
The TALP participation at TAC-KBP 2012

E. Gonzàlez2, H. Rodrı́guez1, J. Turmo1, P.R. Comas1, A. Naderi1,
A. Ageno1, E. Sapena1, M. Vila3 and M.A. Martı́3

1 TALP Research Center, UPC, Spain.
2 TALP Research Center, UPC, Spain. Now at Google.

3 CLiC, Universitat de Barcelona, Spain.
{egonzalez,horacio,turmo}@lsi.upc.edu

{pcomas,anaderi,ageno,esapena}@lsi.upc.edu
{marta.vila,amarti}@ub.edu

Abstract

This document describes the work performed
by the Universitat Politècnica de Catalunya
(UPC) in its first participation at TAC-KBP
2012 in both the Entity Linking and the Slot
Filling tasks.

1 Introduction

Both Entity Linking (EL) and Slot Filling (SF) tasks
aim at extracting useful information in order to en-
rich a knowledge base. This document describes
the work carried out by the TALP research group of
the Universitat Politècnica de Catalunya in its first
participation at TAC-KBP 2012 in both the Entity
Linking and the Slot Filling tasks for English. The
purpose of this first participation has been mainly
exploratory, aiming at performing a preliminary as-
sessment of our approaches (one for EL, two differ-
ent ones for SF) and drawing conclusions on how to
improve them.

EL is the task of referring a Named Entity men-
tion to the unique entry within a reference knowl-
edge base (KB). TAC-KBP track defines the task of
EL as follows: having a set of queries, each one con-
sisting of a target name string along with a back-
ground document in which the target name string
can be found and a source document collection from
which systems can learn, the EL system is required
to select the appropriate KB entry. Queries gener-
ally consist of the same name string from different
docids. The system is expected to distinguish the
ambiguous names (e.g., Barcelona could refer to the
sport team, the university, city, state, or person). In

TAC-KBP 2012, we have sent one run and evaluated
our EL system just for Mono-lingual Entity Linking.
The run did not access the web and also did not use
query offsets during the evaluation.

In the SF task, the given set of queries is a set
of entity KB nodes that must be augmented by ex-
tracting all the new learnable slot values for the en-
tity as found in a large corpus of documents. SF in-
volves mining information from the documents and
therefore applies Information Extraction (IE) tech-
niques. We have only participated in the English
Mono-lingual Slot Filling task, submitting two runs.
Both runs differ in the IE approach employed to de-
tect possible query slot fillers in the candidate doc-
uments. The first approach is supervised (based on
distant learning), whereas the second one is com-
pletely unsupervised (based on minority clustering).

The rest of the document is structured as follows.
Section 2 describes the query preprocessing step,
shared by all the systems. Section 3 is devoted to our
Entity Linking approach. In section 4 we describe
our Slot Filling approaches, including the shared
document preprocessing step and the two different
IE approaches applied. Finally, section 5 presents
and analyses the results obtained in KBP 2012 by
our approaches in both tasks.

2 Query preprocessing

Query preprocessing consists of the following tasks:

• For both SF and EL, a crucial point is gen-
erating the set of alternate names, A, for the
query entity. For generating A we have used 4
sources of information: The query name (either

a word or a multiword) and its type, the avail-
able structured information and textual (non
structured) information from documents sup-
porting the query.

• For EL, classifying the query entity into the ap-
propriate query type (PER, ORG or GPE) using
the Stanford NERC1), over the reference docu-
ment attached to the query. For SF this process
is not needed because the type of the entity is
known.

• For SF, obtaining, when existing, the corre-
sponding node in KB. The facts associated to
this node are retrieved.

• For both SF and EL, we look at Wikipedia
(WP) for the possible existence of the corre-
sponding page. Disambiguation pages are dis-
carded. If some infobox is found their slots and
values are retrieved.

• For EL, if the type is GPE we look at geo-
graphic gazetteers (GNIS2 and GEONAMES3)
and select the corresponding entries.

The documents we use as knowledge sources are:

• The reference document attached to the query.

• For SF, when a KB node is included in the
query, the attached description document, if
existing, and the facts associated to this node
when containing free text.

• For both SF and EL when a WP page exists. the
textual content of the page is selected.

Using all these knowledge sources, our way of
building set A is the following: The set is initial-
ized with the query name scored with 1. Then a set
of enrichment procedures are iteratively applied un-
til no more alternate names are found. The new al-
ternate names are scored decresingly. There are two
types of procedures for generating altrenate names:
generic and type-specific. Generic procedures are
the following:

1http://nlp.stanford.edu/software/
CRF-NER.shtml

2http://geonames.usgs.gov/geonames/
stategaz

3http://www.geonames.org

Query Name Alternate names #
SF558 Barbara 1.0 Barbara Levy Boxer 37

Boxer 0.8 Barbara L. Boxer
0.64 B. L. Boxer
0.56 B. Boxer
0.49 Boxer
. . .

SF520 Hong Kong 1.0 Hong Kong Disneyland 30
Disneyland 1.0 HKDL

0.8 H. Kong Disneyland
0.8 Hong K. Disneyland
0.7 Hong Disneyland
. . .

Table 1: Examples of alternate names

1. We select a set of pairs (WP infobox, slot)
where slot refers to an alternate name (e.g.
formal name, alias, nickname, also known as,
etc.). If we have a WP page we extract these
values and insert them into A also with the
maximum score. We proceed in the same way
with the KB nodes using in this case available
facts.

2. We apply the SF corresponding to the generic
slot alternate name existing for both PER and
ORG, as described in section 4.

