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Abstract

This report presents our extension of the tex-
tual entailment paradigm, in which variables
are incorporated in the hypothesis, and are
�lled with extracted information during the en-
tailment recognition process. This paradigm is
the basis for a novel approach of using vari-
ables in textual entailment, with various po-
tential future applications. We experimented
with this approach in the TAC 2012 Knowl-
edge Base Population challenge, participating
in the Cold Start task. Our system was based
on a variant of our open source system for tex-
tual entailment recognition � BiuTee1. Being
in preliminary stages of our work, the system
does not yet scale well, so no results are incor-
porated in this report.

1 Introduction

The textual entailment (TE) paradigm deals with
understanding whether one text in natural language
can be inferred by reading another text. In the orig-
inal formulation of the TE problem, given a pair of
natural language text (T) and natural language hy-
pothesis (H), a system shall decide whether T entails
H, or not (Dagan and Glickman, 2004).
In the pats TE has been o�ered as an appealing

approach for information extraction (IE) validation.
For example, it was used for building the datasets for
the various Recognizing Textual Entailment (RTE)
challenges, as detailed in (Dagan et al., 2009). There,
extractions from various IE systems were used as in-
put for textual entailment systems, which in turn had
to determine whether the extraction was valid or not
by deciding whether entailment holds between the
original text and a natural language sentence that
embedded the extraction in an appropriate template.
While �lling the templates was performed manually

1Bar Ilan University Textual Entailment Engine:
www.cs.biu.ac.il/~nlp/downloads/biutee

in the �rst rounds of the challenge, in the more recent
rounds, as described in (Bentivogli et al., 2010) and
(Bentivogli et al., 2011), it was done automatically,
allowing a much larger and richer ability to validate
IE extractions.

We propose to extend the TE problem formula-
tion, by allowing variables in the hypothesis, thus
having a template hypothesis. For example, such
hypothesis could be of the form �{var1} was born
in {var2}�. During the entailment recognition pro-
cess, the variables are �lled with relevant phrases
from T. This paradigm can be applied to IE; instead
of just validating existing extractions, the extraction
process itself is performed using textual entailment
mechanisms. The variable assignments are the ex-
tractions.

It is important to note that unlike most common
methods for performing IE, our approach is rela-
tively unsupervised. While the system's classi�er
is trained on a general-purpose corpus, the only work
that needs to be done when given the required re-
lations is to manually represent them as template
hypotheses. For instance, to represent the relation
�X was born in Y�, we can write the aforementioned
template hypothesis �{var1} was born in {var2}�.
This hypothesis is actually no more than an example
of a natural language representation of the relation.
So when given relations, all we need to do is write
�example� sentences for them. Thus, the system is
easily operable with any set of user-given relations,
requiring very little e�ort.

In order to experiment with our approach to IE,
we found a convenient test bed in the TAC 2012 KBP
challenge. TAC introduced the Knowledge Base Pop-
ulation (KBP) challenge, promoting research in IE.
This year a new task was presented � Cold Start
� focusing on systems that incorporate both Entity
Linking (determining whether two phrases in the text
refer to the same real-world entity) and Slot Filling
(extracting information regarding those entities, ac-



cording to a list of binary predicates given in ad-
vance). Participants were provided with a corpus of
roughly 27,000 documents extracted from the web,
and a prede�ned list of predicates. For the purpose
of our experiments we put most of our emphasis on
the slot �lling part (using the paradigm described
above), and handled entity linking in a rather shal-
low manner.
Since this is a preliminary work, and our system's

current ability to complete a slot �lling task is very
limited (as detailed in section 5), this report mostly
deals with the general concept, rather than �nal re-
sults. Using the signi�cant experience we gained
while participating in the challenge, we are contin-
uing to develop our methodology much further, and
could hopefully report meaningful results in the fu-
ture.
This report is organized as follows: Section 2 pro-

vides an overview of textual entailment and our ap-
proach for implementing it, manifested in the Biu-
Tee system. Section 3 describes our extension of the
textual entailment problem formulation, which intro-
duces variables to the hypothesis. Section 4 explains
how a TE engine with variables can be used to solve
a generic slot-�lling problem. Section 5 details the
speci�c implementation of the system we built for
the Cold Start challenge, based on a variant of Biu-
Tee. Section 6 describes some directions for future
work.

