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Abstract

This paper describes the system imple-
mented by the NLP GROUP AT UNED for
the Knowledge Base Population 2013 En-
glish Slot Filling (SF) and Temporal Slot
Filling (TSF) tasks. For the Slot Filling
task, we implemented a distant supervi-
sion approach, using Freebase as a source
of training relations and news sources to
retrieve training examples. For the Tempo-
ral Slot Filling task, our approach is based
on learning the temporal link between re-
lation mentions and previously identified
contextual temporal expressions. This is
realized using distant supervision to match
temporal information from a knowledge
base and textual sources. Evidence is then
aggregated into an imprecise temporal an-
choring interval. For both systems, we ex-
tract features from a rich document rep-
resentation that employs a graph structure
obtained by augmenting the syntactic de-
pendency analysis of the document with
semantic information.

1 Introduction

This paper describes the NLP GROUP AT UNED
2013 system for the English Slot Filling (SF) and
Temporal Slot Filling (TSF) tasks. The goal of SF
is to extract, from an input document collection,
the correct values of a set of target attributes of a
given entity. This problem can be more abstractly
described as relation extraction:

Relation extraction: acquiring relation instan-
ces from text. Relation instances are binary rela-
tions between a pair of entities, or an entity and an

appropriate attribute value:

〈entity , relation, value〉

The TSF task asks to provide additional tem-
poral anchoring of extracted relations. Many in-
teresting relations are dynamic: their truth value
is dependent on time. We call these relations flu-
ents (Russell and Norvig, 2010). For a known re-
lation value, how to establish the period of time for
which the value is correct? The temporal anchor-
ing problem consists in obtaining from the doc-
ument collection the temporal validity of the slot
values.

Temporal anchoring: obtain the temporal va-
lidity of a relation instance:

〈entity , relation, value, temporal anchor〉

It is possible to attempt relation extraction and
temporal anchoring sequentially (a pipelined ap-
proach), or together (a coupled approach). It is
also possible to consider the relation extraction
problem solved and focus only on temporal an-
choring. This last option is the one proposed by
the KBP 2013 Temporal Slot Filling task: partici-
pants are provided with the relation instances and
their goal is to anchor them temporally, extract-
ing temporal information from a source document
collection.

The rest of this paper is organized as follows.
Section 2 provides a concise overview of the de-
sign of our approach. The document-level rep-
resentation we use is described in some detail in
Section 3. The specifics of the Regular Slot Fill-
ing subtask are described in Section 4, and those of
the Temporal Slot Filling task in Section 5. Eval-
uation results are reported in Section 6, and our
conclusions in Section 7.
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Figure 1: System overview diagram.

2 System overview

In this section, we describe the NLP GROUP AT

UNED 2013 Slot Filling and Temporal Slot Fill-
ing systems. Both hinge on a distant supervi-
sion approach, following the paradigm described
by Mintz et al. (2009), which is popular among
participants in this task (Agirre et al., 2009; Sur-
deanu et al., 2010, among others). Distant super-
vision automates the generation of training data by
heuristically matching known facts to text. These
obtained examples can then be used to train other-
wise supervised extractors.

Slot Filling: distant supervision is employed to
learn a battery of binary classifiers for each target
slot (extractors).

Temporal Slot Filling: distant supervision is
applied to automatically label training data to learn
a n-way classifier to decide the temporal link be-
tween a relation instance and a contextual tempo-
ral expression.

Figure 1 depicts an overview of the system.
It follows a straightforward machine learning
pipeline design. First, the system is trained, us-
ing information available to learn a model for the
task at hand. In the system application, the mod-
els we have learnt are used to extract new infor-
mation. Last, an aggregation phase is necessary to
reconcile possibly conflicting pieces of evidence,
extracted from multiple documents.

The system training has two sub-phases: (1)
document analysis, to process unstructured text
and generate a useful representation of the infor-
mation they contain; and (2) distant supervision, to
automatically gather training examples. The doc-
ument analysis phase has two sub-components:

• Document representation. We aim at cap-
turing long distance relations by introducing
a document-level representation and deriving
novel features from deep syntactic and se-
mantic analysis (see Section 3).

• Entity mention indexing. In order to obtain
training examples, we will match KB entries
and entity mentions in the document collec-
tion. This matching is based on an entity
mention index, compiled after processing the
full document collection.