Specific procedures, applied iteratively over all
the current members of A:

1. For PER. We use a DCG grammar of English
person names for extracting the structure of a
complex name. For instance, from Paul Auster
our aim is to detect that the first name is Paul
and the family (main) name is Auster. We then
generate valid variants of the original name al-
ways preserving the family name. These vari-
ants are scored accordingly with the general-
ization degree, in our example: (P. Auster, 0.8),
(Auster, 0.6).

2. For ORG. We have developed a set of 12
acronym/expansion mapping functions owning
credibility scores which can be applied in the
two directions:

• Starting from an acronym we look up in
the textual description for the occurrence
of valid expansions applying our mapping

functions. We score the valid variants with
the credibility of the applied function.
• Starting from a complete form we perform

acronym detection equally scored.
• New forms of ORG names can be found

removing common company suffixes (e.g.
Inc, Company, etc.).

3. For GPE we extract all the variants existing in
the geographic gazetteers and score them with
the edit distance between the original form and
the variant.

Some examples of alternate names generated with
this procedure are shown in Table 1.

3 Entity Linking

Our approach is inspired by recent works on EL us-
ing graph-based methods such as (Guo et al., 2011;
Hachey et al., 2011; Han et al., 2011). It consists
of three steps for each query. Briefly, given a query,
we start by selecting those KB nodes which are can-
didates to be the correct entity for the query (candi-
date generation step). Then, we create a graph with
the selected candidates and information related to
them (graph generation step). Finally, we explore
the graph relations for ranking the candidates in or-
der to select the most appropriate one for the query
(graph-based ranking step).

The rest of this section describes our methods for
candidates generation and graph generation, as well
as the graph-based ranking approach.

3.1 Candidate Generation
As KB usually contains a large number of entries,
it is desirable to avoid brute force comparisions be-
tween a particular query and all KB entries and to
reduce the search space of potential candidates. Our
priority, however, is to generate a large candidate
set instead of a smaller one in order to increase re-
call (McNamee et al., 2010; Lehmann et al., 2010).

In order to get the set of candidates for a particular
query, q, our system performs two steps. First, the
query is preprocessed using the procedure described
in Section 2. So, q is classified as PER, ORG or
GPE, and the set A of alternate names for the query
name, m, is obtained. Then, the set of candidates,
C, for q is retrieved from the KB being each ci ∈ C
an entry corresponding to one of the alternate name.

3.2 Graph Generation

From C, we create a graph to represent knowledge
related to the candidates, which will be useful for
later selecting the most appropriate one for q. We
can describe the graph we use as follows:

The directed graph G=(V, E), where the
vertices set V contains nodes representing
all the candidates in C, the query, and the
property values for the candidates and the
query; and the directed edges set E con-
sists of all weighted labelled connections
between the vertices.

The graph is initialized to a set of disjoined nodes
corresponding to the elements of C. To enrich the
graph, we need to retrieve the informative parts of
each candidate from the KB entry: the set of facts
and the wikitext if it exists. In the case of facts,
considering each one as a property with a particu-
lar value, the property is represented as the label of
a directed edge in the graph, whilst the value is rep-
resented as a node connected by the edge from the
candidate. In the case of wikitext, we extract all NE
mentions of types PER, ORG, LOC and MISC from
the first 30 tokens.4 Here, we consider that the most
relevant information related to the candidate in the
wikitext is frequently described in the first part of
the text. Each extracted NE is represented as a node
connected with an unlabeled edge to the candidate.

Moreover, we also represent the query in the
graph by including a new node, q. Then, we take all
NEs occurring within the context of all sentences of
the background document in which the query name
occurs. These NEs are represented as new nodes in
the graph connected to the query node by an unla-
beled edge.

An example of a graph generated for the query
related to “Picasso” is depicted in Figure 1. Can-
didates for this query are “Pablo Picasso” a Span-
ish painter, “Paloma Picasso” a fashion designer
and the youngest daughter of “Pablo Picasso,”
and “Francisco Picasso” an Olympic and national-
record holding swimmer from Uruguay. Some prop-
erties of the first candidate are Place of Birth =
Málaga, Spain and Children = Paloma Picasso.

4The same NERC is used (Stanford NERC).

Figure 1: A graph for query name Picasso

Note that in the second case the relation is between
two candidates.

All edges have a weight which represents the de-
gree of dependency assigned to them. It is used to
model and measure the connectivity between nodes.
We have manually set these weights as follows. The
weights of edges obtained from KB facts are set
to 20, which is the highest weight, as we consid-
ered them as true information. The weights of those
acquired from the candidate wikitext are set to 5.
Moreover, the weights of edges related to the query
are set to 1.

3.3 Graph-Based Ranking

Given the graph G, the system has to select the
correct candidate as the KB reference of q. We
score all the candidates by comparing their similar-
ity/relatedness with the query node and select the
one having the highest score.

Consider that C = (c1, c2, . . . , cn) is the set of
candidate nodes, q is the query node in the graph
G, Pck = (P 1

ck
, P 2

ck
, . . . , Pmck) is the set of paths

between q and ck without considering direction of
edges, where each P ick is represented by the se-
quence of weights corresponding to the edges in the
path, P ick = 〈w1, w2, . . . , wr〉, and sck is the score
of the candidate node ck, then:

sck =

{ ∑
P i
ck
∈Pck

∑
wj∈P i

ck
wj if Pck 6= ∅

0 if Pck = ∅
(1)

Assuming mq as the query name and S = {sck},
the link between mq and KB is obtained as follows:

link(mq) =

{
c if ∃c ∈ C : sc = max(S) ≥ β
NIL otherwise

(2)

where, β is a threshold, different for each query type
estimated using the first 100 queries of KBP 2011
manually tagged.

