82.34 78.44 66.29 80
Handpicked +ve 62.5 40 36.37 45.45
Handpicked -ve 100 75 71.42 88.89

Table 8: % Slot Values Correctly Extracted

ORGANIZATION and one for entities of type PER-
SON and gathered the top 20 documents returned by
our query formulation and document retrieval sys-
tem for each of these entity-slot pairs. We manu-
ally annotated all candidate slot value across these
two twenty document sets to provide a small gold
standard test set. For candidate slot fills in docu-
ments matching the ORGANIZATION query, over-
all F-measure for the entity identifier was 78.3%
while for candidate slot fills in documents match-
ing the PERSON query, overall F-measure for the
entity identifier was 91.07%. We also manually
evaluated our coreference approach over the same
two document sets and arrived at an F-measure of
73.07% for coreference relating to the ORGANIZA-
TION target entity and 90.71% for coreference relat-
ing to the PERSON target entity. We are still analyz-
ing the wide difference in performance of both en-
tity tagger and coreference resolver when processing
documents returned in response to an ORGANIZA-
TION query as compared to documents returned in
response to a PERSON query.

3.2.4 Candidate Slot Value Extraction
Evaluation

To evaluate our candidate slot value extraction
process we did two separate things. First we as-
sessed the quality of training data provided by our
distant supervision approach. Since it was impos-
sible to check all the training data produced manu-
ally we randomly sampled 40 positive examples for
each of four slot types (slots expecting DATEs, PER-
SONs, LOCATIONs and ORGANIZATIONs) and
40 negative examples for each of four slot types. Re-
sults of this evaluation are in Table 7.

In addition to evaluating the quality of the train-



ing data we generated, we did some evaluation to
determine the optimal feature set combination. Ten
fold cross validation figures for the optimal feature
set over the training data are shown in the first row
in Table 8, again for a selection of one slots from
each of four slot types . Finally we evaluated the
slot value extraction capabilities on a small test set of
example sentences selected from the source collec-
tion to ensure they contained the target entity and the
correct answer, as well as some negative instances,
and manually processed to correctly annotate the en-
tities within them (simulating perfect upstream per-
formance). Results are shown in rows2 and 3 of Ta-
ble 8. The large difference in performance between
the ten fold cross validation figures over the train-
ing and the evaluation against the small handpicked
and annotated gold standard from the source collec-
tion may be due to the fact that the training data was
Wikipedia texts while the test set is news texts and
potentially other text types such as blogs; however,
the handpicked test set is very small (70 sentences
total) so generalizations may not be warranted.

4 Temporal Filling Task

The task is to detect upper and lower bounds on the
start and end times of a state denoted by an entity-
relation-filler triple. This results in four dates for
each unique filler value. There are two temporal
tasks, a full temporal bounding task and a diagnostic
temporal bounding task. We provide the filler values
for the full task, and TAC provides the filler values
and source document for the diagnostic task. Our
temporal component did not differentiate between
the two tasks; for the full task, we used output values
generated by our slot-filling component.

We approached this task by annotating source
documents in TimeML (Pustejovsky et al., 2003), a
modern standard for temporal semantic annotation.
This involved a mixture of off-the-shelf components
and custom code. After annotating the document,
we attempted to identify the TimeML event that best
corresponded to the entity-relation-filler triple, and
then proceeded to detect absolute temporal bounds
for this event using TimeML temporal relations and
temporal expressions. We reasoned about the re-
sponses gathered by this exercise to generate a date
quadruple as required by the task.

In this section, we describe our approach to tem-
poral filling and evaluate its performance, with sub-
sequent failure analysis.

4.1 System Processing

We divide our processing into three parts: initial an-
notation, selection of an event corresponding to the
persistence of the filler’s value, and temporal reason-
ing to detect start and finish bounds of that state.

4.1.1 TimeML Annotation
Our system must output absolute times, and so

we are interested in temporal expressions in text, or
TIMEX3 as they are in TimeML. We are also inter-
ested in events, as these may signify the start, end or
whole persistence of a triple. Finally we need to be
able to determine the nature of the relation between
these times and events; TimeML uses TLINKs to
annotate these relationships.

We used a recent version of HeidelTime (Strötgen
and Gertz, 2010) to create TimeML-compliant tem-
poral expression (or timex) annotations on the se-
lected document. This required a document creation
time (DCT) reference to function best. For this, we
built a regular-expression based DCT extractor2 and
used it to create a DCT database of every document
in the source collection (this failed for one of the
1 777 888 documents; upon manual examination,
the culprit contained no hints of its creation time).

