
Sweat2012: Pattern based English Slot Filling System for Knowledge Base
Population at TAC 2012

Fang Liu Jun Zhao
Institute of Automation, Chinese Academy of

Sciences
Institute of Automation, Chinese Academy of

Sciences
Zhongguancun East Road 95, Zhongguancun East Road 95,

HaiDian District,Bejing, China, 100190 HaiDian District,Bejing, China, 100190

fliu@nlpr.ia.ac.cn jzhao@nlpr.ia.ac.cn

Abstract

In this paper, we describe the english slot
filling system of sweat2012 team for
Knowledge Base Population (KBP) task at
TAC2012. Our slot filling system is based
on pattern. In specific, we first construct
(target, value) pairs for every attribute of
our interests from previous evaluation
results, and divide these entity pairs into
training set and assessment set; then the
extraction patterns are learned from the
training set and the confidence of every
learned pattern is evaluated on the
assessment set. Secondly, we use the
learned pattern to extract candidate values
for each required slot of target entities.
Finally we post-process filler candidates
extracted by patterns which includes
estimating probabiliy of each candidate,
validating these candidates according to tag
and type constraints and removing
duplications. Our system achieves F-
measure 0.099 on the final test dataset,
which turns out to be the median level in
all 11 teams who summit their results to the
English Slot-Filling task this year.

1 Introduction

The goal of Slot Filling task is to harvest new
values for pre-defined attributes (slots) of entities
from document collection. The input is queries that
consist of the name of target entity and additional

information like type, unique ID in KB (optional),
a document ID that provide disambiguation context
and the attributes (slots) which need to be filled. In
KBP task, we only concern two kinds of target
entities: person and organization. For person, we
focus on slots like birth place, age, schools, etc.
For organization, we focus on top_members,
founders, affiliations, etc.
For the convenience of conveying information,
there are some patterns on expressing the mind of
people which can be learned by computer. For
example, from sentences like this:

“Megawati, 49, told her supporters…”

We aim to implement a system that can learn a
pattern from the above sentence as following:

“<TARGET>, <VALUE_NEnumber>”

In our system, we adopt pattern-based method to
extract fillers for each slot. Since it is the fourth
year of Knowledge Base Population task, an
amount of evaluation results (almost 300 target
entities) about the past three years are provided
which we can make the full use of to train a slot
filler extractor. It takes three steps to implement
this method. First we need to learn pattern from
training data-a set of (target, value) pairs. The
training data is constructed from evaluation results
of past years. Second, the learned patterns from the
first step are used to extract fillers. Finally we filter
out wrong and redundant candidates and then rank
remained responses. Therefore, it consists of three
main modules of our system: pattern learning

module, slot filler extraction module and post-
processing module.
The key point in our method is the representation
of patterns. Some researchers have done works on
this subject. Previously DIPRE (Brin, 1998) used
lexicon to generate a pattern tuple, SNOWBALL
(Agichtein, 2000) introduced NE type feature into
pattern tuples. Later DIRT (Lin, 2001) used
dependency path to express a pattern. Recently,
PATTY (Nakashole, 2012) gave a taxonomy of
relation patterns. It combines syntactic features (S),
ontological type signatures (O), and lexical
features (L), which is called SOL pattern model.
Since our goal is to use pattern to extract
information rather than express semantics, we
combine NE type, lexical features in our patterns.
The remainder of this paper is organized as follows.
Section 2 describes the design and implementation
of our slot filling system. Section 3 presents the
performance results and some discussions. Finally,
section 4 concludes the paper.

2 Our Method

Our system contains offline part and online part.
The offline part is pattern learning module used to
generate weighted pattern, and the online part
consists of slot filler extraction and post processing
used to generate fillers for each interested slot of
target, as illustrated in Figure 1.
The pattern is learned by following steps:
1. Relocate (target, value) pairs of the training set

into collection.
2. Collect the words between and around (before

target and after value) target mentions and
value, if the distance between them is not too
long.

3. Make NE recognition for extracted context of
relocated training pair.

4. Pattern consists of all the NE tags recognized
and the most frequent words. The most
frequent words extraction uses the method
similar to PATTY (Nakashole, 2012). The
other words are replaced by “*”.

1-4 steps are iteratively manipulated on every
(target, entity) pair in the training set to collect all
candidate patterns.
5. Apply each learned pattern to (target, value)

pairs from the assessment set.

6. Make a statistics on the number of corrects and
errors for each learned pattern, and assign
weight to corresponding patterns.

5-6 steps are iteratively manipulated on every
learned pattern. And it does generate new patterns
here.
The procedure of online part of our system is like
this:
1. Read the name of target entity
2. Expand alternate names of this target
3. Search these expanded names in document

collection
4. Apply learned patterns to returned document

by Lucene1
5. Compute the probability of each candidate
6. Check whether the tag and type constraints are

satisfied by candidates
7. Remove duplicated fillers.
8. Rank the remained fillers
A more detailed discussion for each module will be
presented in the following subsections.

