
UGent Participation in the TAC 2012 Entity-Linking Task

Laurent Mertens, Thomas Demeester, Johannes Deleu, Piet Demeester, Chris Develder

INTEC - IBCN

Ghent University, Ghent, Belgium

firstname.surname@intec.ugent.be

Abstract

This article describes in detail the system used

by the UGent-IBCN team for participating

in the Text Analysis Conference (TAC) 2012

Mono-Lingual Entity-Linking task. The pre-

sented system is essentially rule-based, fol-

lowing a generic framework that is highly op-

timised for each label (i.e. with different rules

for persons, organisations, and locations). The

main contribution of this work is in identify-

ing a number of label-specific issues and pre-

senting simple heuristic solutions that yet al-

low building an efficient and effective system.

These treated issues include resolving abbre-

viated organisation names, resolving popular

nicknames, or taking into account American

vs British spelling.

1 Introduction

We approached the TAC 2012 English Entity-

Linking task as a Named Entity Disambiguation

problem (NED). The system we devised consists

first of a Named Entity Recognition (NER) part,

which we relegate to an external NER engine, fol-

lowed by an NED part, in which we try to link,

if possible, the recognised named entities to corre-

sponding entities in the TAC Knowledge Base (KB).

Our system can be subdivided into four distinct

phases. Starting from the TAC KB and the TAC ar-

ticle collection, we:

1. Extract specific information from the KB.

2. Apply NER to the articles.

3. Extract specific information from the NER out-

put.

4. Apply our entity-linking system to the dataset,

using all the information gathered in the previ-

ous steps.

Given a mention, we look for valid candidates in

the TAC KB mainly using well-chosen string com-

parisons with known surface forms for the KB en-

tries. The subsequent scoring of these candidates is

done mainly through the determination of the tex-

tual overlap between an article and the candidate’s

description in the KB, looking for known facts about

a candidate that also appear in the article, and look-

ing if the entities referring to, or referred to by this

candidate in the KB, also figure in the article. Of-

ten though, a mention is a derivation, or alternate

form, of an entity’s real name. We focused on a few

specific cases: abbreviations of organisation names,

nicknames and subtle differences between US and

UK spelling.

After a brief overview of related work, each of

the steps of our system is described in detail, and its

effectiveness is illustrated with several experiments.

The paper ends with some conclusions and notes on

future research.

2 Related Work

Entity-Linking is the task of determining whether a

named entity (e.g. a person, organisation or loca-

tion) mentioned in a text refers to an existent entry in

an external knowledge base (e.g. an encyclopedia).

This task is a natural evolution of the Coreference

Resolution problem, which has as goal to determine

whether two or more mentions in a same document

refer to the same physical entity, without necessar-



ily providing any link to (any representation of) said

physical entity (Soon et al., 2001).

Cross-document Coreference Resolution is this

same problem applied to mentions accros different

documents. (Bagga & Baldwin, 1998) noted that

this problem differs from the within-document case

because one can not expect different documents con-

taining identical mentions to be coherent, and be-

cause the linguistics related problems for within-

document coreference get amplified when breaking

the document boundary. Their approach is based on

a Vector Space Model (VSM), where the compar-

ison of mention-specific summaries for each docu-

ment are used to decide upon the link between enti-

ties. Their work was further expanded by (Gooi &

Allan, 2004), who targeted larger corpora.

When combining Entity-Linking with Cross-

document Coreference Resolution, one gets Named

Entity Disambiguation, the task of determining

across a corpus of documents which mentions re-

fer to the same physical entity, and whether this

entity is present in an external KB, taking into ac-

count that identical mentions may refer to differ-

ent entities (e.g. people having identical names).

The most popular such KB in recent years has been

Wikipedia. The first attempt at exploiting Wikipedia

for NED has been performed by (Bunescu & Pasca,

2006), who used Wikipedia to gather surface forms

for relevant entities, and using the immediate con-

text of mentions of these entities in Wikipedia pages,

as well as relations between context words and en-

tity categories to disambiguate mentions.(Cucerzan,

2007) built a similar system, that also exploited

Wikipedia list-pages to generate extra category tags,

and used the Wikipedia linking structure to generate

contexts for entities. Furthermore, they performed

a within-document coreference step first mapping

short surface forms to longer ones, before disam-

biguating the longest form in the thus generated

clusters.

(Han & Zhao, 2009) stepped away from the ubiq-

uitous BOW-models by using Wikipedia to gener-

ate not only a set of concepts for each relevant en-

tity in Wikipedia through usage of Wikilinks, but

also Semantic Relatedness between these concepts,

based on work by (Milne & Witten, 2008).(Gen-

tile et al., 2009) proposed a graph-based approach

to NED, obtaining similar results as the VSM of

(Cucerzan, 2007). For each surface form in a given

text, they query Wikipedia, and take each listed page

on the returned disambiguation page as possible can-

didate. They use this page to construct a feature

space for each candidate. They create a weighted

undirected graph using all candidates and their fea-

tures as nodes, effectively connecting candidates

sharing identical features. Using a random-walk al-

gorithm they populate a relatedness matrix for the

different candidates. NED is performed by mapping

mentions on a single entity exploiting the informa-

tion in this matrix. (Hoffart et al., 2011) exploited

YAGO and DBpedia. They query these KBs to get a

set of entities for each mention, then create an undi-

rected graph with all mentions (M) and entities (E)

as nodes. The ME-edges are weighted according to

similarity and popularity prior measures, while the

EE-edges are weighted according to Semantic Relat-

edness, also as defined by (Milne & Witten, 2008).