The only off-the-shelf TimeML event annotation
tool found was Evita (Saurı́ et al., 2005), which
requires some preprocessing. Specifically, explicit
sentence tokenisation, verb group and noun group
annotations need to be added. For our system we
used the version of Evita bundled with TARSQI3.
Documents were preprocessed with the ANNIE VP
Chunker in GATE4. We annotated the resulting doc-
uments with Evita, and then stripped the data out,
leaving only TimeML events and the timexes from
the previous step.

At this point, we loaded our documents into a
temporal annotation analysis tool, CAVaT (Derczyn-
ski and Gaizauskas, 2010), to simplify access to an-
notations. Our remaining task is temporal relation
annotation. We divided the classes of entity that may

2https://bitbucket.org/leondz/add-dct
3http://timeml.org/site/tarsqi/toolkit/
4http://gate.ac.uk/



Slot name Count
per:title 73
per:member of 36
per:employee of 33
org:subsidiaries 29
per:schools attended 17
per:cities of residence 14
per:stateorprovinces of residence 13
per:spouse 11
per:countries of residence 11
org:top members/employees 10
Total 247

Table 9: Distribution of slot types in the available training
and sample data.

be linked into two sets, as per TempEval (Verhagen
et al., 2010): intra-sentence event-time links, and
inter-sentence event-event links with a 3-sentence
window. Then, two classifiers were learned for these
types of relation using the TimeBank corpus5 as
training data and the linguistic tools and classifiers
in NLTK6. Our feature set was the same used as
Mani et al. (2007) which relied on surface data avail-
able from any TimeML annotation.

4.1.2 Event Selection

To find the timexes that temporally bound a triple,
we should first find events that occur during that
triple’s persistence. We call this task “event selec-
tion”. Our approach was simple. In the first instance
we looked for a TimeML event whose text matched
the filler. Failing that, we looked for sentences con-
taining the filler, and chose an event in the same sen-
tence. If none were found, we took the entire doc-
ument text and tried to match a simplified version
of the filler text anywhere in the document; we then
returned the closest event to any mention. Finally,
we tried to find the closest timex to the filler text. If
there was still nothing, we gave up on the slot.

4.1.3 Temporal Reasoning

Given a TimeML annotation and an event, our
task is now to find which timexs exist immediately
before and after the event. We can detect these

5LDC catalogue entry LDC2006T08.
6http://www.nltk.org/

Slot Type Score
per:stateorprovinces of residence 0.583
per:employee of 0.456
per:countries of residence 0.787
per:member of 0.534
per:title 0.529
org:top members/employees 0.571
per:spouse 0.535
per:cities of residence 0.744
Weighted overall score 0.552

Table 10: Scores of our temporal system over the union
of temporal sample and training data.

by exploiting the commutative and transitive na-
ture of some types of temporal relation. To ensure
that as many relations as possible are created be-
tween events and times, we perform pointwise tem-
poral closure over the initial automatic annotation
with CAVaT’s consistency tool, ignoring inconsis-
tent configurations. Generating temporal closures is
computationally intensive. We reduced the size of
the dataset to be processed by generating isolated
groups of related events and times with CAVaT’s
subgraph modules, and then computed the clo-
sure over just these “nodes”.

We now have an event representing the slot filler
value, and a directed graph of temporal relations
connecting it to times and events, which have been
decomposed into start and end points. We populate
the times as follows:

• T1: Latest timex before event start
• T2: Earliest timex after event start
• T3: Latest timex before event termination
• T4: Earliest timex after event termination

Timex bounds are simply the start and end points
of an annotated TIMEX3 interval. We resolve these
to calendar references that specify dates in cases
where their granularity is greater than one day; for
example, using 2006-06-01 and 2006-06-30 for the
start and end of a 2006-06 timex. Arbitrary points
are used for season bounds, which assume four sea-
sons of three months each, all in the northern hemi-
sphere. If no bound is found in the direction that we
are looking, we leave that value blank.



Retrieval level Precision Recall F1
Document 1.52% 0.70% 0.96%
Paragraph 0.14% 0.79% 0.24%

Table 11: Full temporal slot-filling results

4.2 Evaluation
Testing and sample data were available for the tem-
poral tasks7. These include query sets, temporal
slot annotations, and a linking file describing which
timexes were deemed related to fillers. The dis-
tribution of slots in this data is given in Table 9.
To test system efficacy we evaluated output perfor-
mance with the provided entity query sets against
these temporal slot annotations. Results are in Ta-
ble 10, including per-slot performance.

