
The CASIA Entity linking System at TAC 2013

Yubo chen,Guangyou zhou,Liheng Xu,Shizhu He,Kang Liu and Jun Zhao
National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences
HaiDian District, Beijing, China.

{yubo.chen,gyzhou,lhxu,shizhu.he,kliu,jzhao}@nlpr.ia.ac.cn

Abstract

In this paper, we describe our entity link-
ing system at TAC-KBP 2013. Our system
consists of four modules. 1) Query expan-
sion module. 2) Candidate generation mod-
ule. 3) Candidate Entity disambiguation mod-
ule. 4) NIL clustering module. First, we ex-
pand the queries with the information of the
query documents. Then we find the candidates
of queries from the Knowledge Base using
the WikiPedia knowledge and string match-
ing method. In the disambiguation module,
we select a candidate entity using a supervised
learning to rank method based on a variety of
evidences. Finally, we cluster all the NIL enti-
ties which do not been detected in the above
modules using the Hierarchical Agglomera-
tive Clustering algorithm. The evaluation re-
sults show that our method is effective for En-
glish entity linking task.

1 Introduction

The CASIA team participated in the English entity
linking task in the KBP track of TAC 2013. The goal
of Knowledge Base Population (KBP) track at Text
Analysis Conference (TAC) 2013 is to automatically
discover information about named entities and link
this information in a reference knowledge base.

Following the literature (Ji et al., 2010), the task
of entity linking is defined as follows: given a query
that consists of a name string, a background docu-
ment ID, and a pair of UTF-8 character offsets in-
dicating the beginning and the end locations of the
name string in the document, the system is required
to provide the ID of the KB entry to which the name

refers, or a “NILxxxx” ID if there is no such KB en-
try. The entity linking system is required to cluster
queries referring to the same non-KB (NIL) entities
and provide a unique ID for each cluster, in the form
of “NILxxxx” (e.g., “NIL0021”). For example, giv-
en the following two queries which contain the name
string “ABC”:

1) ABC could not directly access the underlying
file system and operating system.

2) In American, ABC first broadcast on television
in 1948.

An Entity Linking system should link the two
ABC mentions with the real world entity Ameri-
can Broadcasting Company and ABC (programming
language), respectively.

Entity linking task is challenging due to name
variations and entity ambiguity (Shen et al., 2012).
In reality, an entity may have multiple surface forms.
For example, the IBM Company can be mentioned
as IBM, Big Blue and International Business Ma-
chine, which respectively correspond to its abbrevi-
ation, nickname and its Official Title. Besides, one
entity mention may also refer to several different re-
al world entities. For example, the entity mention AI
can refer to more than 10 real world entities, such as
Artificial intelligence, Game artificial intelligence,
the Singer Ai, etc.

To solve the above two problems, we propose
an entity linking system consisting of the following
four modules. 1) Query expansion module: We ex-
pand the queries from the background documents; 2)
Candidate generation module: With the query gener-
ated in the first step, this module retrieves the candi-
dates from the Knowledge Base using the Wikipedia

knowledge and a string matching method; 3) Can-
didate Entity disambiguation module: Our system
selects a single entity using a supervised learning-
to-rank method; 4) NIL clustering module: We clus-
ter the queries referring to the same non-KB (NIL)
entities using the Hierarchical Agglomerative Clus-
tering algorithm.

The rest of this paper is organized as follows. We
first describe how to expand the query in Section 2.
Section 3 introduces the candidate selection stage of
our system. The entity disambiguation module is p-
resented in Section 4. Section 5 presents our cluster-
ing method. The experiment results are presented in
Section 6. Finally,we conclude this paper in Section
7.

2 Query Expansion

This module mainly addresses the acronym prob-
lem, we expand the queries from the background
documents using the heuristic rules. From our ob-
servation, acronym query name string is usually high
ambiguous, but its full name is usually unambigu-
ous. Thus, expanding the query from its document
can effectively reduce the ambiguities of the query.
For example:

1) The ABC (Australian Broadcasting Corpora-
tion) is Australia’s national public broadcaster.