Their goal is to compute a dense subgraph contain-

ing all mentions, and one entity-node per mention,

that maximises all used measures.

An alternative departure from word-comparison

techniques has been investigated by (Pilz & Paass,

2011), who use a topic-model using Latent Dirichlet

Allocation to represent document context and enti-

ties.

3 Data Preparation

A large part of the data preparation consists in ap-

plying NER to the articles, and partially to the KB.

For this, we used the Stanford NER system (Finkel

et al., 2005), mainly because of the flexibility it of-

fered as far as implemenation in our own Java code

went.

3.1 Processing the TAC KB

The TAC KB contains a set of entities derived from

about 800.000 Wikipedia pages, originating from an

October 2008 snapshot. Such an entry consists of

data gathered by the automatic parsing of the in-

foboxes from the original Wikipedia page, as well

as a stripped version of the text of the Wikipedia ar-

ticle. An example of an entry from the TAC KB can

be seen in Figure 1.

Each entry starts with a line containing the title of

the Wikipedia page from which the information was



<entity wiki title="Mike Quigley (footballer)" type="PER" id="E0000001" name="Mike

Quigley (footballer)">

<facts class="Infobox Football biography">

<fact name="playername">Mike Quigley</fact>

<fact name="fullname">Michael Anthony Joseph Quigley</fact>

<fact name="dateofbirth">October 2, 1970 (1970-10-02) (age38)</fact>

<fact name="cityofbirth"><link entity id="E0467057">Manchester</link></fact>

...

</facts>

<wiki text><![CDATA[Mike Quigley (footballer)

Mike Quigley (born 2 October 1970) is an English football midfielder.

]]></wiki text>

</entity>

Fig. 1: Excerpt from the TAC KB

gathered, the label (denoted as “type”) of the entry, a

unique ID for the TAC KB, and the name of the entry

(often the same as the Wikipedia page title). This is

then followed by a listing of “facts”, which were au-

tomatically parsed from the Wikipedia infobox and

consist of a factname, and a factvalue. We refer to

these as “WikiFacts”. Finally, the entry concludes

with a field containing a stripped version of the text

of the Wikipedia article, the “WikiText”. The pos-

sible label values are GPE (Geo-political Entity),

ORG(anisation), PER(son) and UKN (unknown).

Note the difference with the “typical” NER labels

LOC(ation), MISC(ellaneous), ORG(anisation) and

(PER)son.

From the KB, we extract a number of separate

datasets, which are schematically depicted in Fig-

ure 2. We will proceed with explaining what these

different datasets contain exactly, and later in the ar-

ticle we will explain how we use them to resolve

mentions to KB entries. The main idea behind the

pre-processing of the KB was not so much to create

new information, but to bundle and concisely store

different aspects of the data in order to streamline

the workflow later on.

3.1.1 Extracting Surcace Forms from the KB

An essential part of our entity-linking approach is

having an exhaustive list of surface forms for KB en-

tries, so as to increase chances of recognising men-

tions, be it as full names, or as substrings of (surface

forms of) KB entries. For this, we generated spe-

cific surface forms, using formatting rules, starting

Knowledge Base

WikiBank

WikiCtxt

WikiFacts

WikiLinksSurface Forms

+ recent

WikiDump

+ ORG abbreviations!

Fig. 2: Elements extracted from the TAC KB

from an entry’s canonical name. Part of these rules

consisted of splitting parts inbetween parentheses or

following comma’s (e.g. “Cuba Gooding, Jr.”

becomes “Cuba Gooding”), generating lowercase

forms, removing abbreviated parts (e.g. “L. Ron

Hubbard” becomes “Ron Hubbard”), etc. Many

organisations’ canonical name, as it figures in the

KB, ends on typical abbreviations like e.g. “corp.”,

”ltd.”, etc. Were this was the case, we also gen-

erated a form without this last part. For example,

for “Coca-Cola Corp.” we generate a surface form

“Coca-Cola”.

In the same vein, we also used a list of common

words whose spelling differs between American and

British English1. If such words were found, we

would generate a surface form using the equivalent

from the other spelling. For example, “CUNY Grad-

uate Center” leads to “CUNY Graduate Centre”.

1http://www.wordsworldwide.co.uk/docs/Words-

Worldwide-Word-list-UK-US-2009.doc



Some KB entries have an “abbreviation” or

“acronym” fact. Where this was the case, we

used the corresponding factvalues as surface forms.

Specifically for organisations, we also used an ex-

ternal file2 containing many common abbreviations

for well known organisations to further increase the

number of known abbreviations.

Apart from the TAC KB, we also used a recent

Wikipedia dump (June 2012) to extract extra surface

forms in many cases, using Wikipedia’s redirects.

For this, we checked the Wikipedia redirects for all

TAC KB entries. In some cases, pages would be

redirected to the KB entry, but in other cases, given

that the Wikipedia dump was more recent, the origi-

nal KB entry page would no longer exist, but be redi-

rected to a newer page. The idea is simply to cluster

all pages that are connected through redirects, and

if this cluster contains an entity from the TAC KB,

to add all the other (page)names as surface forms

for this entity. This allowed us e.g. to add “Chris

Breezy” as a surface form for “Chris Brown (enter-

tainer)”. This also proved to be another very fruitful

source for finding abbreviations for organisations.

