
A Description of ZZ_INFO_TECH System at KBP 2013

 Jie Zhou Yaoyi Xi
 Data Processing Department

Zhengzhou Information Science and Technology Institute
Zhengzhou City, in Henan province, China

 zhoujie.nlp@gmail.com xiyaoyi.nlp@gmail.com

Abstract
In this paper, we report the participation of
ZZ_INFO_TECH team in entity linking
task for Knowledge Base Population at
Text Analysis Conference 2013. Our team
submitted 4 runs for this evaluation task. In
our system, we adopts some simple
heuristic rules and context similarity to
filter irrelevant candidates; extracts
multiple features and trains SVM Ranking
model to realize candidate ranking;
computes five common statistics and trains
SVM model to identify NIL query.

1 Introduction

Entity Linking (EL) is the task of resolving Named
Entity (NE) mentions in the given documents to its
corresponding entries in a structured Knowledge
Base (KB). The EL system can either return a
matching entry or NIL to indicate there is no
matching entry. It enriches unstructured documents
with links to people, places and concepts in the
world. Entity linking is a fundamental building
block that supports a wide variety of information
retrieval, document summarization and data
mining tasks. In the information retrieval domain,
for the results of NE queries, EL can introduce
facts about an entity in addition to pages that talk
about it (Bunescu and Paşca, 2006).

The major challenge in EL is ambiguity. The
entity mentions in the documents may be
ambiguous for a wide variety of reasons: multiple
entities share the same name; entities are referred
to incompletely; entity mentions are pseudonyms
or nicknames; and are often abbreviated.

In this paper, we describe our EL system at KBP
2013. This system adopts some simple heuristic
rules and context similarity to filter irrelevant
candidates; extracts multiple features and trains
SVM Ranking model to realize candidate ranking;
computes five common statistics and trains SVM
model to identify NIL query.

2 Data Preprocessing

The Wikipedia infoboxes and entries are taken
from an October 2008 snapshot of Wikipedia
(LDC2009E58). The knowledge base contains a
set of entities, each with a canonical name and title
for the Wikipedia page, an entity type, an
automatically parsed version of the data from the
infobox in the entity’s Wikipedia article, and a
stripped version of the text of the Wikipedia
article.

In our system, we mapped October 2008
snapshot of Wikipedia (LDC2009E58) to newer
English Wikipedia (the version of Wikipedia in
December 2012) by matching their titles, because
original snapshot does not contain the information
such as redirects, bold text of first paragraph, et al.
Although some Wikipedia entries had been edited,
most of ones can obtain correct mappings. We
expand the aliases of entities in the knowledge
base by using newer English Wikipedia. Moreover,
the following treatments are also useful in the
phase of data preprocessing.

Data Formatting: The initial knowledge base
and source documents are in XML format with
user-defined tags. To improve the efficiency of
query, we convert these documents to structured
index files or database files. In the process of
source document formatting, lots of small files can
be merged into big files for better file management

(such as “LDC2010E12/2010/wb/”), inconsistent
XML formats and incorrect paragraph divisions
need to be processed.

Name Formatting: The query names and entity
names existed in the knowledge base need to be
formatted. Note that, some special characters (such
as “Ã”, “ş”) may lead to mismatch between query
name and entity name, and this mismatch is also
caused by the difference between American
English and British English (such as “World
Health Organisation” and “World Health
Organization”). So some necessary
transformations are used to realize name
formatting.

3 Entity Linking

In our system, the EL task consists of three phases:
candidate generation, candidate ranking and NIL
detection. The details are described as follows.

3.1 Candidate Generation

Since the EL task involves the determination of
whether the entry in the knowledge base is
corresponding entity of a given query, a candidate
set of entries is generated to avoid matching with
all entries. We search query name in the name list
of Wikipedia entries, and add the matching entries
as candidates. In our system, query expansion and
candidate filtering are adopted to generate
high-quality candidate set.

Query Expansion: Usually, we consider the full
name can provide more unambiguous reference.
But many times query names are given in the
forms of the acronyms and incomplete names.
Therefore we identify the full names of these query
names from source documents, and consider them
as expanded names.