2) In American, ABC (American Broadcasting
Company) first broadcast on television in 1948.

If we expand the entity mention “ABC” from the
background documents we can easily obtain the ful-
l name “Australian Broadcasting Corporation” and
“American Broadcasting Company” which are more
unambiguous in the next process. In this paper, we
identify the abbreviations of the entities using the
heuristic rules (Zhang et al., 2012). First, for the
capitalized query C, we check whether the docu-
ment contains pattern (C) or not. If the document
contains the pattern (C), we extract the continuous
sequence of n tokens that start with the first letters
of the acronym as the target entity, where n repre-
sents the number of the letter in C. Besides, we also
observe that some queries usually contain the part of
its full name, thus if a query is wholly contained in a
string of a named entity in the associated documen-
t, we use the named entity as the full name of the
query.

3 Candidate Generation

In this module, we generate the set of candidate en-
tities for each expanded query. Intuitively, the can-
didate entities of the query should have the same or
similar surface form of the entity mention or refer to
the same entity with the entity mention. In this pa-
per, we find the candidate entity using the Wikipedia
knowledge and the string matching method.

3.1 Wikipedia Knowledge
We first take advantage of the huge amount of
knowledge available in Wikipedia. The structure of
Wikipedia provides a set of useful features for the
generation of the candidate entities. In this paper,
we generate the candidate entities using the redirec-
t pages, disambiguation pages and anchor texts in
Wikipedia article:

• Entity pages: Each entity page in Wikipedi-
a describes a single entity and contains the
background information focusing on this enti-
ty. Generally, the title of each page is the most
common name for the entity described in this
page. We select the entity as the candidate en-
tity if the entity mention is an exact match with
the title.

• Redirect pages: A redirect page is an aid for
navigation. So redirect pages often indicate
synonym terms, abbreviations or other varia-
tions of the pointed entities. Thus, we selec-
t the entity as the candidate entity if the en-
tity mention is exactly match of the alterna-
tive name of the entity. For example, “ABC
(American television)” represent the same en-
tity with the “American Broadcasting Compa-
ny”, the page “American Broadcasting Com-
pany” was redirected from “ABC (American
television)”. So for the entity mention “ABC
(American television)”, the entity “American
Broadcasting Company” should be a candidate
entity.

• Disambiguation pages: In Wikipedia, when
multiple entities in Wikipedia could be given
the same name, a disambiguation page is cre-
ated to separate them. It contains a list of ref-
erences to the pages for these ambiguous enti-
ties that share the same name. So if the entity

mention matches the title of the disambiguation
page or any one name of the listed articles, we
add all the entities listed in the disambiguation
page to the candidate set.

• Anchor text: The anchor text is the hyper-
link contained in the article, which links to the
pages of entities mentioned in this article. So
the anchor text provides a very useful source
of synonyms and other variations of the entity,
and can be regarded as the surface form of that
linked entity. In this module, if the entity men-
tion matches the anchor, we add all the anchor
target entities into the candidate set.

3.2 String Match
Though with use of the Wikipedia knowledge we
can recall the majority of the right answers, there
are still some entity mentions for which we cannot
find the right candidate entity. The main reason is
that the entity mention for this query is misspelled.
To solve this problem, we select the entity which
has a high edit distance with the entity mention as
the candidate entity. For example, the edit distance
between “American Broadcasting Corporation” and
“American Broadcasting Company” is 0.78, thus we
can select the entity “American Broadcasting Corpo-
ration” as the candidate of the “American Broadcast-
ing Company”. In this module, we set the threshold
to 0.6 for the edit distance empirically. Though the
threshold could be tuned to minimize the candidate
set and maximize the recall, we will leave it for our
future work.