Furthermore, we also used keywords to filter out

certain entities on the basis of their “disamb” fea-

ture, that proved to be needlessly increasing ambi-

guity (e.g. music albums, books, movies. . . ). If

an entity’s canonical name ends with a part between

parentheses, we refer to this part as the “disamb”

feature, since often this part is meant to disam-

biguate between different entities with highly sim-

ilar names. E.g. E0800132 Elvis Has Left

the Building (film) is ignored on the basis

that its disambiguation feature contains, and in this

case even equals, film.

E0599293 Michael A. Jackson (sheriff)

#disamb sheriff

#form Michael A. Jackson

#form Michael Jackson

#form Sheriff Michael A. Jackson

#form michael a. jackson

#form michaela.jackson

Fig. 3: Example of surface form generation

2http://www.betweenthelakes.com/helpful/

Abbreviations for organizations.htm

3.1.2 WikiBank

We did not only apply NER to the articles, but

also to the WikiText fields in the KB. From this, we

created the “WikiBank”: a dataset which contains

all named entities from the WikiTexts, as tagged by

the NER system, per KB entry.

As an example, consider again the KB entry de-

picted in Figure 1. The corresponding WikiBank en-

try for this KB entry is shown in Figure 4.

#entity E0000001 PER Mike Quigley

PER Mike Quigley

MISC English

Fig. 4: Excerpt from the TAC KB

3.1.3 WikiCtxt

The WikiCtxt is a dataset of tokens that we ex-

pect to be entity-specific. To obtain this list of to-

kens, all articles are parsed twice. During the first

run, all words in all WikiTexts are lowercased, and

all special characters (brackets, punctuation marks,

. . . ) are removed. For all these normalised words,

we count the number of times they appear in the to-

tal dataset, as well as in how many different docu-

ments they appear. Tokens that contain (any number

of) digits are discarded, as well as tokens that appear

less than 4 times in the entire dataset, or that appear

in more than 0.1% of the documents in the dataset.

This leaves us with a bag of tokens that can be ex-

pected to be rather specific to certain entities in the

KB.

During the second parse, on a per article-, and

thus per entity basis, the same normalisation is ap-

plied, and all tokens that appear both in the Wiki-

Text, and the bag of tokens generated during the first

parse, are retained as being specific Context words

for that particular KB entity.

3.1.4 WikiFacts

This is simply a dataset of selected WikiFacts,

listed per entity. In practice, the “selected” may be

interpreted as “almost all”. Nevertheless, it is pos-

sible to exclude specific facts, like those that con-

tain only numerical information, since we found that

they have a negative influence on the performance of

our system due to the fact that these same numbers

often appear in articles unrelated to the entity.



We would also like to point out that, since the

TAC KB has been parsed from a Wikipedia snap-

shot, it also suffers from the same problem of hav-

ing no standard syntax for the factnames. As a con-

sequence, many different variations exist for sev-

eral facts. Consider e.g. “birthplace”, “birth place”,

“birth place”, “Bplace”, etc. To somewhat try to

counter this, we created normalised versions of all

the factnames, and treated all facts that generate the

same normalised form as equal.

3.1.5 WikiLinks

WikiLinks is a dataset extracted from the KB,

containing, for each entity (which is in essence a

Wikipedia article), a list of all incoming and outgo-

ing references to other KB entries. The incoming

links per entity are referred to as the “WikiLinksIn”,

whilst the outgoing links are the “WikiLinksOut”.

To make things more clear, take a look again

at Figure 1. There you will notice that the fifth

line, the cityofbirth fact, contains a tag <link

entity id="E0467057">Manchester</link>.

This means that for the entity E0000001 there is an

outgoing link to entity E0467057, so “Manchester”

is a WikiLinkOut for “Mike Quigley”, while “Mike

Quigley” is an “incoming link” for “Manchester”.

Note that for big cities like Manchester, New York,

Paris,. . . the number of incoming links tends to be

very large.

3.2 Processing the Articles

The TAC article dataset consists of literally millions

of documents from different sources (newspapers,

blogs,. . . ), the vast majority of them contained in

individual files. Since working with the individual

files proved highly unpractical, we first grouped the

articles in batches of approximately 10.000 articles

each. Then, we applied NER on all article texts.

From the output of the NER, we created two datasets

per label (LOC, ORG, PER, MISC):

• A dataset containing a list of all entities of that

label in the considered dataset, as tagged by the

NER system, followed by the number of times

it appears in the entire dataset, and the num-

ber of distinct articles it appears in; e.g. the

PER variant of this dataset contains the line

“Barack Obama 48463 41024”, telling us

that “Barack Obama” has been tagged as a PER

48463 times in the entire dataset (in casu, all

documents from the 2009 TAC English Entity-

Linking task) in 41024 distinct articles.

• A dataset containing a per article listing of all

entities of that type, as well as the number of

times they appear in that particular article (see

Figure 5).

#doc AFP ENG 19940517.0172.LDC2007T07

PERs: 3

Jamaluddin Omar 1

Olli Heinonen 1

Vladmir Rukhlo 1

Fig. 5: Extract from the PER dataset

4 Entity Linking

Starting from the datasets described in §3.2, we

parse all documents separately, per label, except for

MISC. There is a generic model for the three re-

maining labels, with some specific tweaks per label.

Recall that the labels for the Stanford NER and the

TAC KB differ. In this regard, we equate “LOC” to

“GPE”. When parsing a specific label, we treat all

UKN’s in the TAC KB as if they were of that specific

label.