Figure 1: The diagram of our pattern-learning based
system

2.1 Pattern Learning

This process is illustrated as pattern learning
module (left) in Figure 1. From evaluation results
of the past three years, we can easily construct
(target, value) pairs and relocate them back to their

1 http://lucene.apache.org

occurrences in source corpus which is provided for
KBP task. In order to estimate the confidence of
learned patterns, we split (target, value) pairs into
two sets: training set and assessment set. We learn
candidate patterns from the training set and
compute the confidence according to the following
formula for each pattern based on extraction results
from the assessment set. The equation indicates
extraction precision of pattern which has c correct
extractions and e errors. And +1 in the dominator
is a variant of Laplacian smoothing.

1

c
confidence

c e


 

This confidence value of pattern will later be used
in post-processing to compute the probability of
slot value candidates.
Our system generates a pattern whenever a pair of
(target, value) appears within a window of a
certain width (usually 30 words in our settings).
The representation of patterns is a crucial part
which affects the performance of the system.
Named Entity Type information is necessary, and
keywords usually co-relocate with certain
relationship suggests lexicon is also a good feature.
Therefore, a NER-lexical pattern representation is
used here. We combine the NER type and the
lexicon in a regular expression to find matched
values. This pattern expression can basically
achieve the goal of our pattern learning mentioned
in introduction. We obtain this pattern
“<TARGET>, <VALUE_NEnumber>” with 41
correct and 1 wrong extractions.

2.2 Slot Filler Extraction

This process is illustrated as slot filler extraction
module (upright) in Figure 1. To obtain a
reasonable recall, we need to collect as many as
possible information of target. WikiMiner2 (Milne,
2008) is a useful tool to mine the linkings of
entities in Wikipedia. We employ it to find
alternate names of target entity based on the
resources of Wikipedia to improve recall. Besides
wikiMiner aliases, name variants are also taken
into consideration. Suname, lastname, and different
completeness of renderings of a person name are
altername_name candidates for PERSON type
target. Acronym, fullname or organization name

2 http://wikipedia-miner.cms.waikato.ac.nz/

without determiner (e.g., the, a, an, etc.) are
potential alternate names for ORGANIZATION
type target. Name Expansion makes an important
role in slot-filler extraction component, whose
quality determines the coverage of subsequent
extraction.
We use Lucene to index source corpus and search
the occurrence of expanded names of target entity.
Finally the patterns learned offline is applied to the
returned documents with target mentions to extract
filler candidates in this module. The document
containing the target is returned by Lucene. Here a
candidate may be extracted by more than one
pattern. These patterns are treated as a support set
for the candidate they extracted.

2.3 Post Processing

The last module is used to filter out redundant,
wrong and unreliable filler candidates and then
rank the left, which is important to achieve a high
precision. This process can be further divided into
three parts: candidate probability computation,
candidate validation and duplicated candidate
removal, which are illustrated at downright in
Figure 1.
Candidate Probability Computation. Suppose a
candidate slot value is supported by a set of
patterns S which are used to extract this candidate.
We use the following formula to compute the
probability of this candidate.

| |

0

() ()
S

j i
i

prob candidate confidence pattern


 

This value serves as a confidence value for the
candidate, which is also the weight used for final
ranking.
Candidate Validation. According to our
knowledge, we cast some constraints on values for
certain slots as shown in Table 1. Take slot
“per:age” as an example, the part-of-the-speech
(POS) tag of candidate should be ‘Noun’, and NE
type should be ‘NEduration’. For “org:website”,
pos tag is ‘String’, NE type is ‘NEurl’.
Duplicated Candidate Removal. Slots like
“per:age”, “org:date_founded” are single-valued,
others like “per:origin”, “org:shareholders” are list-
valued. The single filler is required by the single-
valued slot, multiple answers are permitted by list-
valued slots. But redundant answers should be
eliminated. This part is responsible for removing
duplicated fillers for a slot.

3 Results and Discussion

We submitted three runs that differ in filtering
strategy. Here we only analyze results of our best
run which has 1183 no-NIL responses with 135
correct fillers. In order to assess the performance
of system, we compute Precision(P), Recall(R), F-
measure(F) according to the following formula:

P
correct

noNIL


sin

correct
R

correct mis g




2PR
F

P R




Because of the existence of list-valued slots, the
number of missing may not be exact and is lower
than the real missing value. This causes the
estimated recall being optimistic. But this
consequence is equal to all list-valued slots. Hence
evaluation results are still valuable.
To find the problem of our system, we compute P,
R and F for every target and show the best and
worst results for PER and ORG type in Table 1.
Generally, our system has higher precision for PER
and higher recall for ORG. From overall F value,
we can see that the performance on ORG is better
than that on PER.