Figure 2 shows a sample graph structure. As
shown in this figure, consider three candidates C =
(c1, c2, c3) for a particular query q in the graph.
Each candidate is connected to their corresponding
properties by the directed edges. Each edge has an
assigned weight, w. The initial score for the candi-
dates, sc1 , sc2 and sc3 , is 0 and the initial one for the
query, sq, is 1. Then, each candidate is scored by the
products of sq and the sum of weights for all paths
from q to the candidate. In the example:

sc1 = sq · (w2
q + w1

c1)

sc2 = sq · (w2
q + w1

c2) + sq · (w1
q + w2

c2)

sc3 = 0,

(3)

wherewji stands for the weight of the j-th edge from
node i.

We select the best scored candidate and return it
as our solution if the score is over the threshold β.
Otherwise the result is NIL.

In the case of NIL, sometimes, several EL queries
refer to the same non-KB (NIL) entity. In these
cases, these queries should be collected into one
identifiable NIL cluster. For NIL clustering, those
queries belonging to the same cluster take the same
NIL id in the form of NILxxxx being xxxx a natural
number. The method that we apply for NIL cluster-
ing is similar to the approach for ranking candidates.

If query q in the graphG results NIL, then we cre-
ate a NIL graph (GNIL) that represents several clus-
ters, each one including previous queries related to
the same non-KB entity. Each cluster is represented
just with its first NIL query (i.e. the medoid) and its

Figure 2: A sample view of our graph structure

Figure 3: Sample NIL clustering graph

properties. The goal of our NIL clustering method
is to select the cluster (i.e., the medoid) to which the
query belongs and to assign the corresponding NIL
id.

In Figure 3, we show a sample NIL clustering
graph, (GNIL). This graph contains three clus-
ters. The medoid of each cluster is labeled by
both the query id and the NIL id. As depicted
in this figure, these medoids are “EL ENG 01305,”
“EL ENG 00207” and “EL ENG 00812.” These
nodes are linked to their corresponding proper-
ties. Additionally, a NIL query is temporarily
joined to GNIL to infer the cluster to which NIL
query belongs. The NIL query has two dis-
tinct paths to “EL ENG 01305” and one path to
“EL ENG 00207.”

In order to generate GNIL, we use the same pro-
cedure as the one used for generating G when using
the textual information. However, in this case, the
weights of the resulting edges are set to 1 given that
all the properties are extracted from the background
documents.

Then, we proceed to find the most appropriate
medoid for the NIL query node. This is performed
using Equations 1 and 2 with medoids as candidates,
C, and β∅ as threshold. If the NIL query node is
linked to a medoid following Equation 2, then the id
of the medoid is assigned to the NIL query and the
NIL query node is deleted. Otherwise, a new id is
assigned the NIL query and the NIL query node is
joined to GNIL as the medoid of a new NIL cluster.

In Figure 3, if the score of the node labelled
“EL ENG 01305” is greater than β∅, its NIL id
(“NIL0865”) is taken for the query result and NIL
query is eliminated from GNIL.

4 Slot Filling task

The UPC system for Slot Filling consists in three
steps: 1) preprocessing the document collection in
order to collect those documents relevant for each
query, 2) applying Information Extraction (IE) pat-
terns to the relevant documents to achieve possible
fillers for the slots required for each query, and 3) in-
tegrating the resulting slot fillers into the KB knowl-
edge base by normalising extracted fillers (i.e., se-
lecting the most specific fillers under subsumtion for
a particular slot, and normalising dates).

We have developed two different IE pattern learn-
ing approaches for our exploratory participation in
KBP 2012: the first approach based on distant learn-
ing and the second one based on unsupervised learn-
ing. The rest of this section describes the prepro-
cessing of the document collection as well as both
learning approaches.

4.1 Document preprocessing

Prior to evaluation of KBP 2012, the document col-
lection was indexed using Lucene5 by all the words
occurring in the documents.

At evaluation time, a preprocess has been per-
formed in two steps for each query. The first step

5http://lucene.apache.org/

consists in retrieving the set D of documents con-
taining at least one alternate name of the query ex-
panded as described in Section 2 for the SF task.
However, given the ambiguity of proper names,
some of the retrieved documents could be related to
a real entity different to the required one (e.g., re-
trieving documents related to Paul Watson -the envi-
ronmental activist- can result with some documents
related to other Paul Watson -the writer, the film
maker, and so on-). This is why the second step of
the preprocess consists in selecting the set D̂ ⊂ D
of documents really relevant for the query.

In order to obtain D̂ from D, a particular
relevance-feedback approach is performed. This ap-
proach is based on the assumption that lemmas fre-
quently found in the close context to an occurrence
of a NE can be useful to disambiguate it. The pro-
cedure starts preprocessing all the documents in D
to get lemmas and POS tags of all words, as well
as to detect NE occurrences. The initialization step
consists of:

L = ∅
D̂ = {dq}, the query reference document

Then, the following steps are iteratively per-
formed:

1. Grow the set L of contextual lemmas6 for all
the alternate names of the query occurring as
NEs in documents belonging to D̂.

2. Select the subset K ⊆ L of the most relevant
contextual lemmas as described below.

3. Grow D̂ with those documents from D in
which at least one lemma belonging to K oc-
curs within the context of an alternate name.

4. Repeat from step 1 until D̂ does not change.

Set K is obtained in two steps. First, L is sorted
by score s∗i as follows:

s∗i =
si −minjsj

maxjsj −minjsj

si = log
F (li)

f(li)
· f(li)∑

f(lj)

6We use a centered window of 5 noun, verb or adjective lem-
mas to the left/right of each alternate name occurrence.

where 1 ≤ i, j ≤ |L|, F (li) is the frequency of
lemma li inD and f(li) is the frequency of lemma li
when it occurs as contextual lemma in D̂. Then, the
minimun set of lemmas {li} ⊂ L with greater score
is automatically selected as K. Intuitivelly, this can
be approached by selecting as threshold lth that li
supporting the maximum convexity of the curve de-
fined by sorting set L by score s∗i . This can be com-
puted using the following equation:

lth = argmini

√
s∗i

2 − (i/max i)2

where 1 ≤ i ≤ |L|.

