
IIIT Hyderabad at TAC 2012

Vasudeva Varma
IIIT, Hyderabad

vv@iiit.ac.in

Mohan Soundararajan IIIT, Hyderabad
mohan.s@research.iiit.ac.in

Priya Radhakrishnan
IIIT, Hyderabad

priya.r@students.iiit.ac.in

Bhaskar Ghosh
IIIT, Hyderabad

bhaskarjyoti.ghosh@research.iiit.ac.in

Deepti Aggarwal
IIIT, Hyderabad

deepti.aggarwal@research.iiit.ac.in

Abstract

In this paper, we report our participation in
Knowledge Base Population at TAC 2012. We
adopted an Information Retrieval based ap-
proach for the Entity Linking and Slot Filling
tasks. In Entity Linking we identify poten-
tial nodes from the Knowledge Base and then
identify the mapping node using tf-idf similar-
ity. We achieved very good performance in the
Entity Linking task. For Slot Filling task we
identify documents from the document collec-
tion that might contain attribute information.
We extract the attribute information using a
rule based approach. Our rule based approach
hasnt performed up to the mark.

1 Introduction

Knowledge Base Population (KBP)
The rise of web 2.0 technology has provided a plat-
form for content generators on the web through
blogs, forums etc. This has lead to information over-
load on the web and users face difculty in nding the
information they are looking for. Structured Knowl-
edge Bases (KB) like Wikipedia, act as a rich source
of information. The problem with Knowledge Bases
like Wikipedia is that they have to be created and
maintained manually. Manual effort is not only time
consuming but can also lead to erroneous values
fed, information being outdated and other inconsis-
tencies. Automatically updating Knowledge Bases
from news source, where the latest information is
available, is a possible solution. The Knowledge
Base Population (KBP) track at TAC-2010 proposes
the problem of automatically updating Knowledge

Bases from textual content. The task has been bro-
ken down into 2 fundamental sub-problems:

Entity Linking

The task of Entity Linking is to determine for each
query entity, which node is being referred to in the
KB or if the query entity is not present in the KB.
The query consists of a named entity and an associ-
ated document from the Document Collection (DC)
using which we need to link the named entity to its
corresponding node in the KB, if any. The purpose
of the associated document is to provide context that
might be useful in linking it. We need to return the
entity node if the query entity is present in the KB
else NIL.

Slot Filling

Slot Filling involves mining information about
entities from textual content. Slot Filling shares
similarities with traditional Information Extraction
and Question Answering tasks. Slot Filling in-
volves learning a predened set of relationships and
attributes for target entities based on the documents
in the Document Collection. A query in the Slot Fill-
ing task contain a name-string, doc-id, and an op-
tional list of slots to ignore. As in the Entity Linking
task the doc-id is intended to provide the context for
the entity. We need to return the slot name and slot
value along with the document in which it occurs.

2 Approach

We have broken down the Entity Linking task into
four separate modules.

Pre
Processing

Query
Document
analysis

Query
the Index

Ranking

is Ranking
accurate ?

Learn
Model

update
weights no

yes

Pre Processing

During the prepossessing step, we build a Knowl-
edge Index of the given resources by indexing. We
have used Lucene (Bialecki et al,2012) to Index the
Knowledge Base (KB), Knowledge repository (KR)
(wikipedia) and document dataset. Lucene is a full-
featured, open source text search engine.We also
indexed the publicly available knowledge resource
Google’s text-entity map (Spitkovsky et al,2012).

Query document analysis

Processing the query word and query document d
(get local context of w) In order to decrypt and
understand the anaphora references we try to re-
solve them in the reference document. Co-reference
resolution is done with the help Stanford NLP
parser(Finkel et al,2005). Then we extract the lo-
cal context of the query word w from document d

by considering the proximal sentences and then fil-
ter the stop words (based on tf-idf). We proceed
to apply Named Entity Recognizer(NER) on the fil-
tered sentences to arrive at the relative weights of the
query and context word or terms. The query word is
analyzed to understand its Named Entity(NE) type,
with the support of the document context, using the
Stanford NER. The NE type of the query word is
later used in Ranking the results. From the co-
reference resolved and NE type identified text, we
extract key phrases using key phrase extractor(Niraj
Kumar,2010)

Query the Index
Query construction is based on the query word, the
extracted context words w along with the NE type
t, Key phrase weights k and proximity weights p A
Lucene query Q is constructed such that Q=w, t, p, k
This query is then fired on the resources in the order
1. Query KB index with Q, get all KB entries for w
2. Query KR, get top documents

Ranking
The retrieved documents are ranked using a ranking
scheme. From the set of candidate nodes that are re-
trieved, we rank them using Tf-idf. The best ranked
node is returned as the mapping node for our query
entity. Tf-idf is the most popular weighting function
used in the eld of Information Retrieval. Given a
query Q=t1,t2...tn and a document D=w1,w2,...,wn,
the similarity between them is given by

Similarity(D,Q) =
∑
tiinQ

tf (ti, D)idf(ti)

where term frequency (tf) is simply the number of
times the term ti appears in the document D. The

inverse document frequency (idf) is a measure of
the general importance of the term. Along with
these, the phrasal proximity is given priority with a
specified slop value. Further selected fields in the
KB, KR (say, infobox fields, category fields, and
specific fields like name, country of residence, etc.,
) are given more significance. The match from these
fields are weighted higher to pop them up in the
search results.

We further re-rank the ranked documents accord-
ing to the following order with decreasing order of

their priority.
i) query word, w is mandatory for each document.