To evaluate the candidate generation module, we
evaluate the coverage of the candidate entity set in
TAC-KBP track 2010 data, TAC-KBP track 2011
data and TAC-KBP track 2013 data . In table 1, we
show the recall of the candidate entity in the three
data sets.

Data Set TAC 2010 TAC 2011 TAC 2013
Recall 0.9029 0.7580 0.8110

Table 1: Recall of the candidate generation.

4 Candidate Entity Disambiguation

To select a single entity which has the most probabil-
ity to be right answer, we use a supervised learning-

to-rank model in this phase. First, we represent each
entity mention and the associated candidate entity as
a series of features representing contextual, seman-
tic, surface and NIL evidence. Then in the ranking
module, we give each candidate entity a score based
on these features. Finally, we select the entity with
the highest score as the answer. The intuition be-
hind this is that the correct entity should receive a
higher score than all other entities by using the rank-
ing SVM algorithm (Joachims, 2002). Here, we use
the linear kernel due to the efficiency compared with
other kernel functions, and set the slack parameter
C to 20. Furthermore, we take the loss function as
the total number of swapped pairs summed over all
training examples. In the following we will describe
the features used in the ranking model.

4.1 Surface Features
The features in Surface group are used to mea-
sure the similarity between the name string of the
query and name string of the candidate entities. For
the candidates containing the parenthetical expres-
sion, we compute their similarity after removing
the parenthesis. For example, the similarity be-
tween “American Broadcasting Company(TV)” and
“American Broadcasting Company” is 1. For the
NIL entity, this feature is set to 0. Besides, we al-
so take the effect of the acronym and the case of the
string into account (e.g., the similarity between the
“abc (broadcasting)” and the “American Broadcast-
ing Company” is also 1). Finally, we compute the
similarity between the candidate entity and the enti-
ty mention using the following two methods:

• Edit Distance Similarity: The feature value is
the edit similarity between the mention string
and the candidate. In our system the edit dis-
tance similarity is calculated using the formu-
la 1:
edita,b (i, j) =

max(i, j) ifmin(i, j) = 0,

min

 edita,b (i − 1, j) + 1
edita,b (i, j − 1) + 1
edita,b (i − 1, j − 1) + [ai=/bj]

otherwise

(1)

Note that the first element in the minimum cor-
responds to deletion (from a to b), the second
to insertion and the third to match or mismatch,
depending on whether the respective symbols
are the same.

• Dice Coefficient: We compute the dice coeffi-
cient score between the entity mention and the
title of the candidate entity as a feature. For ex-
ample, x and y are two strings, the coefficient
may be calculated as the formula 2.

S =
2nt

nx + ny
(2)

where nt is the number of character bigrams
found in both strings, nx is the number of bi-
grams in string x and ny is the number of bi-
grams in string y.

4.2 Contextual Features
The features in Context group are used to mea-
sure the contextual co-occurrence between the query
source document and the KB definition of the can-
didate entities. The intuition behind this is that if
the query name and the candidate entity refer to the
same entity, they may be used in the similar con-
texts. We mainly consider the similarity based on
VSM model and the entity co-occurrence.

• Similarity based on VSM model: This feature
captures the similarity between the document
of the query and the document of the candidate
entity based on the VSM model. To calculate
the similarity, we represent the candidate en-
tity and the query as the bag-of-word vector,
each entry in the vector is weighted using the
standard TF-IDF measure. Finally, we calcu-
late the cosine similarity between vectors as the
feature. For NIL entity, the value is set to 0.

• Entity co-occurrence: This feature marks the
presence of names in the text. Two features
are included, one feature is whether the query
name string appears in the KB text, the other is
whether the title of the candidate entity appears
in the source document of the query. For the
NIL entity, both of the feature values are set to
0.