4.2 Distant-Learning Approach
Our first run in the SF task of KBP 2012 follows
the distant learning (DL) paradigm for Relation Ex-
traction (RE). DL was initially proposed as a RE ap-
proach by (Mintz et al., 2009) and applied to the SF
task in preceeding KBP contests by several groups
such as (Agirre et al., 2009; Surdeanu et al., 2010;
Garrido et al., 2011). DL uses supervised learning
but the supervision is not provided by manual an-
notation but from the occurrence of positive training
instances in a KS or reference corpus. In the first
proposal, (Mintz et al., 2009) used Freebase, an on-
line database of structured semantic data, as KS. In
subsequent applications, Wikipedia (WP) infoboxes
have been preferred due to its better precision, at a
cost of a drop in recall. In our case we have chosen
WP too. Our distant learning approach to the task
consisted of the following steps:

1. From a local copy of the English WP,7 we auto-
matically locate the set of pages corresponding
to PER and the corresponding to ORG. For do-
ing so we used the links between WP pages and
WP categories as well as the graph structure of
WP categories. Let PagesPER and PagesORG
be these sets.

2. We used the mapping between the generic
slots and the specific slots occurring in WP
infoboxes provided by the organization. Ta-
ble 2 shows, as an example, the set of spe-
cific slots corresponding to the generic slot

7http://en.wikipedia.org/wiki/English_
Wikipedia. We use for this purpose the JWPK software by
Iryna Gurevich: http://www.ukp.tu-darmstadt.de/
software/jwpl

full name nickname full name
othername full name name
burthname pseudonym nicknames
othername(s) name alias
native name playername fullname
birth name birth name stage/screen
aliases subject name name
other names alias other names
birthname birth name realname
othernames othername(s) names
also known as nickname

Table 2: Specific slots for the generic slot
per:alternate names

per:alternate names. As shown in Figure 4,
WP pages can include both structured (in-
foboxes, itemized lists. . .) and unstructured
material (text). We took advantage of page in-
foboxes and page textual content. For all the
pages in either PagesPER or PagesORG we
collected all the occurring infoboxes, slots and
values resulting in a set of tuples: <page name,
generic slot, infobox name, specific slot, slot
value>. Let PagesSlotsValuesPER and PagesS-
lotsValuesORG be these sets. Extracting the
values of an specific slot is in some cases easy
(e.g. for single-valued slots with a precise type,
as per:date of birth) but in many others it is
difficult. In Table 3 some examples of val-
ues for the generic slot per:date of death are
shown. Using the Alergia system, (Carrasco
and Oncina, 1994), we have learned regular
grammars of the slots’ values for allowing their
extraction. In fact, the number of learned gram-
mars is smaller than the number of slots be-
cause some of the values are of the same type,
for example the DATE grammar can be used for
the slots date of birth and date of death.

3. For each of the tuples in PagesSlotsValues-
PER and PagesSlotsValuesORG we extracted
the patterns occurring in the text corresponding
to the page. For doing so we obtained the possi-
ble alternate names of the page name using the
same procedure described in section 2. A sim-
ilar process is carried out for the slot values,

Figure 4: Example of WP page

Occured Value Extracted Value
[October 16] , [1952] October 16, 1952
[March 7] [322 BC] March 7 322 BC

[748]([Arabian Peninsula]) 748
[1368] or [1377] ?

[406 AH] (1015 AD) 1015 AD
25 June , 1274 25 June , 1274

(still alive in 1974) ?
alive ?

‘circa’ 1126 1126 circa
[1663] (age 23) 1663

Table 3: Examples of values found for the generic slot
per:date of death

for instance for the slot per:date of birth if the
value is 27 April 1945, also 27-04-1945, April
1945, and 1945 are considered as valid vari-
ants (the same grammars used for extraction are
used here for generation). As can be seen the
process is far to be simple. Two sets of alternate
names, alternateNamesX and alternateNamesY
were obtained. We looked on the text for all the
occurrences of alternateNamesX(X0, . . . Xn)
and alternateNamesY(Y0, . . . Ym). For each
pair of occurrences (Xi, Yj) we collected the
sequence of words occurring between them
and we grouped together all the patterns cor-
responding to each generic slot. We built
in this way the multiset (a set with fre-

quency counts for all the members) Pat-
ternsGenericSlot. This process resulted in
collecting 9,064 patterns for ORG (rang-
ing from 70 for org:city of headquarters, up
to 2,573 for org:political religious affiliation)
and 6,982 patterns for PER (from 23 for
per:cause of death to 588 for per:title) with
very variable accuracy. In Table 7 some ex-
amples of the 57 patterns for the generic slot
per:date of birth are shown.

Once the set of patterns for each generic slot was
built (only the most frequent patterns are selected)
the process of extraction can be performed as shown
in the following steps.

1. For each query we expanded the name onto a
set of alternate names containing name vari-
ants of the query name (the corresponding al-
ternateNamesX).

2. We retrieve from Lucene the documents con-
taining any of the variants in alternateNamesX.
Some filtering processes were performed in the
case of recovering a huge amount of documents
(looking only for the more precise variants,
e.g., for John Smith one of the variants is Smith
which results on a extremely huge number of
mostly irrelevant documents, constraining the
search to the whole term John Smith could re-
duce this set to a manageable size, namely, a
maximum of 1,000 documents per query.