Distant supervision is applied to train classi-
fiers for both SF and TSF, although with differ-
ent purposes. In the case of the SF task, the in-
puts (KB and document collection) are used to
learn a set of slot extractors. Each slot extrac-
tor can decide if a given unlabelled example is
an instance of that slot. For the TSF task, we
learn a temporal link classifier (in the TSF task).
This classifier assigns a temporal link to a pair
(relation mention, temporal information).

In the system application, the models we have
learnt are used to extract new information: in SF,
the extractors must decide if a given candidate
value is a valid for a slot; in TSF, what is the



David[NNP,David]

NER: PERSON
DESCRIPTOR: 
David
POS: N 

Julia[NNP,Julia]

CLASS:WIFE
NER: PERSON
DESCRIPTOR: 
Julia
POS: N
GENDER:FEMALE 

September[NNP,September] 1979[CD,1979]

NER:DATE
TIMEVALUE:197909
DESCRIPTOR: September 1979
POS: NNP 

wife[NN,wife]
DESCRIPTOR: 
wife
POS: NN 

is[VBZ,be] celebrating[VBG,celebrate]

ASPECT:PROGRESSIVE
TENSE:PRESENT
POLARITY:POS
DESCRIPTOR: celebrate
POS: V 

birthday[NN,birthday]

DESCRIPTOR: 
birthday
POS: NN 

was[VBD,be] born[VBN,bear]

ASPECT:NONE
TENSE:PAST
POLARITY:POS
DESCRIPTOR: bear
POS: V 

arg0

hasClass

prep_in

arg1 arg1

has
INCLUDES

has_wife

Figure 2: Document graph representation, GD, for the sample text document “David’s wife, Julia, is
celebrating her birthday. She was born in September 1979”.

temporal link between a candidate mention and a
piece of temporal information.

The NLP GROUP AT UNED Slot Filling and
Temporal Slot Filling systems build on our par-
ticipation in the KBP 2011 edition, as reported
in (Garrido et al., 2011). We have rebuilt the core
components from the previous system, and made
changes and improvements across all of them.
Some of the main changes are: (1) substitute the
previous IR-based passage retrieval for an entity-
mention index approach; (2) improve on document
representation and feature generation; (3) limited
the scope of training examples to sentences, al-
though co-reference allows to gather information
from different parts of the documents; (4) in the
Temporal Slot Filling task, we have integrated dis-
tant supervision into the temporal linking module.

3 Document analysis and representation

Our system relies on a rich document represen-
tation that integrates several layers of lexical,
syntactic and semantic information in a compact
graph structure (Garrido et al., 2012; Cabaleiro
and Peñas, 2012). This document-level represen-
tation is built upon the set of syntactic dependency
trees of each of the sentences, upon which the fol-
lowing operations are performed:

• Lexical and syntactic analysis, named entity

recognition and coreference resolution, us-
ing Stanford CoreNLP (Klein and Manning,
2003).

• Labelling events and temporal expressions,
augmenting dependency trees with edges
representing temporal relations, using the
TARSQI Toolkit (Verhagen et al., 2005).

• Collapse nodes into discourse referents.

• Rule-based simplification and normalization
of the resulting graph structure.

This representation is document-level in the
sense that a single graph representation is built
from the set of dependency trees for each sentence.
A document D is represented as a document graph
GD; with node set VD and edge set, ED. Each
node v ∈ VD represents a word or a sequence
of words (we group words in two cases: multi-
word named entities and a verb and its auxiliaries).
Co-referent nodes are collapsed into a single node,
representing a discourse referent. The graph struc-
ture allows navigating between different sentences
that contain mentions to the same discourse refer-
ent.

Each node is labeled with a dictionary of at-
tributes: the words it contains, their part-of-speech
annotations (POS) and lemmas, and their posi-
tions in the phrase and in the sentence. Also,
a representative descriptor, which is a normal-



ized string value, is generated from the chunks in
the node. Certain nodes are also annotated with
one or more types. There are three families of
types: Events (verbs that describe an action, an-
notated with tense, polarity and aspect); standard-
ized Time Expressions; and Named Entities, with
additional annotations such as gender or age.

Edges in the document graph, e ∈ ED, rep-
resent four kinds of relations between the nodes:
(1) syntactic; (2) semantic relations between
two nodes, such as hasClass, hasProperty and
hasAge; and (3) temporal relations between events
and time expressions.

Additional semantic information is also blended
into this representation: normalization of geni-
tives, semantic class indicators inferred from ap-
position and genitives, and gender annotation in-
ferred from pronouns. A graph example is pic-
tured in Figure 2.