More weightage is given to title words of query doc-
ument whenever available. ii) increase weightage to
words of same NE type as query words iii) weigh-
tage to contextual words

To link the word to KB node, we query the KB
index and retrieve top m KB entries having highest
tf from top n documents.

3 Experiment & Results

We have submitted four runs for the Entity Linking
task.Summary of runs is in Table 1. The description
of each run is provided below

Run-1
For this run we used the knowledge repository, Stan-
ford NER for identifying the candidate list docu-
ments. Using these variations we did a phrase search
on the titles of Wikipedia and KB nodes. All the
nodes whose titles exactly match these phrases or
match these phrases and have an extra token are
considered as candidate nodes. We then rank these
nodes using Tf-idf and re-rank using pseudo rele-
vance feedback. We use title and do query expan-
sion. The nal relevance score for each node is a lin-
ear combination of the rank and re-rank scores. This
does not use the web.

Run-2
Without nil classification (better weights, lucene
ranking + custom ranking) For this run we used the
knowledge repository built and Stanford NER for
identifying candidate list documents. Once these
candidate documents are identied we rank them us-
ing Lucene ranking. We also re-rank these docu-
ments using query expansion. This is custom rank-
ing. This does not use the web.

Run-3
This run is similar to above run, except that we do
not do re-ranking(custom ranking). Here we rely
purely on the Lucene ranking. This does not use the
web.

Run-4
This is the base system. Here we search on the titles
of Wikipedia and KB to identify candidate nodes.

All those nodes whose titles contain the variation
tokens or have token variation and an extra token
are considered as candidate nodes. The ranking is
Lucene default. This does not use the web.

4 Conclusion

Entity Linking can be viewed as an Retrieval prob-
lem. The basic system devised itself is capable of
linking a large number of entities properly. The
scores seem to be less, for the fact that NIL entities
are not handled yet in our approach.

Future Work
We are in the process of using Google’s cross wiki
(text-entity map) to aid the ranking module. Fur-
ther NIL entities are to be recognised to boost the
precision scores.

References
Andrzej Biaecki, Robert Muir, Grant Ingersoll 2012.

Apache Lucene 4, SIGIR 2012 Workshop on Open
Source Information RetrievaSIGIR 2012 Workshop on
Open Source Information Retrieval.

Valentin I. Spitkovsky and Angel X. Chang. 2012 A
Cross-Lingual Dictionary for English Wikipedia Con-
cepts,Proceedings of the Eighth International Confer-
ence on Language Resources and Evaluation.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning 1983. Incorporating Non-local Information
into Information Extraction Systems by Gibbs Sam-
pling. Proceedings of the 43nd Annual Meeting of the
Association for Computational Linguistics

Niraj kumar,Kannan Srinathan,Vasudeva Varma 1981.
Alternation. Key Fact Extraction from Newswire Arti-
cles by Exploiting Local features based weighting and
Interaction of sentences

Table 1: Runs’ Comparison
Run Id Run Description Micro Aver-

age Score
Bˆ3+ F1 score

Run-1 base system with
wiki text, better
weights, lucene
ranking and custom
ranking

13.1

Bˆ3+ F1 (All – 2226 queries) : 0.131
Bˆ3+ F1 (in KB – 1177 queries) : 0.245
Bˆ3+ F1 (not in KB – 1049 queries) : 0.003
Bˆ3+ F1 (NW docs – 1471 queries) : 0.130
Bˆ3+ F1 (WB docs – 755 queries) : 0.133
Bˆ3+ F1 (PER – 918 queries) : 0.137
Bˆ3+ F1 (ORG – 706 queries) : 0.093
Bˆ3+ F1 (GPE – 602 queries) : 0.162

Run-2 base system with
smarter weights,
lucene ranking and
custom ranking

13.0

Bˆ3+ F1 (All – 2226 queries) : 0.130
Bˆ3+ F1 (in KB – 1177 queries) : 0.243
Bˆ3+ F1 (not in KB – 1049 queries) : 0.003
Bˆ3+ F1 (NW docs – 1471 queries) : 0.130
Bˆ3+ F1 (WB docs – 755 queries) : 0.130
Bˆ3+ F1 (PER – 918 queries) : 0.139
Bˆ3+ F1 (ORG – 706 queries) : 0.089
Bˆ3+ F1 (GPE – 602 queries) : 0.160

Run-3 base system with
smarter weights
and lucene ranking

5.5

Bˆ3+ F1 (All – 2226 queries) : 0.055
Bˆ3+ F1 (in KB – 1177 queries) : 0.101
Bˆ3+ F1 (not in KB – 1049 queries) : 0.003
Bˆ3+ F1 (NW docs – 1471 queries) : 0.067
Bˆ3+ F1 (WB docs – 755 queries) : 0.031
Bˆ3+ F1 (PER – 918 queries) : 0.064
Bˆ3+ F1 (ORG – 706 queries) : 0.039
Bˆ3+ F1 (GPE – 602 queries) : 0.056

Run-4 base system 6.1

Bˆ3+ F1 (All – 2226 queries) : 0.061
Bˆ3+ F1 (in KB – 1177 queries) : 0.114
Bˆ3+ F1 (not in KB – 1049 queries) : 0.003
Bˆ3+ F1 (NW docs – 1471 queries) : 0.071
Bˆ3+ F1 (WB docs – 755 queries) : 0.043
Bˆ3+ F1 (PER – 918 queries) : 0.068
Bˆ3+ F1 (ORG – 706 queries) : 0.044
Bˆ3+ F1 (GPE – 602 queries) : 0.068