Type SF_ID Precision Recall F

PER
10(best) 50 50 50

28(worst) 11.11 6.25 8
overall 16.43 9.35 11.92

ORG
80(best) 100 37.5 54.55

52(worst) 1.79 25 3.33
overall 9.83 42.58 15.98

Table 1: Experimental results for target entities on

official evaluation

In TAC-KBP task, the ratio of single-valued/list-
valued slots is 11/15 for PER and it is 7/9 for ORG.
Meanwhile, list-valued slots have multiple answers.
Hence, the quality of list-valued slots extraction
dominates the performance of a system. To assess
the performance of our system, we compute P, R
and F for single-valued and list-valued slots shown
in Table 2. We can tell our system has higher
precision for single-valued slot than that for list-
valued slots. But the recall for single-valued slot is
quite low. From F value, we may infer that our

system probably has a relatively better
performance on list-valued slots than on single-
valued slot. Although the recall of list-valued slots
is higher than the real value, the overall recall is
larger than that of single-valued slot. Hence, this
conclusion is still true.

Slot Type Precision Recall F
Single-valued 13.04 5.33 7.57
List-valued 11.25 25.84 15.68

overall 11.3924 8.74919 9.89736

Table 2: Experimental results for slot attributes on
official evaluation

In order to improve the system, it is also necessary
to estimate the performance of our system on every
slot. The P, R and F of slots with correct responses
are shown in Table 3. From these 11 slots with
corrects, we find that only org:date_founded (bold)
is single-valued slot. The precision of
org:founded_by is extremely low. Slots do not
appear in Table 3 can be divided into two sets. One
set contains slots with responses but none of them
is correct, like per:member_of，per:spouse，
per:origin ， per:religion ， per:age ，
er:country_of_birth. The other set contains slots
without any responses.

SlotName P R F
per:statesorprovinces_of_resi

dence
42.86 10 16.22

per:cities_of_residence 15.09 40 21.92
per:title 32.95 78.38 46.4

per:employee_of 5.04 54.55 9.23
org:top_members_employees 13.91 90.62 24.12

org:subsidiaries 9.63 94.74 17.48
org:founded_by 0.47 33.33 0.92

org:date_founded 8.7 66.67 15.38
org:country_of_headquarters 13.64 42.86 20.69
org:stateorprovince_of_headq

uarters
13.64 50 21.43

org:city_of_headquarters 20 57.14 29.63

Table 3: Experimental results for slots with correct
answers of our system on official evaluation

Based on the above experimental results, we find
the following problems affect the performance of
our system:
1. Pattern representation. Through checking the

pattern learned by our system, we find that
some patterns are too specific to be used in

filler extraction. For “per:title”, a pattern like
this is extracted:

“<TARGET>
[^<]*?(?:<NEacademicTitle>)?[^<]*?<NEorg
anization> <VALUE> <NEperson>”,
(5 corrects and 50 wrongs)

This pattern has a low confidence and it is rare
to find matcher of this pattern in documents.
Conversely, some patterns are too short to
confine the semantics. For “org:founded_by”,
our system learned a pattern like this:

” <TARGET>, <VALUE_NEperson>”,
 (1 correct and 1 wrong)

This pattern is supported by 1 correct and 1
wrong extraction. It may generate wrong fillers,
as from the pattern itself, we cannot infer much
information about “org:founded_by”.

2. Data sparseness. For some slots, there are too
little training data to learn a pattern. Slots
facing this problem are “per:date_of_death”,
“per:cause_of_death” and “org:dissolved”.

3. Name expansion. We cannot predict the
correct variants of names, which need to be
further validated in the collection.

4. Some wrong answers. We cannot enumerate
all cases of wrong answers which make
filtering is not adequate. We use type checking,
but NER tool that usually introduce noises like
wrong border of filler, limited types and wrong
types.

4 Conclusion

We describe our sweat2012 system that extract
English slot filler for the given targets from Source
Corpus which is obtained from the web, as defined
in Knowledge Base Population task. We use
pattern based method to extract slot fillers which
involving learning patterns offline, extracting and
validating candidate online. It consists of three
modules: pattern learning, slot filler extraction and
post processing. The pattern learning module is the
core of our methods. The slot filler extraction
module is the online part to handle every target
entity. The post processing module checks whether
the type constraints of attribute are satisfied by
extracted values and ranks the outputs. The official

evaluation shows that our system is the median
system with P=11.3924, R=8.74919 and
F=9.89736.

Acknowledgments

This work was supported by the National Natural
Science Foundation of China (No. 61070106), the
National Basic Research Program of China (No.
2012CB316300), the Strategic Priority Research
Program of the Chinese Academy of Sciences
(Grant No. XDA06030300) and the Tsinghua
National Laboratory for Information Science and
Technology (TNList) Cross-discipline Foundation.

References

Sergey Brin. 1998. Extracting patterns and relations
from the World- Wide Web. In Proceedings of the
1998 International Workshop on the Web and
Databases (WebDB’98)

Eugene Agichtein and Luis Gravano. 2000. Snowball:
extracting relations from large plain‐text collections.
DL '00: Proceedings of the fifth ACM Conference on
Digital Libraries, 85-94

Dekang Lin, Patrick Pantel. 2001. DIRT: discovery of
inference rules from text. KDD 2001

Ndapandula Nakashole, Gerhard Weikum, Fabian
Suchanek. 2012. PATTY: A Taxonomy of Relational
Patterns with Semantic Types. EMNLP 2012.

David Milne, Lan H. Witten. 2008. Learning to link
with Wikipedia. CIKM’08