Candidate Filtering: By matching query names
and their expanded names with entity names and
aliases in the knowledge base, we can generate a
candidate set for each query. But this set contains
many irrelevant candidates sometimes. In our
system, we design simple heuristic rules to identify
and filter non-entity candidates firstly. For
example, the candidates, whose names start with
special characters (such as “.”), contain the
character “:” or time expressions, contain
pre-defined common’s text considered as
non-entity tags (such as “novel”, “album”), will be
removed from the candidate set.

In a practical application, entity classification
methods of Wikipedia entries can be applied to
classify all entries into pre-defined NE or
non-entity types. The capitalization feature of
aliases in incoming links is also utilized to identify
large portions of non-entity articles in English
Wikipedia (Nothman et al., 2008). The methods
based on heuristic rules usually achieve high
precision. Heuristic rules can be established more
easily than those of other NLP applications, such
as NER.

Moreover, we computed the context similarity
between the candidate’s article and query’s source
text. A minimum threshold is set to determine
whether each candidate is related to the query. If
the value of context similarity is less than the
minimum threshold (in our system it is set to 0.01),
the candidates will be removed from the candidate
set. And only the top 10 candidates sorted by
context similarity in descending order are reserved.

3.2 Candidate Ranking

We select a single correct candidate for a query
using a supervised machine learning ranker. We
represent each query by a D dimensional vector
x (Dx∈R). We adopt support vector machine for
ranking algorithm to realize candidate ranking, and
SVMRank tool1 is used in our system.

(1) Features for Candidate Ranking

In the section, we will introduce the features used
in the ranking module. Each feature is listed in
Table 1, and some detailed descriptions are given
below. Our system uses Stanford Log-linear
Part-Of-Speech Tagger2 and Stanford NE
Recognizer3 to realize English Part-of-Speech
tagging and NER.

1
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
2 http://nlp.stanford.edu/software/tagger.shtml
3 http://nlp.stanford.edu/software/CRF-NER.shtml

Table 1 The features that used in the candidate ranking module of our system.
ID Name Description

1 Context Similarity
The feature value is the TFIDF similarity between the candidate’s article
and query’s source text. The words of predefined parts of speeches (noun,
verb and adjective) are reserved as the features of vector space model.

2 Entity Similarity The feature value is the TF similarity between NEs in the candidate’s
article and NEs in query’s source text.

3 Query Name in Candidate’s
Article The feature value is 1 if query name exists in candidate’s article.

4 Candidate Name (Alias) in
Query’s Source Text

The feature value is 1 if candidate name (alias) exists in query’s source
text.

5
Comment's Text of
Candidate Name in Query’s
Source Text

The feature value is 1 if comment's text of candidate name exists in
query’s source text. The comment’s text of candidate name is the text in
the parenthesized expression or after the comma, which is used to resolve
the ambiguity between articles sharing a name.

6
Other Words of Candidate
Name in Query’s Source
Text

The feature value is 1 if other words except ones contained by query name
exist in query’s source text.

7
Match for Entity Type of
Query Name and Candidate
Name

The feature value is 1 if the entity type of query name is same as that of
candidate name (alias).

8 Name Similarities The feature values are name similarities computed by five types of edit
distant methods (Dice, Levenshtein, JaroWinkler, Jaro and Jaccard).

9 Average Name Similarity The feature value is the average of names similarities above.

10 Word Similarity in the
Names

The feature value is computed by using the method (wordSim) below. This
similarity considers the same words and the prefix relation, such as query
name “Ed Zwick” and candidate name “Edward Zwick”.

11 Exact Match for Query
Name and Candidate Name

The feature value is 1 if query name is same as candidate name (alias)
exactly.

12 Candidate Name in Query
Name The feature value is 1 if query name contains candidate name.

13 Query Name in Candidate
Name The feature value is 1 if candidate name contains query name.

14 Query Name Starts with
Candidate Name The feature value is 1 if query name starts with candidate name.

15 Query Name Ends with
Candidate Name The feature value is 1 if query name ends with candidate name.

16 Candidate Name Starts with
Query Name The feature value is 1 if candidate name starts with query name.

17 Candidate Name Ends with
Query Name The feature value is 1 if candidate name ends with query name.

18 Acronym of Candidate
Name The feature value is 1 if query name is the acronym of candidate name.

19 Acronym of Query Name The feature value is 1 if candidate name is the acronym of query name.

20 Known Entity Type of
Candidate

The feature value is 1 if the entity type of candidate tagged in the
knowledge base is known (PER, ORG or LOC).