4 Slot Filling system description

This section describes with more detail the imple-
mentation of the NLP GROUP AT UNED 2013
Slot Filling system. The system core component
is a battery of slot-specific classifiers (extractors),
trained using examples gathered automatically us-
ing a distant supervision approach.

Gather training examples. From a Knowledge
Base (KB), we extract a set of relation triples or
instances: < entity, relation, value >. For a
relation instance, any textual mention of entity
and value is assumed to express the relation. By
matching the instances to the documents in the
source collection, we obtain positive examples for
the relation. As negative examples for a relation,
we use both: (a) positive examples for any other
relation; and (b) examples generated from entity-
value pairs that are not connected by any relation
in the KB.

Feature extraction. From positive and negative
training examples, lexical and syntactic features
are generated.

Learning specialized classifiers (extractors) for
each target relation. The application of the ex-
tractors learned allows us to perform slot filling.
We first retrieve candidate sentences, using the en-
tity mention index. And then apply the extractors
to obtain new examples for the relation.

Aggregation. Finally, aggregation is needed to
produce a single system response from possi-
bly conflicting pieces of evidence, extracted from
multiple documents.

4.1 Implementation details

To implement the distant-supervision approach
sketched above, an existing Knowledge Base and
a source document collection are needed. For the
NLP GROUP AT UNED 2013 system, we used
the knowledge base Freebase.1 The original data
dump file is in RDF format, and contains over 1
billion triples. From all triples we extract those
that are instances of the Freebase relations relevant
to any of the KBP slots.

We decided to use a document source corpus for
training that was independent from the documents
used for evaluation. In particular, we used the
source data from the TAC 2010 Knowledge Base
Population Evaluation.2 Note that these source
documents are used only for training and are not
part of the evaluation corpus for the current 2013
edition of the task.

Table 1 reports on the number of training in-
stances extracted from Freebase, and of training
examples obtained by matching Freebase and the
source document collection.

Notice that, to retrieve training examples, we
exploit a pre-built entity mention index. For this
participation, we have used only sentences as valid
passages for training and extraction. That means
that both subject and value of the relation must
be mentioned within the same sentence. As our
document-level representation (see Section 3) in-
cludes co-reference information, we can use not
only explicit mentions, but also pronouns and
other referring expressions.

Each example was represented by binary fea-
tures, which are inspired by previous work (Sur-
deanu and Ciaramita, 2007; Mintz et al., 2009;
Riedel et al., 2010; Surdeanu et al., 2010; Garrido
et al., 2012). For a summary of them, see Table 2.

For this task, we used a battery of binary clas-
sifiers; each of them was a SVM classifier with

1We downloaded a data dump of Freebase, dated 2013-
05-26, from the site: https://developers.google.
com/freebase/data.

2This data release consisted in 1 777 888 files. It in-
cludes the former TAC 2009 KBP Evaluation Source Data
(LDC2009E57), which are 1 289 649 documents, most of
them newswire; and up to 490 596 web text documents, most
of them from earlier GALE Web Text Collection releases. For
more details, see (TAC-KBP, 2011).



KBP Slot KB instances found in some doc (%) training examples docs/instance
org:alternate names - - - -
org:city of headquarters 183762 6458 (3.51) 89200 13.81
org:country of headquarters 13748 138 (1.00) 3302 23.93
org:date disolved 1969 144 (7.31) 4276 29.69
org:date founded 63740 1387 (2.18) 9025 6.51
org:founded by 21641 2314 (10.69) 73004 31.55
org:member of 6390 1013 (15.85) 192802 190.33
org:members 6390 1013 (15.85) 192802 190.33
org:number of employees members 2745 276 (10.05) 2897 10.50
org:parents 223086 1359 (0.61) 26226 19.30
org:political religious affiliation 2225 46 (2.07) 468 10.17
org:shareholders - - - -
org:subsidiaries 223086 1359 (0.61) 26226 19.30
org:top members employees 169432 5488 (3.24) 119621 21.80
org:website 470601 597 (0.13) 1692 2.83
per:alternate names - - - -
per:age - - - -
per:cause of death 38275 1572 (4.11) 20371 12.96
per:charges 1271 7 (0.55) 15 1.67
per:children 205467 1752 (0.85) 10996 6.28
per:date of birth 1181841 5716 (0.48) 25665 4.49
per:date of death 427503 6333 (1.48) 45590 7.20
per:employee or member of 157219 7112 (4.52) 362729 51.00
per:origin 695258 33627 (4.84 842791) 25.06
per:parents 205467 1752 (0.85 10996) 6.28
per:place of birth 744550 15643 (2.10) 127247 8.13
per:place of death 169775 3727 (2.20) 34470 9.25
per:place of residence 186475 9650 (5.17) 126655 13.12
per:religion 47127 1153 (2.45) 23360 20.26
per:schools attended 319561 5210 (1.63) 18735 3.60
per:siblings 160512 1590 (0.99) 10912 6.86
per:spouse 108854 2196 (2.02) 36075 16.43
per:title 2330869 11788 (0.51) 446356 37.87