2 Background

In various NLP settings it is required to identify that
a certain semantic inference relation holds between
two pieces of text. For instance, in passage retrieval
for question answering, it is needed to mark text
passages as candidates from which a satisfying an-
swer can be inferred. In paraphrase recognition it is
necessary to identify that the meanings of two text
fragments are roughly equivalent. And with more
relevance to our current case - in information extrac-
tion (IE), a system may be given a template with
variables (e.g., �X was born in Y�) and has to �nd
text fragments from which this template, with vari-
ables replaced by instantiations from the text, can
be inferred.
A generic formulation for the inference relation be-

tween two texts is given by the Recognizing Textual
Entailment (RTE) paradigm (Dagan et al., 2005). In
this setting, a system is given two natural language
text fragments, termed �text� (T) and �hypothesis�
(H), and has to recognize whether the hypothesis is
entailed by (inferred from) the text.
One of the main approaches for recognizing such

textual inferences is to explicitly transform T into

H, using a sequence of transformations (Bar-Haim
et al., 2007; Harmeling, 2009; Mehdad, 2009; Wang
and Manning, 2010; Heilman and Smith, 2010; Stern
and Dagan, 2011), . This approach has been the
basis to our open-source textual entailment recogni-
tion system, BiuTee, described in detail in (Stern
and Dagan, 2011). This system provides state-of-
the-art linguistic analysis tools and exploits vari-
ous types of manually built and automatically ac-
quired knowledge resources, including lexical, lexical-
syntactic and syntactic inference rules. The system
utilizes parse-based representations of the text and
hypothesis, where the parse-tree of H is explicitly
generated from that of T by applying a sequence
of tree transformation operations. This sequence is
called a proof. Some of the transformations may
utilize the knowledge resources, following (Bar-Haim
et al., 2007), while others are on-the-�y operations
(such as inserting a new node or moving a sub-tree to
a di�erent location in the tree) that complement the
proof in cases of some inevitably missing knowledge.
(Bar-Haim et al., 2007) also suggest using tem-

plate hypotheses, which are similar to our hy-
potheses with variables. However, they implemented
only a special case (H is a predicate word with 2 argu-
ment slots, and T's are not given but rather searched
in a corpus). Additionally, they tested it only on a
small number of verbs, and didn't pursue it later. We
want to make it part of the RTE paradigm, for T-H
pairs, and make it part of a standard RTE system.

3 Textual entailment with Variables

In the original formulation of the TE problem, the
input is a pair of natural language sentences T and
H, and the output is a binary classi�cation � either
T entails H, or not2. We suggest a novel formulation,
in which the input H may contain variables, and the
output is all possible assignments to the variables,
extracted from T, such that T entails H with the
assignments. As an example, consider the following
text:

T = "Isaac is the son of Abraham"

The original TE formulation allows us to check this
text against hypotheses such as:

H1 = "Isaac is Jacob's son"
H2 = "Isaac is Abraham's son"
H3 = "Jacob is Abraham's son"

2There are variants to this formulation, for example, re-
placing the binary output with a probability that T entails H,
or allowing ternary output � entailment, un-relatedness and
contradiction. However, the input still consists of two fully-
speci�ed texts.



A perfect TE system, based on the original formu-
lation, would return "true" for the pair (T,H2), and
"false" for the pairs (T,H1) and (T,H3).
Our new TE formulation allows us to check this

text against a single hypothesis with two variables:

Hv = "{var1} is {var2}'s son"

This hypothesis represents an in�nite set of hypothe-
ses, parameterized by the variables "{var1}" and
{var2}". H1, H2 and H3 are members of this in�-
nite set.
A TE system, based on our new TE problem for-

mulation, should return a set with a single assign-
ment:

{"{var1}=Isaac, {var2}=Abraham"}

The returned set may contain more than one ele-
ment. For example, if:

T = "Isaac is the son of Abraham and
Sarah"

there are two possible assignments:

{"{var1}=Isaac, {var2}=Abraham",
�{var1}=Isaac, {var2}=Sarah"}.

The returned set may also be empty, which means
that T does not entail Hv under any assignment, e.g.,
when:

T="Isaac lived in Israel"

Our new TE problem formulation has potential ap-
plications in many extraction-based tasks, for exam-
ple: spoken language understanding, question an-
swering, open information extraction and slot �lling.
In this report we focus on its application for slot �ll-
ing.

3.1 Typed variables

A hypothesis variable may have a type, which con-
strains the possible assignments to this variable.
In general, a variable type can be de�ned by any
boolean function. Several examples are:

• Surface-form types, such as {number} or {date}.
These can usually be computed using regular
expressions.

• Part-of-speech types, such as {noun} or {verb}.
These are usually computed using a POS tagger.

• Named-entity types, such as {person} or {orga-
nization}. These are usually computed using a
NER system.

• Ontology-related types. For example, {hy-
ponym:engineer} may match any word that is a
hyponym of "engineer", such as "programmer",
"metallurgist", etc.3.