3. For each query we tried to apply all the patterns
corresponding to each generic slot to all the re-
trieved documents. So if (X0, . . . Xn) are the
variants of the query name and Patternsgener-
icSlot contains the patterns of a generic slot we
look for the occurrences of an Xi followed by
a pattern. The text following this pattern is thus
a candidate to be the value of such slot. For
locating the right limit of this text we used the
same grammars used for extraction in step 2.

4.3 Unsupervised learning approach
Our second approach for learning IE patterns is
completely unsupervised from the point of view of
using annotated slot-filler examples. Our goal is
to explore the approapriateness of using clustering

techniques to discover patterns useful to detect rel-
evant relations between pairs of named entity types
occurring in text, and then, classifying the relevant
relations into the set of possible slots in an unsuper-
vised maner. Following, we describe both the rela-
tion detection pattern learning approach and the re-
lation classification approach.

4.3.1 The relation detection approach
For each slot in a template of the KBP scenario

of extraction, we can define the pair (t1, t2) as the
pair of entity types associated to the template itself
(t1 can be ORG or PER) and to the slot (t2 can be
AGE, PER, ORG, CITY, COUNTRY, RELIGION,
CHARGE, and so on). For each (t1, t2), the pro-
cedure starts by gathering the set X of entity pairs,
xi = (e1, e2), being t1 and t2 the entity types of e1
and e2, respectively, and co-occurring in sentences
of the document collection. Most of the pairs xi will
not be linked by any particular relation. In fact, a
minority of them will be effectively related. In this
context, minority clustering can be used to detect
groups of related entity pairs as foreground clusters
and discard non-related ones as background noise.

Based on these assumptions, our goal in KBP
2012 is to perform initial experiments using the En-
semble Weak minOrity Cluster Scoring (EWOCS)
algorithm (Gonzàlez and Turmo, 2012). Concretely,
we have used the default configuration to deal with
the relation detection task (Gonzàlez and Turmo,
2009; Gonzàlez, 2012), RD-EWOCS up to now,
which is briefly described below.

Figure 5 depicts the RD-EWOCS general algo-
rithm. It requires to represent each example as a
binary feature vector. The default features used to
represent each entity pair xi ∈ X are described in
Table 4. The algorithm consists in two main steps:
the scoring of the set of entity pairs related to a par-
ticular (t1, t2) and the filtering of the relevant pairs.

Scoring. Briefly, using an individual weak cluster-
ing algorithm f , we randomly produce R clustering
models, π = π1, . . . , πR where R = 100 by default,
fromX . The default f for RD-EWOCS is a Random
Bregman Clustering algorithm, a partition clustering
algorithm which consists of the following steps:

• For each clustering model πc = {πc1, . . . , πck}
randomly select both the number of clusters

Feature Description
rightly/lefty the first NE type t1 occurs to the right/left of t2

structural dist X distance in tokens between the pair is X
ch dist X distance in chunks between the pair is X
left X Y /right X Y token X positions before/after to the left/rightmost NE of the pair has POS Y
lmid X Y /rmid X Y token X positions after/before to the left/rightmost NE of the pair has POS Y

word l left X Y /l right X Y token X positions before/after to the left/rightmost NE of the pair has lemma Y
based l lmid X Y /l rmid X Y token X positions after/before to the left/rightmost NE of the pair has lemma Y

n left X/n right X token X positions before/after to the left/rightmost NE is a negative word
n lmid X/n rmid X token X positions after/before to the left/rightmost NE is a negative word
ch left X Y /ch right X Y chunk X positions before/after to that containing the left/rightmost NE of the pair

has type Y
ch lmid X Y /ch rmid X Y chunk X positions after/before to that containing the left/rightmost NE of the pair

has type Y
chunk
based

chl left X Y /chl right X Y chunk X positions before/after to that containing the left/rightmost NE of the pair
has a head with lemma Y

chl lmid X Y /chl rmid X Y chunk X positions after/before to that containing the left/rightmost NE of the pair
has a head with lemma Y

cht left X Y /cht right X Y chunk X positions before/after to that containing the left/rightmost NE of the pair
has a head with POS Y

cht lmid X Y /cht rmid X Y chunk X positions after/before to that containing the left/rightmost NE of the pair
has a head with POS Y

Table 4: Default feature set for RD-EWOCS

Figure 5: RD-EWOCS general algorithm

k ∈ [2, kmax], where kmax = 50 by default,
and the k seeds, {xc1, . . . , xck}.

• For each entity pair xi ∈ X and cluster πcj ∈ πc
compute membership grades using a Gaussian-
kernel distance as Bregman divergence as fol-
lows:

grade(xi, π
c
j) =

e−D(xcj ,xi)∑k
q=1 e

−D(xcq ,xi)

D(x, y) = 2α(1− e−γ‖x−y‖
2

)

where, parameters α and γ are automati-
cally tuned in an unsupervised maner with the

SOFTBBC-EM algorithm (Gupta and Ghosh,
2006).

• For each cluster πcj ∈ πc compute normalized
sizes, size∗, as the product of the number of
non-empty clusters8,Kc, with the sum of mem-
bership grades of all pairs xi ∈ X:

size∗(πcj) = Kc · size(πcj)

size(πcj) =
∑
xi∈X

grade(xi, π
c
j)

Kc = |{πcj |size(πcj) ≥ 1}|
8A cluster is non-empty if its size is greater or equal than a

threshold. By default, this threshold is 1.