Table 1: Training data per slot breakdown. Each row lists, for each slot: the number of relation in-
stances obtained from Freebase (KB instances); the number and percentage of instances found in some
document; the number of training examples produced; and the ratio of documents to instances.

linear kernel (Joachims, 2002). We used the
SVMLight implementation available at http://

svmlight.joachims.org/. We did not tune the
classifiers’ default values.

4.2 Limitations of distant supervision

Unfortunately, an automatic labelling procedure
such as the one described does not produce train-
ing examples for every interesting target relation.
Only relations popular enough to be included in
the initial Knowledge Base schema and popu-
lated with enough instances can be used for dis-
tant supervision. For any relation not verifying
these requirements, an alternative procedure must
be used. Methods based on bootstrapping (Brin,
1998; Agichtein and Gravano, 2000) are an alter-
native to distant supervision. Iteratively, examples
of a relation (seed tuples) are used to retrieve tex-
tual instances of the relation; those mentions can
be abstracted into extraction patterns (seed pat-
terns), that can then be used to search for addi-

Feature name description
path dependency path between ENTITY and

VALUE in the sentence
X-annotation NE annotations for X
X-pos Part-of-speech annotations for X
X-gov Governor of X in the dependency path
X-mod Modifiers of X in the dependency path
X-has age X is a NE, with an age attribute
X-has class-C X is a NE, with a class C
X-property-P X is a NE, and it has a property P
X-has-Y X is a NE, with a possessive relation with

another NE, Y
X-is-Y X is a NE, in a copula with another NE, Y
X-gender-G X is a NE, and it has gender G
V -tense Tense of the verb V in the path
V -aspect Aspect of the verb V in the path
V -polarity Polarity (positive or negative) of the verb

V

Table 2: Summary of features included in the SF
model. X stands for ENTITY and VALUE. Verb
features are generated from the verbs, V , identi-
fied in the path between ENTITY and VALUE.



N:Prep(X,Y) <- X:N:hasClass, N:Y:Prep, prep(Prep), X\==Y.
N:Prep(X,Y) <- X:N:is, N:Y:Prep, prep(Prep), X\==Y.
has:N(X,Y) <- Y:N:hasClass, X:N:Has, has(Has), X\==Y.
has:N(X,Y) <- Y:N:is, X:N:Has, has(Has), X\==Y.
has:N:Prep(X,Y) <- X:N:Has, N:Y:Prep, has(Has), prep(Prep), X\==Y.
V:N:Prep(X,Y) <- V:X:arg0, V:N:arg1, N:Y:Prep, prep(Prep), X\==Y.
V:N:of(X,Y) <- V:X:arg0, V:N:arg1, Y:N:Has, has(Has), X\==Y.

Listing 1: Graph mining patterns. On the left side of the rules are the relations, and on the right side are
the constraints for the patterns. Syntax is Prolog.

tional tuples. Instead of a large number of anno-
tated examples, a small set of seeds (either seed
patterns or seed tuples), is needed to initiate the
extraction process.

We experimented with a similar approach for
three of the task slots: (1) org:shareholders,
which is not represented in Freebase’s schema;
(2) per:age, whose values can be derived from
date of birth, but for which finding training ex-
amples would require some reasoning about doc-
ument dates; and (3) per:charges, which is in
Freebase, but produced very little training exam-
ples.

The basis of this approach is to use 7 patterns
over the graph-based document representation ex-
plained in section 3. These patterns are aimed at
over-generating possible expressions of open re-
lations, without reference of any particular prede-
fined set. The patterns are shown in Listing 1.

After processing the complete collection, fre-
quencies are aggregated. Now, if we are inter-
ested in gathering some seeds for a particular re-
lation we can prepare a query over the resource
and retrieve them. For example, the relation
org:shareholders is defined between two orga-
nizations (ORG) and we are looking for expres-
sions involving “share”. The result of this query
is shown in a aggregated view in Table 3. Table 4
shows the number of additional training examples
generated for each slot.