4.3 Semantic Features
The features in semantic group are used to measure
the relatedness between the query source document
and the KB definition of the candidate entities. The
contextual features can only capture the word or en-
tity co-occurrence information, which is usually not

enough for our task. For example, If two entities rep-
resent the same real entity, but they share no word
or rare word co-occurrence, it’s difficult to distin-
guish the two entities, so we should take the seman-
tic relatedness into consideration. In our system, we
mainly use the following features to calculate the se-
mantic features.

• Entity Popularity: This feature tells us the
likelihood of an entity appearing in a document.
We calculate it in the same way with (Han and
Sun, 2011). In the system, the entity popularity
can provide a priori information to the possible
referent entities of a name mention. For exam-
ple, given the entity “Michael Jordan”, without
any other information, we can know the popu-
larity of the entity basketball player “Michael
Jeffrey Jordan” is higher than that of the entity
Berkeley professor “Michael I. Jordan”. So we
use it as a feature of our system. For NIL entity
the value is 0.

• Semantic Relatedness of Wiki-Concept:
In our system the semantic relatedness of
Wikipedia contains two aspects. One is the
average semantic relatedness between the
query name and each concept in the KB
definition of the candidate entities. The other
is the average semantic relatedness between
the candidate entity’s title and each concept
in the source document of the query. Our
system calculate the Semantic Relatedness
Of Wikipedia Concept in 2 steps. First, we
recognize the Wikipedia concept in both of the
query source document and the KB definition
of the candidate entity, using the Wikipedia-
Miner toolkit developed by (Milne and Witten,
2012). Then we calculate average semantic
relatedness between the query name and each
concept in the KB definition of candidate
entity. And we also get the average semantic
relatedness between the candidate entity’s title
and each concept in the source document of
the query.
Like (Witten and Milne, 2008) (Milne and
Witten, 2008),We calculate the relatedness
score between two concepts as follows:

sr(ci, cj) = 1− log(max(|Ci|, |Cj |))− log(|Ci ∩ Cj |)
log(W)− log(min(|Ci|, |Cj |))

(3)

where W is a set of all Wikipedia articles, ci
and cj are two Wikipedia articles, Ci and Cj

are the sets of all articles that link to ci and cj ,
respectively. For the NIL entity, the value is set
to 0.

4.4 NIL Features

Following the literature of (Dredze et al., 2010), we
add a special entity NIL into the candidate entity.
We also add a NIL feature to the feature set. So
we can decide whether the entity mention link to the
NIL or not. In our system, we set the best value of
the NIL feature to 0.7 on the development set.

5 NIL clustering

After the above module, we link many entity men-
tion to the NIL entity. The task require the system
to cluster together queries referring to the same en-
tities and provide a unique ID for each cluster. So
in the NIL clustering module, we take all the queries
which link to the NIL entities as input and get the
clusters with the unique ID. First, we cluster the NIL
queries based on their surface forms. In this step,
we mainly use the heuristic rules. If the edit dis-
tance between two entity mention is higher than 0.6,
we classify them in the same cluster. In this step
the queries whose entity mentions contain the oth-
er are also believed to belong to the same cluster.
After the rough classification, we use hierarchical
agglomerative clustering (HAC) algorithm to cluster
NIL queries in each cluster obtained from the first
step. The second step works as follows: Initially,
each query is an individual cluster; then we iterative-
ly merge the two clusters with the largest similarity
to form a new cluster until this similarity is smaller
than a threshold. In this algorithm we use the aver-
age link method to compute the similarity between
two clusters. The similarity between queries is de-
termined by the query source document similarity
based on VSM model.

6 Experiments and Results

The KBP 2010 training data set is used as our train-
ing data. This data set contains 1500 queries which

are selected from the English newswire articles and
the web pages. We use the KBP 2011 evaluation
data set as the development data. The KBP 2011 e-
valuation data set contains 2250 queries which are
selected from English newswire articles and web
pages.We use the KBP 2013 English entity linking
task contains 2190 queries as the test data, this da-
ta are selected from English newswire articles, web
pages and discussion forum documents. In the task,
we use the Bˆ3+F1 to evaluate the results by using
the score tool1. We submit the 5 runs of our sys-
tem shown in Table 2. The methods highest score is
0.573, and each parts score is shown in Table 3.