In the example of the previous section, it makes sense
to de�ne {var1} and {var2} to be of type "person".
In other cases, a hypothesis may contain variables of
di�erent types, for example:

Hv = "{person} was born {number} years
ago."

3.2 Extending BiuTee to support

hypothesis variables

BiuTee's analysis of a T-H pair can be divided into
3 steps (Stern and Dagan, 2012):
1. Preprocessing � converting T and H into syn-

tactic dependency trees. This step uses standard lin-
guistic tools such as a sentence splitter, tokenizer,
POS tagger, and a syntactic parser..
2. Proof generation � �nding a set of transfor-

mations that starts with T's tree, uses linguistically-
based transformations over dependency trees, and
ends with a tree that totally covers H's tree. Each
transformation has a cost, and the engine looks for
the transformation sequence (a.k.a. a "proof") with
the lowest cost.
3. Response generation - The cost of that

best proof is compared to a pre-determined threshold
(usually found during training), and BiuTee returns
a positive "entailment" decision if and only if the cost
is lower than that threshold.
To make BiuTee support hypotheses with vari-

ables, we had to address these 3 steps:
1. The linguistic tools we use in the prepro-

cessing step work only with natural language sen-
tences; they cannot handle sentences with variables.
These are all third-party tools, and we do not want
to change them, so we devised a method that al-
lows us to use the existing preprocessing stage as a
black-box. For each type of variable that we want to
support, we prepare in advance a set of "examples"
� words of that type. Given Hv, a hypothesis with
variables, we preprocess it in the following way:

• Replace each variable in Hv with a distinct ex-
ample according to the variable's type.

• Send the resulting sentence, which is now a le-
gal natural language sentence, to the standard
BiuTee preprocessor. The result is a syntactic
dependency tree.

3These speci�c examples were found in the WordNet on-
tology



• Traverse the dependency tree, �nd all instances
of the words we used as examples, and replace
them with the corresponding variables.

This workaround will fail when the hypothesis Hv
contains some of the example words besides the vari-
ables. To reduce the probability of this failure, we
use as example rare words, for example, for the
"{noun}" type, one of our examples was "concili-
abule".4 Such words may still appear in the hypoth-
esis, for example, "The conciliabule was held in a
{noun}". We leave this improbable case for future
work.

2. For the proof generation step, we had to
extend BiuTee's set of transformations. We added
transformations from nodes in the text tree to nodes
in the hypothesis tree that contain variables. As we
mentioned in the previous section, each variable type
is de�ned by a computable binary function. It is
straight-forward to use this function in order to cre-
ate a transformation. For example, for the {noun}
type, we created a transformation of the form "If the
text-node is tagged with POS=NOUN, transform it
to a hypothesis-node whose lemma is {noun}".

3. For the response generation step, in case
the cost of the best proof is above the threshold, we
return an empty set of assignments, as there is no
entailment. In case the cost is below the threshold,
we need to recognize the assignments to the vari-
ables. To get the assignment of a variable, we need
to start from that variable's node in the �nal tree,
and trace back to the node in the original text tree,
which was transformed to that variable node. Fortu-
nately, BiuTee already keeps these traces, making it
straight-forward to extract the variable assignments
from the best proof.

For example, if the hypothesis contains a "{noun}"
variable, and the text contains a noun, then the
proof-�nder will, eventually, use a transformation
that converts the noun in the text to "{noun}". It
will record a link to the original text node from the
resulting "{noun}" node. After the proof is com-
plete, if the engine decides that there is entailment
we go to that "{noun}" node, follow the link to the
original text node, and retrieve the original noun.

Unfortunately, currently BiuTee returns only a
single best proof, so we can get at most a single as-
signment. We plan to handle sentences with two or
more assignments in future work.

4Meaning "secret meeting of conspirators". Taken from
http://phrontistery.info

4 TE with variables for Slot Filling

The slot �lling task is de�ned by a closed set of pred-
icates. Each predicate is described informally in the
task de�nition. To solve a slot-�lling task using a
TE system, we should create, for each such predi-
cate, a small set of hypotheses with variables. For
example, for the "parent-of" predicate, we can use
the following hypotheses:

{person1} is the parent of {person2}

{person2} is the child of {person1}

The hypotheses can be created manually, based on
the description of the predicate in the task de�ni-
tion. This requires only little e�ort � less than writ-
ing the description itself. Besides the creation of
the hypotheses, no other predicate-speci�c action is
needed. Particularly, it is not required to train the
system for each speci�c predicate.

Theoretically, a single hypothesis should su�ce,
since a perfect TE engine could decide that the other
hypotheses entail it. However, current TE engines
are not perfect, so we assist them by supplying sev-
eral di�erent hypotheses.