4.3 Description of the runs submitted
The main difference among the two runs submit-
ted is in the aggregation of pieces of evidence from
different documents. The classification process
yields a predicted class label, plus a real number
indicating the margin (linear distance from the ex-
ample to the SVM hyperplane boundaries).

SF RUN 1: Aggregated. The answer filler is
chosen after aggregating the scores obtained for
‘equivalent’ extractions. Each candidate filler is

Pattern instances
ORG . buy:share:of . ORG 56
ORG . sell:share:of . ORG 33
ORG . hold:share:of . ORG 33
ORG . shareholder:in . ORG 30
ORG . own:share:of . ORG 26
ORG . purchase:share:of . ORG 13
ORG . acquire:share:of . ORG 12
ORG . downgrade:share:of . ORG 9
ORG . say:shareholder:of . ORG 8
ORG . say:shareholder:in . ORG 7
PER . age:of . NUMBER 66
PER . turn:in . NUMBER 6
PER . face:charge:of . CHARGE 204
PER . face:count:of . CHARGE 95
PER . face:allegation:of . CHARGE 6
PER . face:one:of CHARGE 3

Table 3: Some of the most productive pat-
terns used to obtain relation instances for the
org:shareholders, per:age and per:charges

slots. Notice instances are not necessarily unique.

KBP Slot instances examples docs/instance
org:shareholders 366 18822 51.43
per:charges 292 16391 56.14
per:age 16 32 2.0

Table 4: Additional examples. For these slots,
we tried obtaining additional training examples
by pattern matching and bootstrapping. Here, in-
stances are de-duplicated.

normalized, and the classification margin obtained
from the SVM classifier is used as a measure of
the confidence of the extraction (after normaliza-
tion). The filler is given as score the sum of the
normalized scores from all extractions of the same
filler.

SF RUN 2: Not Aggregated. For this run, the
scores are not aggregated. Rather, the response
with the largest margin value is returned as output.



5 Temporal Slot Filling system
description

The TSF task consists in obtaining temporal con-
straints for the validity of a relational fact. In all
but the simplest cases, multiple pieces of temporal
evidence have to be considered to make a decision.
Both explicit and implicit temporal pieces of in-
formation are potentially useful signals to anchor
a relation mention. To address the full problem, it
is important to assess what are the sub-problems
involved. Our approach for Temporal Slot Filling
is based on the following methodology (Garrido et
al., 2012):

Temporal information extraction and represen-
tation. The first step is to represent the tempo-
ral information available that is useful for the task.
There are many temporal cues around a relation
mention:

• Document-level metadata. The document
creation time (DCT), if available, is useful to
temporally anchor the relations expressed in
the document.

• Contextual temporal expressions. Tempo-
ral evidence also comes from the temporal
expressions present in the context of a rela-
tion.

Selecting relevant temporal information. For
each document and relational instance, we have to
select those pieces of temporal evidence that are
relevant to the relation, and discard those that are
not.

Learning the temporal links. The third step is
deciding how a relational fact and its relevant tem-
poral information are themselves related. We use
the term link for a relation between a temporal ex-
pression (a date) and an event; we want to avoid
confusion with the term relation (a relational fact
extracted from text).

Temporal interval aggregation. The last step is
aggregating the temporal constraints found for the
same relation and value across multiple documents
into a common temporal representation.

5.1 Implementation details

To extract, normalize and represent contextual
temporal expressions we do the following:

• We use TARSQI to extract temporal expres-
sions and link them to events. In partic-

ular, TARSQI uses the following temporal
links: included, simultaneous, after, before,
begun by or ended.

• We focus also on the syntactic pattern [Event-
preposition-Time] within the lexical context
of the candidate entity and value.

• Both are normalized into one from a set of
predefined temporal links: within, through-
out, beginning, ending, after and before.

Document meta-data, such as the document cre-
ation time is also useful to anchor relations tempo-
rally, and simple to extract, when available.

For each document and relational instance, we
have to select those temporal that are relevant to
the relation, and discard those that are not related
to it. We compare two approaches:

DCT baseline: This baseline uses only docu-
ment level meta-data (the document creation time)
to anchor relations mentioned in a document. We
assume that the DCT signals a point in time when
the mentioned relation is true. In other words, it
assumes a within temporal link from the document
creation time to any relation expressed inside the
document. In a previous participation in the TSF
task (Garrido et al., 2011), we found out that us-
ing the document creation time provides a strong
baseline.