21 Same Acronym Name The feature value is 1 if candidate name and query name are the same
acronym.

Word Similarity in the Names: For each word
set qW and cW , which is composed of the words
(except stop words) existed in query name and
candidate name, the intersection of two word sets
is denoted as q cQ W W= ∩ , and complementary

sets are denoted as \q qL W Q= , \c cL W Q= .

We define suffix-word sets qS and cS . For

each word i qw L∈ , if there is a word '
j cw L∈

satisfying the criterion that iw is the prefix of '
jw ,

the word iw is considered to belong to the set qS ,

namely i qw S∈ . We can also get the set cS using
the same way. Then the word similarity in the
names is computed by using follow method.

| | | | /2 | | | | /21 ()
2 | | | |

q c
word

q c

Q S Q SSim
W W
+ +

= +

where | |⋅ denotes the size of set.

(2) SVM Ranking

The correct candidate y should receive a higher
score than all other possible candidates
ˆ ˆ,y Y y y∈ ≠ plus some margin γ . This learning

constraint is equivalent to the SVM ranking
algorithm of Joachims (2002), where we define an
ordered pair constraint for each of the incorrect
candidates ŷ and the correct candidate y .
Training sets parameters such that

ˆscore() score()y y γ≥ + . We used the SVMRank
tool to solve this optimization problem.

3.3 NIL Detection

In the process of NIL detection, we build the
feature vector based on five common statistic
values that are used to determine whether the
maximum prediction is suspect, and train SVM
model to identify NIL query.

(1) Features for NIL Detection

In this section, five common statistic values are
computed. For all candidates 1 2 | |{ , , , }qC c c c= L of

query q , the prediction of candidate ic
computed by SVM ranking algorithm is denoted as

()iscore c . Then we sort all predictions in
descending order, and denote the variable as

1 2 | |{ , , , }qX x x x= L (1 2 | |qx x x> > >L). A

five-dimension feature vector 1 2 5(, , ,)F f f f= L is
built to train SVM model and predict whether the
query is NIL.

If | | 1q > , each feature is computed as
following:

� Mean
| |

1
1

1
| |

q

i
i

f x
q =

= ∑ ;

� Standard Deviation
| |

2
2 1

1

1 ()
| |

q

i
i

f x f
q =

= −∑ ;

� Mean Difference 3 1 1f x f= − ;

� Dixon Testing 1 2
4

1 | |q

x xf
x x
−

=
−

;

� Grubbs Testing 1 1
5

2

x ff
f
−

= ;

Dixon and Grubbs testing are used to determine
whether the maximum prediction 1x is suspect.

(2) SVM Classification

In our system, we realized Support Vector
Machine (SVM) algorithm by using the toolkit
libSVM4 with linear kernels. The training data is
selected from KBP evaluation corpus to train SVM
model. The type (in-KB or NIL) is considered as
the class label of each instance in the training set.
Then trained SVM model is used to predict the
target class label (in-KB or NIL) of the test data
given only the feature vector.

Given a training set of instance-label pairs
(,), 1, ,i iy i l=x L where n

i R∈x and {1, 1}l∈ −y ,
the SVM requires the solution of the following
optimization problem:

, , 1

1min
2

subject to (()) 1 , 0

l
T

ib i
T

i i i i

C

y b

ξ

φ ξ ξ
=

+

+ ≥ − ≥

∑w ξ
w w

w x

Here training vectors ix are mapped into a
higher (maybe infinite) dimensional space by the
function φ . SVM finds a linear separating
hyperplane with the maximal margin in this higher
dimensional space. 0C > is the penalty
parameter of the error term. Furthermore,
(,) () ()T
i j i jK φ φ=x x x x is called the kernel

function. There are the following four basic
kernels:

4 http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html

� linear: (,) T
i j i jK =x x x x ;

� polynomial: (,) () , 0T d
i j i jK rγ γ= + >x x x x ;

� radial basis function (RBF):
2(,) exp(|| ||), 0i j i jK γ γ= − − >x x x x ;

� sigmoid: (,) tanh()T
i j i jK rγ= +x x x x .

Here, γ , r and d are kernel parameters.

4 Submissions and Results

In the evaluation of KBP 2013, we have submitted
4 runs for the entity linking task. These runs have
differences on which training data is used and

whether uses the feature of NE similarity or not.
The detailed differences between each system are
shown in Table 2.