In a first step, we cluster the mentions of the la-

bel under consideration on a per document basis (see

§4.1). Each cluster is identified by one of its mem-

bers. We refer to this member as an “InnerID”. Next,

we try to resolve these InnerIDs to reference entities

form the TAC KB, and if no suitable matches are

found, we tag them as being a NIL, the identifier

used by TAC to show that a mention is not present

in the TAC KB.

The generic steps we go through when resolving

these InnerIDs are as follows:

1. Per document, retrieve the list of InnerIDs of

the label being parsed.

2. Per InnerID, gather a list of possible candidates

from the TAC KB; if specific conditions are

met, a specific candidate is immediatly returned

as match.

3. If no candidates are found, normalise the In-

nerID, and try again.



4. If still no candidates are found, assume there

are no matches in the KB, and tag the InnerID

as a NIL.

5. Else, score all candidates (even if there is only

one candidate!).

6. Return the candidate with the highest score if

it exceeds a certain threshold, else tag the In-

nerID as a NIL.

In what follows, we will delve deeper into these dif-

ferent steps.

4.1 In-article Clustering

Before resolving mentions of a specific label over

the entire dataset, they are clustered per article. Usu-

ally, the longest item per such cluster will become

the item by which the cluster is identified, and we

refer to it as an InnerID, and the cluster will con-

tain all substrings of this InnerID that appear in the

article. Suppose, e.g. an article contains the PERs

“Obama”, “Barack Obama”, and “Mitt Romney”,

then the first two will define one cluster, while the

last one will form a cluster on its own. The two In-

nerIDs of this article are then “Barack Obama” and

“Mitt Romney”.

In some cases, the InnerID will not be the longest

cluster item, though. During clustering, we take into

account all known entities from the KB. Suppose

e.g. that the NER engine tagged “Barack Obama

Administration” as a PER in some document, as well

as “Barack Obama”. Then our system will recognise

“Barack Obama” as a reference entity, and hence

make this the InnerID, instead of the longer “Barack

Obama Administration”. In other words, we give

priority to names that are known from the TAC KB.

It is also possible to force an InnerID for some

document, i.e. to force the system to add some de-

sired string as an InnerID to some document. This

is necessary for forcing TAC queries whenever the

mention to be resolved has not been detected by the

NER system, or when a mention has been detected,

but tagged with the wrong label.

4.2 Finding Candidates

We will start by introducing some terminology. Re-

call that we store a list of surface forms for each

KB entity (Fig. 3). When resolving a mention, we

first look for candidates by performing string com-

parisons on this dataset of surface forms. We dis-

tinguish two ways in which a mention can match an

entity:

• The mention is an exact match with the canon-

ical name of an entity (or entities, if this name

is ambiguous); in this case, we say the mention

is an ExactRefID.

• The mention is an exact match with one of the

surface forms of at least one entity; in this case,

we say the mention is a FuzzyMatch.

Note that an ExactRefID is always a FuzzyMatch,

but not the other way around. Also, we ignore the

disambiguation part of a KB Entry when determin-

ing when a match is exact or not. In other words, go-

ing back to the example in Figure 1, even though the

“exact” name would be “Mike Quigley (footballer)”,

we discard the “(footballer)” part. We do not discard

the “after the comma” part though, meaning e.g. that

“Houston” is a FuzzyMatch for “Houston, Texas”.

Next, we will proceed by specifying how candi-

dates are gathered for each label specifically.

4.2.1 LOC

For locations, first we will check whether

we recognise the mention as an ExactRefID or

FuzzyRefID. If so, we add all appropriate matches

to the list of candidates. We also perform a check to

see if the mention is a “KnownAlt”, i.e. an abbrevia-

tion or alternative form of some location. Typically,

these are abbreviations of American states. Consider

e.g. “New York”, which typically also appears as

“NY”, “N.Y.” or “N. York”. If a mention is recog-

nised as an alternative form, and the full name(s) to

which it refers are known as ExactRefIDs to us, we

will add all FuzzyMatches for this full name to our

list of candidates. Returning to our “New York” ex-

ample, suppose the mention we are trying to resolve

is “NY”, then we will recognise this as an alterna-

tive form for “New York”. There is more than one

place with this name, however, and so by adding all

FuzzyMatches, we include all these different New

York’s in our list of candidates.

4.2.2 ORG

Something that is typical for organisations, is the

use of abbreviations. As a simple example, consider



“CIA”. Almost nobody ever refers to this institu-

tion by its full name, “Central Intelligence Agency”.

Hence, when gathering candidates for ORGs, we

first check whether the mention we are processing

is likely to be an abbreviation, and if so, whether it

is “explained”, i.e. whether it is written out in full,

in its vicinity.

A mention is considered likely to be an abbrevia-

tion if it contains no whitespaces, and is written in all

uppercase. If this is indeed the case, we will search

the article for a “written out” form by searching the

article for a sequence of tokens whose first letters are

uppercased, and when combined form our mention.

In this process, we ignore the stopwords “of”, “for”,

“the” and “and”. In case we can actually find a writ-

ten out form of the assumed abbreviation this way,

which we call the “explanation”, we will check if we

recognise this explanation as a non-ambiguous ref-

erence organisation. If so, we resolve the mention to

this reference entity. If not, we continue looking for

candidates, but using the explanation as seed, rather

than the original mention.