Contextual temporal information: We define
the contextual temporal expressions of a rela-
tion mention as those that are connected in the
document graph to the subject and object of the
relation. Note that this definition crosses sentence
boundaries, using coreferent mentions. In our
particular implementation, we limited the context
to the three time expressions closest to the shortest
path between relation subject and object.

The NLP GROUP AT UNED 2013 TSF sys-
tem implements a distantly supervised classifier
to learn the temporal links between relation in-
stances and contextual temporal expressions. Sim-
ilar classification systems have been proposed for
this task (Artiles et al., 2011; McClosky and Man-
ning, 2012). The temporal link classifier works as
follows:

• Gather training relation instances that have
some temporal information from an existing
knowledge base (Freebase).

• Distant supervision: heuristically matching



relation instances and textual sources, to ob-
tain training examples.

• Generate a feature representation for evalua-
tion candidates. Our features were extracted
from our document-level representation.

• Learn a temporal link classifier.

The classifier is a classical maximum entropy
model, that learns the probability that a relation
mention r has temporal link t:

P (t | r) = 1

Z

N∑
i=0

wifi

The MaxEnt classifier learns the weights, wi,
from the binary features fi provided in training.
We used the MALLET (McCallum, 2002) imple-
mentation of MaxEnt.3

To aggregate the individual pieces of evidence
found across different documents, we use an
heuristic procedure, similar to (Artiles et al.,
2011). The desired output is an ordered 4-tuple
of time points: (t1, t2, t3, t4). It should hold that:
t1 ≤ t2, t3 ≤ t4, and t1 ≤ t4. If we found that
a relation started after two dates d and d′, where
d′ > d, the closest constraint to the real start of
the relation is d′. Mapped to temporal constraints,
it means that we would choose the latest t1 possi-
ble. Following the same reasoning, we would want
to maximize t3. On the other side, when a relation
started before two dates d2 and d′2, where d′2 > d2,
the closest constraint is d2 and we would choose
the smallest t2. In summary, we will maximize t1
and t3 and minimize t2 and t4, so we narrow the
margins.

5.2 Description of the runs submitted

Two runs use contextual temporal information.
They differ on the labelling used for temporal
links. The temporal linking component of the
system solves two problems, as distinguished in
the methodological discussion above: (1) select-
ing relevant temporal information; and (2) learn-
ing the temporal links between relevant temporal
evidence and the target slot. Considering UNRE-
LATED as one of the labels, both problems are
posed as a single n-way classification one. Given
a piece of evidence, the classifier decides the tem-
poral link to the relation, which might be UNRE-
LATED.

3http://mallet.cs.umass.edu/

A question that we want to address is which
temporal expressions are useful to anchor a rela-
tion and which are unrelated, and should be ig-
nored. In particular, if a contextual temporal ex-
pression marks a time before or after the relation,
should that be considered unrelated? Earlier re-
search (Artiles et al., 2011; McClosky and Man-
ning, 2012) has considered before/after temporal
expressions as unrelated. To answer this question,
we have run two system configurations:

TSF RUN 1: Contextual temporal expressions.
7 labels. In this run, the n-way classifier uses
seven classes: BEGINNING, ENDING, WITHIN,
THROUGHOUT, UNRELATED, BEFORE and AF-
TER.

TSF RUN 2: Contextual temporal expressions.
5 labels. In this run, the n-way classifier uses
five classes: BEGINNING, ENDING, WITHIN,
THROUGHOUT and UNRELATED. Temporal ex-
pressions that were annotated as BEFORE/AFTER

in 1 are annotated as UNRELATED.

The other run is the following baseline:

TSF RUN 3: DCT-WITHIN Baseline. The base-
line uses only the document creation times of doc-
uments containing a mention of the relation as
temporal signal.

Training examples
Label RUN 1.

7 LABELS
RUN 2.

5 LABELS
WITHIN 776
THROUGHOUT 616 344
BEGINNING 29 337
ENDING 18 267
BEFORE 106 758 –
AFTER 121 503 –
UNRELATED 1 771 230 032
Total 894 756

Table 5: Number of training examples. Labelling
breakdown. In Run 3, UNRELATED temporal ex-
pressions are labelled as either BEFORE, AFTER,
or UNRELATED

6 Evaluation and results

In this section, we present evaluation and results
for the two tasks: English Slot Filling and
Temporal Slot Filling. For some of the slots,
we were not able to retrieve training data, and
therefore our system produced no responses:
org:alternate names, org:date dissolved,
per:alternate names, and per:other family.
We exclude these slots from our analyses below.