Submission Bˆ3+F1
CASIA1 0.535
CASIA2 0.536
CASIA3 0.534
CASIA4 0.549
CASIA5 0.573

Table 2: Submissions scores

Evaluation metric Bˆ3+F1
(All – 2190 queries) 0.573

(in KB – 1090 queries) 0.540
(not in KB – 1100 queries) 0.602
(NW docs – 1134 queries) 0.673
(WB docs – 343 queries) 0.494
(DF docs – 713 queries) 0.444

(PER – 686 queries) 0.537
(ORG – 701 queries) 0.619
(GPE – 803 queries) 0.562

Table 3: CASIA5 each score

From Table 3, we can see that our entity linking
system achieves the comparable performance. The
data set from discussion forum (DF) gets the lowest
performance, the reason may be that the queries in
DF are more dirty and misleading than other types
of document, the recall of our candidate generation
is only 0.81.

7 Conclusions

This paper describes our CASIA system in detail for
KBP 2013 Entity linking task. Our system consist-

1http://www.nist.gov/tac/2013/KBP/EntityLinking/tools.html

s of four modules. 1) Query expansion module. 2)
Candidate generation module. 3) Candidate Entity
disambiguation module. 4) NIL clustering module.
First, we expand the queries with the information
of the query documents. Then we find the candi-
dates of queries from the Knowledge Base using the
Wikipedia knowledge and a string matching method.
In the disambiguation module, we select a candidate
entity using a supervised learning-to-rank method
based on a variety of evidences. Finally, we cluster
all the NIL entities which have not been detected in
the above modules using the Hierarchical Agglom-
erative Clustering algorithm. The evaluation results
show that our method is effective for English enti-
ty linking task. Finally, we use the NIL clustering
module to cluster the NIL query. The evaluation of
our five runs demonstrates the effectiveness of our
system.

Acknowledgments
This work was supported by the National Natural
Science Foundation of China (No. 61303180, No.
61070106, No. 61272332 and No. 61202329)

References
Mark Dredze, Paul McNamee, Delip Rao, Adam Ger-

ber, and Tim Finin. 2010. Entity disambiguation
for knowledge base population. In Proceedings of
the 23rd International Conference on Computational
Linguistics, pages 277–285. Association for Computa-
tional Linguistics.

Xianpei Han and Le Sun. 2011. A generative entity-
mention model for linking entities with knowledge
base. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies-Volume 1, pages 945–954. As-
sociation for Computational Linguistics.

Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Grif-
fitt, and Joe Ellis. 2010. Overview of the tac 2010
knowledge base population track. In Third Text Anal-
ysis Conference (TAC 2010).

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In Proceedings of the eighth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 133–142.
ACM.

David Milne and Ian H Witten. 2008. Learning to link
with wikipedia. In Proceedings of the 17th ACM con-
ference on Information and knowledge management,
pages 509–518. ACM.

David Milne and Ian H Witten. 2012. An open-source
toolkit for mining wikipedia. Artificial Intelligence.

Wei Shen, Jianyong Wang, Ping Luo, and Min Wang.
2012. Linden: linking named entities with knowl-
edge base via semantic knowledge. In Proceedings of
the 21st international conference on World Wide Web,
pages 449–458. ACM.

I Witten and David Milne. 2008. An effective, low-
cost measure of semantic relatedness obtained from
wikipedia links. In Proceeding of AAAI Workshop on
Wikipedia and Artificial Intelligence: an Evolving Syn-
ergy, AAAI Press, Chicago, USA, pages 25–30.

Tao Zhang, Kang Liu, and Jun Zhao. 2012. The nlprir
entity linking system at tac 2012.