If we did not find an explanation, or if the mention

did not appear to be an abbreviation in the first place,

we will check if the mention ends on a known typical

form for company types, like e.g. “gmbh”, “corp.”,

“sprl”, “ltd.”, etc. If this is the case, we remove this

part from the mention. E.g. “Coca-Cola Corp.” will

be modified to “Coca-Cola”, and we will continue

our gathering of candidates with this modified form.

First, we check whether the mention is a non-

ambiguous ExactRefID. If this is the case, and as a

fuzzy match it only points to one entity, resolve the

mention to this entity. If it is an ambiguous Exac-

tRefID, or a FuzzyMatch, add all fuzzy matches to

the list of candidates. If there are no fuzzy matches,

conclude that no suitable candidates could be found

for this mention.

4.2.3 PER

First, it is important to note that, differing from

GPEs and ORGs, the reference PERs are treated in a

slightly different way, owing to the fact that a name

can typically be split into a first name and a sur-

name part (note however that his is not necessarily

the case, as for example with artist names such as

“Prince”). We use this to split every PER from the

TAC KB whose canonical name contains at least one

whitespace, at the occurence of the first whitespace,

effectively dividing the name in a first and surname

part. We use this to create an index over the entire

PER collection of which KB entries contain which

first- and surnames. This allows us later on to ef-

fectively retrieve all candidates for mentions that are

only partial names. For this purpose, names that can-

not be split are treated as first names.

Upon resolving a PER mention, we first apply

normalisation rules to this mention: all lowercase,

except for the first letter of each part of the name.

E.g. “BOB doe” will become “Bob Doe”. We refer

to this process as “ForceCasing”, and will refer to

the forcecased mention as the MentionFC3.In case

the MentionFC contains at least one whitespace, it

will also be split into a first- and surname at the

occurence of the first whitespace. Hence our “Bob

Doe” will be split into a firstname part “Bob”, and a

surname part “Doe”.

If the MentionFC can indeed be split into two

parts, we check whether the firstname is a known,

popular nickname, using a list4 of common nick-

names.

• If this is not the case, we will check whether

or not the MentionFC is a non-ambiguous Ex-

actRefID, in which case we will resolve this

mention to this entity. Else, we continue our

gathering of candidates.

• If the first name is indeed recognised as being a

nickname, we will substitute the nick with the

name for which it is a short, and check whether

this new form is recognised as a FuzzyMatch,

and if so, will add the corresponding entities

to our list of candidates. Going back to “Bob

Doe”, we recognise “Bob” as a popular nick-

name for “Robert”, and will check whether or

not “Robert Doe” is a FuzzyMatch, and if so,

add all entities of which “Robert Doe” is a sur-

face form to our list of candidates.

Note that “Bob” is a nickname for “Robert”, but

not the other way around, i.e. we will not replace

“Robert” with “Bob”.

Next, we check if the MentionFC is a “Known-

Name”. Recall that we stored the PER database

3A few typical stopwords are ignored whose casing can

make a difference.
4http://www.censusdiggins.com/nicknames.htm



into a matrix, tracking which first- and surnames are

constituents of which fullnames, and thus, entities.

Checking for a “KnownName” is simply verifying

whether or not the MentionFC is recognised as be-

ing such a constituent (i.e. either a known first name,

or a known surname). If this is indeed the case, we

can efficiently retrieve all entities of whom this Men-

tionFC is a constituent, and add these to our list of

candidates.

Last, we will check if the MentionFC is a Fuzzy-

Match, and if so, will add all corresponding matches

to our list of candidates.

4.2.4 Double Check

In case the above steps did not result in any suit-

able candidates, we will try the same steps again

using a normalised form of the mention. This nor-

malised form is simply a lowercased version of the

mention, with all whitespaces and dots removed.

Recall that for each KB entry, we generated a sur-

face form in similar fashion. The idea behind this

double check is to make the system more robust

against small spelling mistakes, like different casing

between mention and matching entity, or acciden-

tally misplaced whitespaces, etc.

If this second parse still yields no suitable candi-

dates, the mention is considered to be a NIL.

4.3 Scoring Candidates

In order to compute a global score for all candi-

dates, six features are considered: WikiBankScore,

WikiCtxtScore, WikiFactScore, WikiLinkInScore,

WikiLinkOutScore, and a sixth feature which is the

number of these previous features that is not zero.

WikiBankScore: this is an indication of the

named entity overlap between the article in which

the mention to be resolved appears, and the entities

found in the WikiText of a candidate for that men-

tion. Its value is computed as follows:

• for LOC and ORG and MISC, add 1 per entity

that appears both in the article and the Wiki-

Text, equating LOC to GPE and MISC to UKN,

• for PER, add 1 per InnerID from the article that

also appears in the WikiText,

For this purpose, we ignore the mention itself. Ad-

mittedly, the use of mapping MISC to UKN can be

debated, as in essence, both are different creatures.

WikiCtxtScore: this is simply the number of to-

kens that constitute the WikiCtxt for the candidate

under consideration that also appear in the article

that is being processed. Note that during this scor-

ing, the article does nog get normalised, because

time-wise, this simply proved to be unfeasable.

WikiFactScore: number of WikiFact values that

appear in the article. We discarded WikiFacts hav-

ing all numerical values, typicially dates or coor-

dinates or the like, because we noticed it would

make for a lot of noise in the scoring, as numbers

from these WikiFacts would fit unrelated, but equal,

numbers appearing in articles. For similar reasons,

wikifacts having generic values like “true/false”, or

“north/east/. . . ” etc., were also discarded.