Once π has been computed, each pair xi is scored
as the average of scores sci achieved with each clus-
tering model πc ∈ π:

s∗i =

∑
πc∈π s

c
i

R

sci =
∑
πc
j∈πc

grade(xi, π
c
j) · size∗(πcj)

Filtering. Using the same idea as for filtering the
most relevant documents in the preprocess (see Sec-
tion 4.1), the set X̂ of those pairs having greater or
equal score than the one supporting the maximun
convexity of the curve, xth with score sth, is con-
sidered as the set of relevant entity pairs:

X̂ = {xi ∈ X|s∗i ≥ sth}

sth = mini

√
s∗i

2 − (i/max i)2

4.3.2 The relation classification approach
The unsupervised pattern-detection we have de-

scribed so far, produces a set of entity pairs (e1, e2)
that are related. But the exact nature and meaning
of this relation remains unknown. Thus, we imple-
ment an unsupervised classification method that as-
signs each entity pair to the most likely template slot
defined in the KBP evaluation.

Our method comprises two steps: first, the re-
lations are separated according to the entity types
(t1, t2). For each type pair we do an agglomerative
clustering that groups the similar relations into some
clusters. Second, we use an unsupervised similarity
measure to map each cluster to one of the template
slots available for this specific pair of types.

Clustering. To cluster the relation examples,
we group them according to the entity types
such as (person,date), (person,location), (organiza-
tion,date), and then perform a clustering of each
group. Each example is represented as a binary fea-
ture vector, as in the relation detection step. Here
we use a subset of the features from Table 4, namely
lemmas of tokens and lemmas of chunks in a win-
dow of size 5. The clustering algorithm we use is a
simple agglomerative clustering with euclidean dis-
tance. The hierarchical clustering produces a den-
drogram and we use the Calinski criterion (Calin-
ski and Harabasz, 1974) to find an optimum cutting

level. A separate clustering is performed for each
pair of entity types.

The idea behind this process is to obtain groups of
similar relations, ideally, one different relation per
cluster.

Mapping. Assuming that each cluster obtained in
the previous step corresponds to one different re-
lation, in this step we try to map each cluster to
one of the template’s suitable slots for that pair (e.g.
the pair (person,organization) can correspond to the
slots: employee of and member of). Human experts
have selected what t2 types are the most suitable for
each slot.

The mapping is set through an unsupervised pro-
cess as follows: we take the description field (ds)
from the official slots definition document (Ellis,
2012) corresponding to the pair (t1, t2). This de-
scription is compared to the set of all relation exam-
ples in a cluster (each one is a sentence) concate-
nated in a single text Ss. We compare them using
the textual semantic similarity measure of (Corley
and Mihalcea, 2005).

This scoring scheme considers the similarity be-
tween pairs of words from two text segments, at-
tempting to find for each word the most similar word
in the other segment. The similarity between a pair
of words is scored using the metric introduced by
(Lin, 1998), which takes into account the informa-
tion content (IC) of each word and their least com-
mon subsumer (LCS) in the WordNet taxonomy:

sim(v, w) =
2 · IC(LCS(v, w))
IC(v) + IC(w)

Finally, the word-to-word similarities are com-
bined together into a text-to-text similarity using this
function:

sim(ds, Ss) =

∑
pos

∑
w∈{dspos}

maxSim(w) · idfw

∑
w∈{Tipos}

idfw

which takes into account part-of-speech tags. This
function is directional, we combine both directions
by averaging them into a single symmetric similarity
measure.

All PER ORG GPE

All
Docs

Overall 0.421 0.599 0.382 0.194
In-KB 0.311 0.603 0.138 0.192
NIL 0.545 0.595 0.538 0.203

NW
Docs

Overall 0.460 0.620 0.426 0.201
In-KB 0.344 0.630 0.150 0.197
NIL 0.582 0.611 0.587 0.232

Web
Docs

Overall 0.344 0.533 0.322 0.181
In-KB 0.253 0.535 0.126 0.183
NIL 0.461 0.531 0.463 0.169

Table 5: TALP UPC ML-EL results in TACKBP 2012
(B-cubed+ F-score)

5 Results and Analysis

5.1 Entity Linking
We sent one run for the TACKBP 2012 EL evalu-
ation with following specifications: using wikitext,
no access to the Web and without using offset. Ta-
ble 5 shows our results. It shows B-cubed+ F-scores
for both In-KB and NIL queries. Our overall re-
sult for all entities and both Newswire (NW) and
Web documents is 0.421. We have better score for
the PER entity type (0.599) in comparison to ORG
(0.382) and GPE (0.194) types. For ORG, one rea-
son is because of difficulty to expand correct forms
from acronyms, for instance “ABC” can refer to
“American Broadcasting Company” or “Australian
Broadcasting Corporation.” In the case of GPE,
the problem occurs because there are many geo-
political entities with the same name, for instance
“Hamilton” may refer to a region in the “New South
Wales,” “Queensland,” “South Australia,” “Tasma-
nia” or “Victoria.” The results are also better for
NW documents in comparison to Web documents.
We think that the reason can be the grammar irregu-
larities found in the Web documents.

Analyzing the results shows that we should im-
prove our system in several directions:

• In our run, the pair of offsets for start and end
location of the query name in the background
document was not used. Then, in the case that
for a particular query (e.g., Hamilton) two or
more different NEs in the background docu-
ment (e.g., David Hamilton and Daniel Hamil-

Run P R F1
Run1 0.224 0.043 0.072
PER 0.241 0.058 0.093
ORG 0.152 0.017 0.031
Run2 0.013 0.005 0.007
PER 0.015 0.002 0.003
ORG 0.012 0.011 0.012

Table 6: TALP UPC SF results in TAC KBP 2012

ton) are found, then the offsets are needed to
solve the ambiguity.