6.1 Slot filling results

An unfortunate but trivial bug caused our system
to produce responses only from a fraction (about
a third) of the Gigaword documents in the source
collection. As a consequence, recall of our Slot
Filling submissions was needlessly low. Table 6
shows the official results for both runs, and the
evaluation of the Fixed Run 1, that includes all
Gigaword documents from the document source
collection. Figure6.1 shows the evaluation of the
two submitted runs and a new one including the
previously missing Gigaword sources.

The fixed runs were evaluated with the official
task scorer, ignoring case of the fillers and filler
provenance.4 While average precision is similar,
recall increases, producing a score of F1 = 0.173.
Around 30% of the responses had no assessment
in the pooled responses.

Does aggregation help? We hypothesized that
the aggregation of pieces of evidence extracted
from multiple documents would provide better re-
sults than selecting the most promising pieces. In
order to compare this two approaches, we run two
experimental settings. In one, Run 2, the values
from the best scored extractions are kept. In the
other, Run 1, the scores from multiple extractions
are aggregated, and those aggregations with better
scores are produced.

The aggregated run (Run 1) is better than the
not aggregated one (Run 2): Run 1 represents a
modest 5.4% gain over Run 2.

Let us break down the results by slot, and test
whether the difference among the two settings is
statistically significant. Figure 6.1 showed the F1

scores per slot for each of the submitted runs. The
difference is statistically significant at a 0.05 sig-
nificance level (the p-value is 0.024).

Nevertheless, the aggregated and not aggre-
gated configurations of the fixed runs are not sta-
tistically significantly different. This has to be
weighted by the fact that the evaluation is coarser

4This is obtained by lenient matching with the official
task scorer (program arguments: nocase, and anydoc).
That is, we only match the fillers (ignoring case) and do not
check for provenance. Notice than leaving out provenance,
two judgements might be inconsistent if two responses with
the same filler but different offsets received different judge-
ments. In those cases, we consider the filler correct if any
judgement considered it correct. In not considering offsets,
the evaluation is more lenient than the official one. On the
other hand, there were up to 394 system responses that had
no assessment, and some of them could be correct.
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Figure 4: Slot Filling (Run 1): number of training
examples per slot does not correlate with classifier
performance.

than the manual judgements, and a number of re-
sponses from each run did not receive judgements.

Quality or quantity of training data? While
manually annotated data is expensive to obtain,
distant supervision offers a way to cheaply pro-
duce large quantities of training data. As the auto-
matic labelling is noisy, quality of the training data
is a concern. Does having large quantities of train-
ing data help to overcome the issues of quality?

Our distant supervision procedure is uniform
for all slots, but the quality of the training data per
slot varies, as does the number of training exam-
ples obtained. Do the classifiers for the slots with
more training data behave better than those with
less training? In our experimental setting, it does
not: the number of training examples per slot do
not correlate with the F1 scores. Figure 6.1 shows
the lack of trends between those variables.

Run Precision Recall F1

SF Run 1 0.176 0.093 0.122
SF Run 2 0.167 0.089 0.116
Fixed SF Run 1 0.172 0.174 0.173

Table 6: Slot Filling. Official Scores and Fixed
scores, computed after including all Gigaword
documents.

Obtaining training data for unpopular rela-
tions. In the absence of tuples form the Knowl-
edge Base, we proposed to retrieve examples by
mining the documents with a set of manually de-
fined rules. We did so for three of the slots:
org:shareholders, per:age and per:charges.
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Figure 3: Slot Filling, run performance comparison. F1 for each of the task slots. Shows the results per
slot for each of the submitted runs, and the fixed run including all Gigaword documents. The slots for
which we obtained training examples using manually defined rules (see Section 4.2) are marked with a
star (∗).

Although the proposed solution is an alternative
to not having training data (for each of the three
relations, the system produces valid responses),
the results show that these three relations obtain
results below average. Obtaining relations tu-
ples through the proposed procedure is noisy, and
not suitable for distant supervision. Some effort
in producing cleaner training examples, through
some form of supervision, is needed to obtain re-
lation tuples for these relations prior to training.

6.2 Temporal Slot Filling

Table 7 summarizes the results for the Temporal
Filling task. The DCT Baseline (TSF Run 3) ob-
tains the best results, which are hard to beat by
using only contextual temporal expressions. Fig-
ure 6.1 show a per-slot breakdown. The perfor-
mance for each slot varies widely. This can be
caused by the way in which examples for each of
the slots are retrieved: the residence slots are more

ambiguous, and therefore the examples we use for
temporal extraction are less reliable.