WikiLinksScore: this number indicates how

many of the KB entities that are connected to the

candidate also appear in the article. Specifically, for

each candidate, per (lowercased) surface form of

all WikiLinks for this candidate it will be checked

whether or not it appears in the (lowercased)

article or not. If it does, the WikiLinkScore gets

incremented by 1.

For scoring purposes, as yet not difference is

made between the incoming and outgoing links.

Nevertheless, they have been split, so as to allow

for possible experimentation with giving different

weights to both.

4.3.1 Combining the WikiScores

After these individual WikiScores have been com-

puted, we combine them into a proper scoring func-

tion. This function differs slightly for each label,

giving more, or less, weight to specific WikiScores.

These small differences have been tuned manually.

In the following equations, s (WikiScores) repre-

sents the scoring function, its index indicates to

which label it purports, and c represents the WikiC-

txtScore.

sGPE = (log (e + WikiFact + WikiBank)+

WikiLinkOut + WikiLinkIn) ∗
(

1 +

c
∑

i=1

1

1 + i

)

, (1)



sORG = (log (e + WikiFact)+

2 ∗ (WikiLinkOut + WikiLinkIn)+

WikiBank) ∗

(

1 +

c
∑

i=1

1

1 + i

)

, (2)

sPER = (log (e + WikiFact)+

WikiLinkOut + WikiLinkIn+

WikiBank) ∗

(

1 +

c
∑

i=1

1

1 + i

)

, (3)

4.3.2 Afther the Scoring

Once a score has been computed for a candidate

from the five WikiScores, it can then be multiplied

with bonus or penalty factors. All labels share a

same bonus and penalty factor. GPEs have a few

additional factors. The penalty factor is the “UKN-

Penalty”, which is applied in case the candidate is a

UKN (§4.3.3).

The bonus factor shared between all three labels is

“DifferenceFound”. Whilst scoring the candidates,

the algorithm will check if there is a difference be-

tween the mention and the candidate, and whether

or not this difference appears in the article. If it

does, the score gets mutliplied by a factor 1.5. As

an example, suppose you want to resolve the men-

tion “Atlanta”. Amongst the possible candidates for

this mention will figure “Atlanta, Illinois”, “Atlanta,

Kansas”, etc. In this case, the difference between

“Atlanta” and “Atlanta, Illinois” would be “Illinois”,

and if the article in which the mention appears also

contains “Illinois”, the score for this candidate will

be multiplied by 1.5.

For GPEs, in the same vein as “DifferenceFound”,

in case of candidates that contain an “after the

comma” part, we compute a bonus factor as fol-

lows. Consider again the example of the mention

Atlanta, which would have a.o. “Atlanta, Illinois”

as candidate. Our system will check if this “after

the comma” part, in this case “Illinois”, is a Fuzzy-

Match. If so, we temporarily keep aside all fuzzy

matches for “Illinois” that do not have an “after the

comma” part (i.e. that are less likely to be ambigu-

ous). For all of these fuzzy matches, we will then

compute a score which is similar to Eq. 1. Finally,

we take the average of all these scores over all these

FuzzyMatches as a bonus factor for the original

candidate. Supposing for simplicity’s sake that we

would have “Atlanta, Illinois” and “Atlanta, Kansas”

as only candidates for Atlanta, and that the only

FuzzyMatches to “Illinois” and “Kansas” would be

themselves, we would then proceed to compute a

score for these two cities in essence as if they were

the mention to be resolved. This score for “Illi-

nois” and “Kansas” would then count as a bonus-

factor for “Atlanta, Illinois” and “Atlanta, Kansas”

respectively.

Furthermore, also only for GPEs, if a candidate

is an exact, case-unsensitive match to the mention,

it also gets boosted by a factor 1.5. This is because

locations are in general far more ambiguous than or-

ganisations or persons, and such boostings revealed

necessary to push the correct candidate above all the

noise.

Finally, if a candidate’s final score exceeds a

threshold that increases with the number of non-

zero WikiScores (the sixth feature mentioned ear-

lier), and it exceeds the highest score so far, then it

will become the new best candidate. If after all can-

didates have been scored, none has been retained,

the mention is considered to be a NIL.

4.3.3 Dealing with UKNs

If the candidate is an UKN, a penalty will be ap-

plied, since in essence you are not certain that this

particular candidate is indeed of the same label as

the entity you are resolving. The idea is to compute

a score that indicates to what extend a KB UKN en-

try corresponds to one of the other labels. For this, a

list of all (normalised) factnames was generated for

the GPE, ORG and PER labels, as well as a list of

all factnames that are specific to UKN.

In symbols: consider F to be the collection of

all types of facts (i.e. normalised factnames) that

appear in the KB. Define FGPE = {∀f ∈ F |∃e ∈
GPE : f ∈ F (e)}, with F (e) the collection of facts

of e, and analogous for ORG and PER, and FUKN =
{∀f ∈ F | 6 ∃e ∈ GPE ∪ ORG ∪ PER : f ∈ F (e)}.

Then, for each UKN, we counted how many of

its facts overlap with those for the other labels. Di-

viding this number (3 numbers in total, one for each

non-UKN label) by the number of facts for this par-

ticular UKN entity, gives a number between 0 and 1



that gives an indication of how much this particular

UKN entity is likely to be a GPE, ORG or PER. In

symbols, for an entity u ∈ UKN, define

UKNScoreGPE (u) =
F (u) ∩ FGPE

#F (u)
, (4)

and analogous for the other labels.