• When classifying a query, our NERC could not
properly identify the query types PER, ORG, or
GPE for some queries. This problem caused the
generation of irrelevant potential candidates.

• We need to develop an appropriate method to
estimate the NIL threshold (β∅). In our partici-
pation the selection was done adhoc.

• We did not take into account the edges la-
bels during the computation of the scores for
candidate ranking. For this reason our rank-
ing procedure is not able to discriminate be-
tween very similar relations or properties (e.g.,
date of birth and date of death). The lack of
this analysis caused a big drop in the EL scores.

• We did not use any external resource such as:
1) The lists of name variation based on hyper-
links and redirects, 2) a particular KB derived
from Wikipedia or external corpora to check
the correctness of facts or aliases, or 3) a train-
ing data set derived from Wikipedia.

From our point of view, the reasons described
above do not invalidate the graph-based approach, as
most of the recent research devoted to EL explores
similar approaches. In this sense, we think that there
is room enough to improve our results.

5.2 Slot Filling

Regarding SF, we submited the distant-learning
based approach and the unsupervised based one as
Run1 and Run2, respectively. Table 6 shows the re-
sults achieved.

For Run1, the statistics of the official results were
of 0.04 Recall, 0.22 Precision and 0.072 F1. These
results are not bad in terms of Precision (0.11 me-
dian) but are very low in terms of Recall (0.08 me-
dian). As we do not use any confidence scoring for
our answers, NIL is assigned to slots to which no
valid assignement has been found. So, for analysing
our errors we focus on not NIL answers. For Run2,
the results for both types of queries, PER and ORG,
are very poor. We achieved 0.005 and 0.016 for Re-
call and Precision, respectively.

First we present an analysis of the query and doc-
ument pre-processes, common to both runs.

Regarding both query and document preprocess,
a white box evaluation has been carried out taking
as a reference V1 of the Assessment Results pro-
vided by the organisation. Therefore, we have com-
puted the total recall according to the documents that
have been successfully used to extract any correct
slot value for any of the slots of the 80 queries (filler
judgement column equal to 1).

The recall of the IR phase has been 0.96. A
20% of the documents not found in this step were
due to the fact that we failed to include the query
names followed by a saxon genitive in the list of
alternate names, while 77% of them were due to
problems in the generation of the alternate names
(missing diminutives, such as “Cathie Black,” too
general names such as “Arsenal,” etc.). Recall for
PER queries was 0.98, whilst for ORG queries it was
0.95. Even though this difference is not very signif-
icant, we have seen that the generation of alternate
names for ORG queries performed worse than for
PER queries, due to the less robust methods applied
to the task, specially for the case of acronym expan-
sion/compression, as discussed in Section 5.1. The
average number of alternate names per query was of
10.5 for PER and 2.9 for ORG.

As to the result of the subsequent process of se-
lection of relevant documents, the recall was 0.83
(0.92 for PER queries, 0.78 for ORG ones). This
is partly due to the fact that there were some queries
for which, wrongly, just the reference document was
found as relevant. The reason for such behaviour
was our assumption that alternate names of queries
occur as NEs in preprocessed documents. However,
this fact strongly depends on the accuracy of the
NERC system used. In particular, no alternate name

has been recognised as NE for the reference doc-
ument of some queries with the NERC system we
used. As a consequence, the set of keywords use-
ful to retrieve more relevant documents is empty for
these queries. This makes our relevant feedback ap-
proach stop without providing more documents than
the reference ones. Specifically, we discovered that
for 13 queries no document other than the reference
one was retrieved and for 8 other queries less than
4 document were retrieved. On the other hand, this
filtering process turns out to be important as to the
reduction in the number of documents: the average
number of 1,866 documents found by the IR process
is reduced to 611 documents, with an average reduc-
tion of 49.94% (56% for PER queries, 43% for ORG
ones).

Now, focussing on the analysis of features spe-
cific this run, we proceed grouping the results in two
axes: queries and slots.

From the queries axe we observe that the distri-
bution of correct answers is extremelly query bi-
ased. In fact most of the queries have no answers
at all (only 13 from the 40 PER queries and 4 from
40 ORG queries generated some results). This ex-
plain our low Recall figures. A second observation is
the extremelly unbalanced performance of our sys-
tem for PER and ORG: 66 correct answers were ex-
tracted in top position for PER (0.24 Precision) but
only 12 for ORG (0.15 Precision).

Moving to the slot axe we discover that 12 out
of the 16 ORG slots produce no results (only 7 for
PER). We have manually analyzed a sample of 25
patterns from the pattern sets of all the slots. The re-
sults were significant: for PER, all but one (per:age)
of the slots got an accuracy over 0.9, while for ORG
only one slot (org:alternate name) got an accuracy
over 0.5.

The reasons why this happens are multiple:

• PagesORG are less accurate than PagesPER
possibly due to the difficulty of obtaining the
set of relevant categories for ORG. Getting the
relevant WP categories for PER is straigthfor-
ward. This is not the case of ORG where cat-
egories are spread within the whole set of WP
categories.

• Less infoboxes are filled for ORG.

Pattern
was born in
born
on <DATE> in
in
<DATE> in
born in
was born on
was born on <DATE> in
<DATE>
was born
was born and raised in

Table 7: Some of the best scored patterns for the generic
slot per:date of birth

• ORG generic slots mappings are less reliable
than PER ones, For many slots the grammars
used are really precise (as DATE or PLACE) in
the case of PER, but present a great variabil-
ity in the case of ORG. Locating a PERSON, a
DATE or a LOCATION within a value string is
easier than locating an ORGANIZATION.

• The patterns extracted for PER are in many
cases very short (as shown in Table 7) and fre-
quent. This is not the case for ORG where
many patterns are long and occur with very low
frequency.