A similar scheme was used by (Bentivogli et al.,
2010) and (Bentivogli et al., 2011) in the KBP vali-
dation tasks of RTE-6 and RTE-7.

Given a text sentence T, and a set of hypotheses
with variables {Hv1, Hv2,. . . }, we can run our TE
engine on the pairs (T,Hv1), (T,Hv2), etc. For each
pair, we get a set of zero or more variable assign-
ments, and use them to create an instantiation of the
corresponding predicate, to �ll the target knowledge
base.

5 System Architecture

This section details our implementation of the sys-
tem we used in the Cold Start challenge. Its core is
our BiuTee-variant that implements textual entail-
ment with variables as detailed above.

First, we manually created hypotheses (with vari-
ables) and speci�ed a mapping between them and
the required predicates. As mentioned earlier, we
could specify several hypotheses per one predicate,
to better capture its meaning.

Second, we trained the BiuTee-variant with a
general purpose training set (we used the RTE6 De-
velopment Set). This is a weakness of the current
implementation, that is subject to future work, as
detailed in Section 6.

After that came the major step of the system �
processing each sentence in the corpus. First of all
the sentences were �ltered. Our observation was



that sentences that were too short were usually non-
meaningful (such sentences consisted a major part
of the given corpus), so as a heuristic they were
�ltered out. Additionally, sentences that were too
long required a substantial amount of time to pro-
cess (disproportionate to their potential value), so
as a second heuristic they were �ltered out as well.
Since recognizing textual entailment is quite a heavy
task, further �ltering was required. We performed a
shallow �ltering, requiring that a candidate sentence
would include words appearing in the hypothesis, or
any lexical expansion of them. The expansion was
based on the same knowledge resources used in our
BiuTee-variant, in our case � WordNet(Fellbaum,
1998) and CatVar(Habash and Dorr, 2003). This is
a common step in information extraction, when some
form of shallow �ltering needs to be used to handle
massive amounts of text.

After having a much smaller set of candidate sen-
tences, we performed two operations on each candi-
date: (1) We applied Stanford's Named Entity Rec-
ognizer on the sentence, to get all the entities and
their types (recognizing an entity's type was one of
the challenge's requirements). (2) The core process �
we provided the candidate sentence to our BiuTee-
variant as Text, and our manually de�ned hypotheses
as Hypotheses (one hypothesis each time). The re-
sult of this process was a collection of all predicates
that adhere to hypotheses that were entailed, linked
with their respective slot instantiations (or an empty
collection if none of the hypotheses were entailed by
the candidate sentence). All extractions were written
to the task's submission �le.

The very �nal stage was Entity Linking. Since this
issue was required in the challenge, yet is not in the
focus of our research, we utilized few simple manually
built rules and heuristics (based only on the strings
of the entities' names) to decide whether any pair
of found entities is likely to represent the same real-
world entity (checking for alternate spellings, abbre-
viations, names with common roots, etc.).

Since the system's run is quite slow, it had to be
limited in various ways in order to handle the entire
corpus. The most signi�cant limitation was making
the sentence-length-based �ltering quite aggressive,
and having it �lter out a substantial amount of the
corpus. Unfortunately, that �ltering alongside other
limitations (like dropping coreference resolution and
training with a general dataset that was not �tted
for this task), led to unsatisfactory results. As men-
tioned earlier, we hope to report meaningful results
in the future.

6 Future Work

Our system yielded a fair amount of extractions, yet
there is much room for improvement. As we wrote
earlier, the challenge was a jump start for our group
into this new line of research regarding variables in
textual entailment, and their use in various appli-
cations such as information extraction. There are
several possible topics for further research:

Unrestricted arity - in addition to binary rela-
tions, handle unary relations, ternary relations,
etc.

Training for variables - in this system BiuTee

was trained using a general-purpose training set.
The goal is to develop a methodology to train
BiuTee with awareness to the slot-�lling set-
ting.

Extending variable types - developing more
mechanisms for type de�nitions, such as the
aforementioned hyponym de�nition, which
would allow any variable instantiation that is a
hyponym of a speci�ed phrase.

Multiple assignments - currently, our system
�nds, at most, a single assignment to the vari-
ables in the hypothesis. For example, if T =
"Isaac is the son of Abraham and Sarah", and
Hv = �{person1} is the son of {person2}�, our
system will return either {"{person1}=Isaac,
{person2}=Abraham"} or {"{person1}=Isaac,
{person2}=Sarah"}, but not both. To handle
such cases, BiuTee should be able to return
more than one proof from T to H.
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