When scoring candidates, each UKN candidate

cUKN gets multiplied by a penalty factor pUKN equal

to

pUKN (cUKN) =
[

UKNScoreLabel (cUKN) ∗

(1− UKNScoreUKN (cUKN))
]1/4

(5)

where Label should be replaced by the label being

parsed.

4.4 NIL

A “NIL” is a mention that could not be resolved to

an entry in the TAC KB. Part of the entity-linking

task was not only to detect when a mention was a

NIL, but also to cluster these NILs.

Our approach to this problem was rather mini-

mal. Whenever a mention was found to be a NIL, we

mapped it onto a normalised surface form by mak-

ing it all lowercase, and removing “’s” and certain

punctuation marks when present. All NILs whose

normalised forms are equal are clustered together.

Crude as this method may be, it strangely enough

worked better than a more advanced method we tried

out. In that method, in a first intance we would clus-

ter the NILs using the same basic approach stated

earlier, but we would also keep track of which doc-

uments the NILs would appear in. After all doc-

uments had been parsed, we would then try to de-

tect ambiguous NILs within a same cluster by tak-

ing one NIL from this cluster, and comparing the

bag of entities, as tagged by the NER engine, from

the document it appeared in, with the bag of entities

of all other documents within that same cluster, the

aim being to cluster all NILs whose corresponding

documents had at least one entity in common. The

B3 F1+ scores we obtained this way for the 2011

data were on average slightly below that of the more

naive approach.

5 Evaluation

To benchmark our system, we mainly focused on the

TAC 2011 English Entity-Linking (EL) task queries,

but also ran our system on the 2010 queries, which

did not have the extra NIL-clustering task attached

to it. A breakdown of the total number of queries

and queries per label for the 2010 till 2012 EL tasks

can be found in Figure 6. Note that the label of a

query is not known during evaluation, but is only

revealed within the annotated set.

Year Total GPE ORG PER

2010 2250 749 750 751

2011 2250 750 750 750

2012 2226 602 706 918

Fig. 6: Breakdown of queries for the 2010, 2011 and 2012

English EL Tasks

An example of a 2011 query can be seen in Fig-

ure 7. Note that the 2012 queries sport added off-

set data for the mentions, i.e. they include the po-

sitions of the mentions to be resolved in the ar-

ticle under consideration. Each query is given a

unique identifier, and consists of a document identi-

fier and the mention figuring in this document to be

resolved. The solution to the particular query in Fig-

ure 7 is “EL 00001 NIL290 PER”. We again see

the unique query identifier, followed by either the

unique identifier of the KB entity to which it should

be resolved, or as in this case, “NIL” to indicate that

it does not appear in the KB, followed by a cluster

number, and finally we find the label of the mention.

Note that the clusternumber itself is not important,

only the fact that queries belonging to a same clus-

ter carry the same number.

<query id="EL 00001">

<name>A. Raghuveer</name>

<docid>AFP ENG 20080725.0242.LDC2009T13

</docid>

</query>

Fig. 7: TAC 2011 EL query example

We used the information from the annotated

queryset to split the queries into three subsets,

grouping queries per label, so as to be able to focus

on one label during development.



5.1 Parsing the queries

A difference should be made between “training”

runs, in which we assume we already have the cor-

rect answers at our disposal, and “evaluation” runs,

for which we only have the queries. The big differ-

ence between the two, as far as our system is con-

cerned, is that for the training runs, we know what

label the mentions carry.

5.1.1 Training Runs

When performing a training run, we let our sys-

tem run as it would run on any other article, ex-

cept for one thing. We known what mentions we

should find in what documents, as well as what la-

bel these mentions carry. Hence, when letting our

system parse a label, and we notice that we do not

find a certain query that we should normally find, i.e.

the mention we are supposed to resolve has not been

found in the article in which it should be found, or

it has been found but tagged with a wrong label, we

force the query. This means that we forcefully add

the mention to be resolved as an InnerID of its label

to the document under consideration.

5.1.2 Evaluation Runs

When performing an evaluation run, we do not

know the correct label of the mentions to be re-

solved. Taking this into account, and recalling that

our system does not predict labels for mentions, we

devised two types of evaluation runs.

Type 1: in this type, we first parse each query

per label. Whenever the mention for a query has

been found within the label elements which are be-

ing parsed, the query is parsed. If its mention has

not been found, we skip it, but store it as being un-

processed for this particular label.

When all three labels have been parsed, we then

take all queries that have not yet been parsed by any

of the labels, and forcefully parse them for each la-

bel. That means that these queries get parsed thrice,

by being forced once for each label. Afterwards,

a series of rules, designed using the 2011 training

data, is applied to select one of the three labels as

being the most probable answer.

Type 2: in this type, we parse all queries thrice,

forcing a query whenever its mention was not found

in the corresponding document.

5.2 Results

The results of our test runs, as obtained using TAC’s

own “ELScorer” scoring tool, can be found in Fig-

ure 8. Our system performs reasonably consistent

on the 2010 and 2011 data, but significantly less

on the 2012 data. This shows the increased query

difficulty. Furthermore, our system performs re-

markedly better for PERs than for ORGs and GPEs.