• Most of generic slots for PERSON are single-
valued, in the case of ORG the situation is the
contrary.

• While persons use to show a similar profile, or-
ganizations, present a great variability, for in-
stance a political PARTY or a football TEAM
have few points in common.

• Sometimes the mappings between generic and
specific slots provided by KBP organizers were
not accurate enough. For instance, for per:age,
the slots contain a large number of varied word-
ings cointaining the age together with many
other useless and noisy information. The gram-
mar learned from this material is obviously ex-
tremelly unaccurate.

Focusing on Run1, the main reasons why we ob-
tain poor results, besides those presented above for
preprocessing steps, are the following:

• According to (Gonzàlez, 2012), EWOCS per-
formance improves if the size of the ensemble
of clusterings is selected taking into account the
size of the data set, so that large data sets re-
quire large ensembles. In this sense, we think
that our unsupervised approach requires much
more than 100 clusterning models to achieve
good results for detecting slot fillers in KBP
corpus. This does not unduly penalize the effi-
ciency of the system given that the computation
of the clustering models can be paralelized.

• The process of clustering and mapping we have
presented in Section 4.3.2 finds the KBP slot
that best matches the semantic content of the
examples present in each cluster. But due to
the high degree of unsupervision, these pro-
cedure does neither guarantee that all clusters
will be mapped to a different slot, nor that all
slots will have an assigned cluster. Addition-
ally, with this method it is not possible to de-
cide that a cluster is not capturing any of the
relations expressed by the slots and therefore
these examples should be filtered out. This may
be a serious drawback in some cases. For ex-
ample, nothing prevents the system from learn-
ing a classifier that splits the relations involv-
ing the (organization,person) into three clusters
and assigns all of them to the org:shareholders
slot and none to the org:founded by slot.

Taking into account all these points, we think that
there is room enough for improvements in both ap-
proaches presented to deal with SF task.

Acknowledments

This work has been produced with the support of the
project KNOW2 (TIN2009-14715-C04-04).

References

E. Agirre, A. X. Chang, D. S. Jurafsky, C. D. Manning,
V. I. Spitkovsky, and E. Yeh. 2009. Stanford-UBC at
TAC-KBP. In Proceedings of the Second Text Analysis
Conference (TAC 2009).

T. Calinski and J. Harabasz. 1974. A dendrite method
for cluster analysis. In Communications in Statistics-
theory and Methods.

R. C. Carrasco and J. Oncina. 1994. Learning stochastic
regular grammars by means of a state merging method.
In Grammatical Inference and Applications. Springer-
Verlag.

C. Corley and R. Mihalcea. 2005. Measuring the se-
mantic similarity of texts. In Proceedings of the ACL
Workshop on Empirical Modeling of Semantic Equiv-
alence and Entailment, EMSEE ’05.

J. Ellis. 2012. TAC KBP Slots, Version 2.4. Linguistic
Data Consortium.
http://www.nist.gov/tac/2012/KBP/task guidelines/.

G. Garrido, B. Cabaleiro, A. Pe
nas, A. Rodrigo, and D. Spina. 2011. Distant super-
vised learning for the TAC-KBP Slot Filling and Tem-
poral Slot Filling Tasks. In Text Analysis Conference
(TAC 2011).

E. Gonzàlez and J. Turmo. 2009. Unsupervised relation
extraction by massive clustering. In Proceedings of
the 9th IEEE International Conference on Data Min-
ing (ICDM).

E. Gonzàlez and J. Turmo. 2012. Unsupervised en-
semble minority clustering. In Research report. De-
partment of Llenguatges i Sistemes Informátics (LSI -
UPC).

E. Gonzàlez. 2012. Unsupervised Learning of Relation
Detection Patterns. Ph.D. thesis, UPC Programme in
Artificial Intelligence.

Y. Guo, W. Che, T. Liu, and S. Li. 2011. A graph-based
method for entity linking. In 5th International Joint
Conference on Natural Language Processing.

G. Gupta and J. Ghosh. 2006. Bregman bubble cluster-
ing: A robust , scalable framework for locating mul-
tiple, dense regions in data. In Proceedings of the
6th IEEE International Conference on Data Mining
(ICDM).

B. Hachey, W. Radford, and J. R. Curran. 2011. Graph-
based named entity linking with wikipedia. In Lecture
Notes in Computer Science, Volume 6997.

X. Han, L. Sun, and J. Zhao. 2011. Collective en-
tity linking in web text: A graph-based method. In
Proceedings of the 34th International ACM SIGIRC-
conference on Research and Development in Informa-
tion Retrieval.

J. Lehmann, S. Monahan, L. Nezda, A. Jung, and Y. Shi.
2010. LCC approaches to knowledge base population
at tac 2010. In Text Analysis Conference.

D. Lin. 1998. An information-theoretic definition of
similarity. In Proceedings of 15th International Con-
ference on Machine Learning (ICML).

P. McNamee, H. T. Dang, H. Simpson, P. Schone, and
S. M. Strassel. 2010. An evaluation of technologies
for knowledge base population. In Proceedings of 7th
International Conference on Language Resources and
Evaluation (LREC).

M. Mintz, S. Bills, R. Snow, and D. Jurafsky. 2009. Dis-
tant supervision for relation extraction without labeled
data. In Proceedings of the ACL-AFNLP Joint Confer-
ence. ACL, August.

M. Surdeanu, D. McClosky, J. Tibshirani, J. Bauer, A. X.
Chang, V. I. Spitkovsky, and C. D. Manning. 2010. A
simple distant supervision approach for the TAC-KBP
slot filling task. In Proceedings of the TAC-KBP 2010
Workshop.