As it is also shown in Table 7, the contextual
information approaches are able to retrieve more
correct temporal constraints than the DCT base-
line. However, the quality of these temporal con-
straints is worse.

Run
# correct

constraints

avg
constraint

score
official
score

TSF Run 1 385 0.061152 0.116
TSF Run 2 290 0.07413 0.106
TSF Run 3 281 0.105778 0.148

Table 7: Temporal Slot Filling Scores. We report
the official scores, and also the number of individ-
ual constraints judged as correct and the average
score per correct constraint. While TSF Run 1
finds more correct constraints, they are scored
worse on average. In aggregated, TSF Run 3 out-
performs the two classifier-based runs.
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Figure 5: Temporal Slot Filling, performance per
slot.

Why the DCT is a strong baseline? In the pre-
vious edition of this task, it was reported by the
organizers that in the diagnostic task “evaluation
documents included a much higher concentration
of explicit time information than regular newswire
documents” (Ji et al., 2011). This effect might still
be present in the present evaluation.

Which of the proposed labelling schemes is bet-
ter? In Section 5.2, we described two temporal
linking configurations. In TSF Run 2, there are 5
possible labels: UNRELATED and four other. In
TSF Run 1, the UNRELATED labels are separated
in either BEFORE, AFTER, or still UNRELATED.

Despite having different number of labels, the
configurations TSF Run 2 and TSF Run 1 are
equally difficult for the MaxEnt classifier. We
tested this by performing 10-fold cross validation
of the two classifiers. The average accuracy of
TSF Run 2 (5 labels) temporal link classifier is
0.83, while the average accuracy of TSF Run 1 (7
labels) is 0.84. The difference is not statistically
significant.

The DCT baseline proves hard to beat by the
classifier-based approaches.

The three approaches are able to capture a dif-
ferent number of temporal constraints.

7 Conclusions and future work

In the Slot Filling task, we have shown that ag-
gregation of the answers from multiple documents
produces an improvement over selecting the most
promising extractions. Still, there is room for im-
provement in the aggregation method.

We have seen how, for distant supervision,
quantity of training data does not correlate with
performance across different relations. Quality of
training data is an important concern for distant
supervision methods.

Unpopular relations are at a disadvantage un-
der distant supervision schemes, as it is difficult
to gather training data for them. Finding rela-
tion instances by mining the documents for cer-
tain syntactic structures is an alternative to having
Knowledge Base tuples. Nevertheless, the pro-
duced instances are noisy, causing poorer results
when used to gather training examples for dis-
tant supervision. More careful training gathering
methods need to be studied.

In the Temporal Slot Filling task, we have found
that the Document Creation Time baseline is hard
to beat. Nevertheless, contextual information ap-
proaches are able to retrieve more correct temporal
evidence than the DCT baseline. In the immediate
future, we will:

• Better aggregation schemes of individual
temporal constraints.

• Design a system configuration that leverages
both the DCT baseline and contextual tempo-
ral information.
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Bonchi, Aristides Gionis, and Michèle Sebag, edi-
tors, Machine Learning and Knowledge Discovery
in Databases, volume 6323 of LNCS, pages 148–
163. Springer Berlin / Heidelberg.

Stuart J. Russell and Peter Norvig. 2010. Artificial
Intelligence - A Modern Approach (3. internat. ed.).
Pearson Education.

Mihai Surdeanu and Massimiliano Ciaramita. 2007.
Robust information extraction with perceptrons. In
ACE07, March.

Mihai Surdeanu, David McClosky, Julie Tibshirani,
John Bauer, Angel X. Chang, Valentin I. Spitkovsky,
and Christopher D. Manning. 2010. A simple dis-
tant supervision approach for the tac-kbp slot filling
task. In Proceedings of the Third Text Analysis Con-
ference (TAC 2010), Gaithersburg, Maryland, USA,
November. NIST.

TAC-KBP. 2011. Proposed Task Description for
Knowledge-Base Population at TAC 2011. Techni-
cal report, May.

Marc Verhagen, Inderjeet Mani, Roser Sauri, Robert
Knippen, Seok Bae Jang, Jessica Littman, Anna
Rumshisky, John Phillips, and James Pustejovsky.
2005. Automating temporal annotation with
TARSQI. In ACLdemo’05.