Although the difference in efficiency between ORG

and PER is more or less stable across the datasets,

GPEs take a noticeable extra hit for 2012, due to

the extreme ambiguity of the queries. This makes

that the vast majority of queries return a large list of

candidates, with typically only little contextual in-

formation to disambiguate between them, resulting

in many wrong resolutions and missed NILs. Also,

the severe drop in B3+ F1 score between 2012 Eval1

and 2012 Eval2 suggests that our system is very sen-

sitive to wrong mention label predictions. Finally,

the considerable departure from the average differ-

ence between µ-average and B3+ F1 scores of about

3% for 2012Tr ORG suggests a considerably higher

number of ambiguous NIL queries for ORGs, some-

thing that our primitive NIL-clustering method is not

armed for.

6 Conclusion & Future Work

We presented a rule-based entity-linking system that

is label-specifically tuned through different candi-

date scoring, and the tackling of problems such as

nicknames, American vs. British spelling, and ab-

breviations for organisations. Our system parses the

data on a per-label basis. Overall performance is

58,6% B3 F1, 5% above the median.

Future work includes the rigorous optimisation of

the scoring functions, and adapting our system to

parse all labels simultaneously. This would pave

the way to updating our system to reason over all

mentions and candidates at once, and thus take de-

pendencies between candidates into account, rather

than resolving each mention independently from all

others.

Acknowledgement

This work was funded by iMinds (the former IBBT),

Belgium.



Run µ-avg. B3 P B3 R B3 F1 B3+ P B3+ R B3+ F1

2010Eval 1 0.806 - - - - - -

2010Eval 2 0.793 - - - - - -

2010Train 0.832 - - - - - -

2010Tr GPE 0.752 - - - - - -

2010Tr ORG 0.804 - - - - - -

2010Tr PER 0.939 - - - - - -

2011Eval 1 0.794 0.960 0.936 0.948 0.768 0.760 0.764

2011Eval 2 0.773 0.950 0.936 0.943 0.744 0.745 0.744

2011Train 0.828 0.964 0.942 0.953 0.802 0.795 0.799

2011Tr GPE 0.780 0.971 0.914 0.942 0.765 0.737 0.751

2011Tr ORG 0.796 0.943 0.953 0.948 0.752 0.771 0.762

2011Tr PER 0.907 0.979 0.958 0.968 0.890 0.877 0.883

2012Eval 1 0.656 0.809 0.913 0.858 0.561 0.615 0.586

2012Eval 2 0.593 0.700 0.911 0.792 0.437 0.553 0.488

2012Train 0.739 0.843 0.923 0.881 0.646 0.696 0.670

2012Tr GPE 0.613 0.830 0.945 0.884 0.548 0.596 0.571

2012Tr ORG 0.720 0.783 0.829 0.805 0.556 0.614 0.584

2012Tr PER 0.836 0.948 0.980 0.964 0.808 0.824 0.816

Fig. 8: Results for TAC 2010, 2011 & TAC 2012 query sets. “Eval 1/2” refers to evaluation runs of type 1 and 2,

“Train/Tr” to training runs. For training runs, we have also included focussed results for each label.

References

A. Bagga and B. Baldwin. 1998. Entity-Based Cross-

Document Coreferencing Using the Vector Space

Model. Proceedings of the 17th international confer-

ence on Computational Linguistics, Vol. 1, pp. 79-85

W. M. Song, H. T. Ng and D. C. Y. Lim. 2001. A Ma-

chine Learning Approach to Coreference Resolution of

Noun Phrases. Computation Linguistics, Vol. 27 Issue

4, pp. 521-544

C. H. Gooi and J. Allan. 2004. Cross-Document Coref-

erence on a Large Scale Corpus. Proceedings of the

North American Chapter of the Association for Com-

putational Linguistics: Human Language Technolo-

gies 2004, pp. 9-16

J. R. Finkel, T. Grenager and C. Manning. 2005. Incor-

porating Non-local Information into Information Ex-

traction Systems by Gibbs Sampling. Proceedings of

the 43nd Annual Meeting of the Association for Com-

putational Linguistics (ACL 2005), pp. 363-370

R. Bunescu and M. Pasca. 2006. Using Encyclo-

pedic Knowledge for Named Entity Disambiguation.

Proceedings of the 11th Conference of the European

Chapter of the Association for Computational Linguis-

tics, pp. 9-16

S. Cucerzan. 2007. Large-Scale Named Entity Disam-

biguation Based on Wikipedia Data. Proceedings of

the 2007 Joint Conference on Empirical Methods in

Natural Language Processing and Computational Nat-

ural Language Learning, pp. 708-716

D. Milne and I. H. Witten. 2008. An Effective, Low-

Cost Measure of Semantic Relatedness Obtained from

Wikipedia Links. Proceedings of the Association for

the Advancement of Artificial Intelligence

A. L. Gentile, Z. Zhang, L. Xia and J. Iria. 2009. Graph-

based Semantic Relatedness for Named Entity Disam-

biguation. Proceedings of the 1st International Con-

ference on Software, Services and Semantic Technolo-

gies

X. Han and J. Zhao. 2009. Named Entity Disambigua-

tion by Leveraging Wikipedia Semantic Knowledge.

Proceedings of the 18th ACM conference on Informa-

tion and knowledge management, pp. 215-224

J. Hoffart, M. A. Yosef, I. Bordino, H. Frstenau, M.

Pinkal, M. Spaniol, B. Taneva, S. Thater and G.

Weikum. 2011. Robust Disambiguation of Named En-

tities in Text. Proceedings of the 2011 Conference on

Empirical Methods in Natural Language Processing,

pp. 782-792

A. Pilz and G. Paass. 2011. From Names to Enti-

ties using Thematic Context Distance. Proceedings of

the 20th ACM international conference on Information

and knowledge management, pp. 857-866