Results for the full slot-filling task are given in Ta-
ble 11. This relies on accurate slot values as well as
temporal bounding. An analysis of our approach to
the diagnostic temporal task, perhaps using a corpus
such as TimeBank, remains for future work.

5 Conclusion

We set out to build a framework for experimentation
with knowledge base population. This framework
was created, and applied to multiple KBP tasks. We
demonstrated that our proposed framework is effec-
tive and suitable for collaborative development ef-
forts, as well as useful in a teaching environment.
Finally we present results that, while very modest,
provide improvements an order of magnitude greater
than our 2010 attempt (Yu et al., 2010).

References
R. Baeza-Yates, B. Ribeiro-Neto, et al. 1999. Modern

Information Retrieval. ACM press New York.
S. Bird, E. Klein, and E. Loper. 2009. Natural Language

Processing with Python - Analyzing Text with the Nat-
ural Language Toolkit. O’Reilly Media.

L. Derczynski and R. Gaizauskas. 2010. Analysing Tem-
porally Annotated Corpora with CAVaT. In Proceed-
ings of the 7th LREC, pages 398–404.

J.R. Finkel, T. Grenager, and C. Manning. 2005. In-
corporating non-local information into information ex-
traction systems by Gibbs sampling. In Proceedings of
ACL, pages 363–370.
7LDC catalogue entries LDC2011E47 and LDC2011E49.

H. Ji, R. Grishman, H.T. Dang, X.S. Li, K. Griffit, and
J. Ellis. 2011. Overview of the TAC2011 Knowledge
Base Population Track. In Proc. Text Analytics Con-
ference.

I. Mani, B. Wellner, M. Verhagen, and J. Pustejovsky.
2007. Three approaches to learning TLINKS in
TimeML. Technical report, Technical Report CS-07-
268, Brandeis University.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky. 2009. Dis-
tant supervision for relation extraction without labeled
data. In Proceedings of the Joint ACL-IJCNLP Con-
ference, pages 1003–1011.

J. Pustejovsky, J. Castano, R. Ingria, R. Saurı́,
R. Gaizauskas, A. Setzer, G. Katz, and D. Radev.
2003. TimeML: Robust specification of event and
temporal expressions in text. In IWCS-5 Fifth Inter-
national Workshop on Computational Semantics.

W. Radford, B. Hachey, J. Nothman, M. Honnibal, and
J.R. Curran. 2010. Document-level Entity Linking:
CMCRC at TAC 2010. In Proc. Text Analytics Con-
ference.

W.M. Rand. 1971. Objective criteria for the evaluation
of clustering methods. Journal of the American Statis-
tical Association, pages 846–850.

K. Reddy, K. Kumar, S. Krishna, P. Pingali, and
V. Varma. 2010. Linking Named Entities to a Struc-
tured Knowledge Base. In Proceedings of 11th Inter-
national Conference on Intelligent Text Processing and
Computational Linguistics.

I. Roberts and R. Gaizauskas. 2004. Evaluating Pas-
sage Retrieval Approaches for Question Answering.
In S. McDonald and J. Tait, editors, Advances in Infor-
mation Retrieval: Proceedings of the 26th European
Conference on Information Retrieval (ECIR’04), Lec-
ture Notes in Computer Science, Vol. 2997, pages 72–
84, Sunderland, April. Springer.

A. Sanka. 2005. Passage retrieval for question answer-
ing. Master’s thesis, University of Sheffield.

R. Saurı́, R. Knippen, M. Verhagen, and J. Pustejovsky.
2005. Evita: a robust event recognizer for QA sys-
tems. In Proceedings of EMNLP, pages 700–707.

J. Strötgen and M. Gertz. 2010. HeidelTime: High qual-
ity rule-based extraction and normalization of tem-
poral expressions. In Proceedings of SemEval-2010,
pages 321–324.

V. Varma, V. Bharat, S. Kovelamudi, P. Bysani, GSK San-
tosh, K. Kumar, and N. Maganti. 2009. IIIT Hyder-
abad at TAC 2009. In Proc. Text Analytics Conference.

M. Verhagen, R. Sauri, T. Caselli, and J. Pustejovsky.
2010. SemEval-2010 task 13: TempEval-2. In Pro-
ceedings of SemEval-2010, pages 57–62.

J. Yu, O. Mujgond, and R. Gaizauskas. 2010. The Uni-
versity of Sheffield System at TAC KBP 2010. In
Proc. Text Analytics Conference.