Table 3 lists the runs that we submitted to KBP
2013. There are 2% improvements while the
feature of NE similarity is used (Run 2 and Run 4).
Table 4 gives the B3+F1 scores for different
subsets of the queries. Compared with WB (Web
blogs and newsgroups) and DF (Discussion Forum)
data, NW (Newswire) data has achieved better
performance. And for each NE type, GPE type
performs better than PER and ORG types.

Table 2 The differences between each system.

Run ID Training Data Feature of NE Similarity
1 KBP 2009-2010 data NO
2 KBP 2009-2010 data YES
3 KBP 2009-2012 data NO
4 KBP 2009-2012 data YES

Table 3 Evaluation for all queries (TAC 2013 data).

ID micro-average B3 Precision B3 Recall B3 F1 B3+Precision B3+Recall B3+F1
1 0.644 0.907 0.467 0.617 0.594 0.342 0.434
2 0.657 0.906 0.485 0.632 0.606 0.363 0.454
3 0.653 0.905 0.478 0.625 0.603 0.356 0.447
4 0.669 0.903 0.504 0.647 0.619 0.385 0.475

Table 4 B3+F1 scores for different subsets of the queries (TAC 2013 data).

 All KB NIL NW WB DF PER ORG GPE
Num. 2190 1090 1100 1134 343 713 686 701 803
Run 1 0.434 0.407 0.457 0.502 0.402 0.339 0.425 0.437 0.439
Run 2 0.454 0.454 0.441 0.520 0.402 0.373 0.447 0.424 0.484
Run 3 0.447 0.437 0.448 0.517 0.403 0.355 0.434 0.421 0.480
Run 4 0.475 0.497 0.432 0.534 0.416 0.405 0.475 0.420 0.520

5 Conclusion

We have gotten deeper understanding about the
technology of EL by participating in the evaluation
of this task. Furthermore, we also summarized
several important factors, which might be able to
improve the EL performance, with the help of
systematic evaluation.

(1) Previous works on EL have been focused on
candidate recall because if the target entity is
absent in the candidate set, no ranking method can
return the correct result. However, with large
candidate sets, the difficulty of candidate ranking
is increased and candidate precision will decrease.

The technology, which identifies and filters
irrelevant candidates under the requirement of high
candidate recall, is also important in EL systems
(Guo et al, 2013). We can add more language
resources except Wikipedia (such as
cross-language dictionary) to construct richer alias
lists, and adopt more strict query condition (such
as exact match including case).

(2) The popularity of name can provide critical
factor for EL decisions. Without any other
information, the popularity of name can tell that in
the document “Michael Jordan” will more likely
refer to the basketball player “Michael Jeffrey
Jordan”, rather than the less popular Berkeley

professor “Michael I. Jordan”. Usually, the more
popular entity appears more times than a less
popular entity in a large text corpus, i.e., more
name mentions refer to this entity. If the name is
common and refers to the entity with high
popularity, we can determine the reference even if
there is not the evidence.

(3) Some words existed in the source text are
important evidences for resolving ambiguity. For
example, there is a mention “Li Na” in the
document who is a Chinese professional tennis
player. Throughout the whole document we can
find only one word “tennis” related to the
identification, but we can still determine that it
refers to tennis player “Li Na” rather than singer
“Li Na”. Therefore, the technology of core
evidence identification related to query name in the
source text is necessary to achieve better EL
performance.

In our system, there are two main problems
summarized as follows:

Firstly, there are some missed or inaccurate
processes while generating Wikipedia name list
and expanding query name, such as the process of
disambiguation pages. We need to take more
experiments following Hachey’s work (Hachey et
al., 2013);

Secondly, we only use basic content features
extracted from query’s source text and candidate’s

article. Many features, such as document topic, the
popularity of name, structure information
expressed by incoming and outgoing links, are not
used in our system.

References
Razvan Bunescu, Marius Paşca. 2006. Using

Encyclopedic Knowledge for Named Entity
Disambiguation. In: Proceedings of the 11th
Conference of the European Chapter of the
Association for Computational Linguistics
(EACL-06), pages 9-16.

Yuhang Guo, Bing Qin, Yuqin Li, et al. 2013.
Improving Candidate Generation for Entity Linking.
In: Proceedings of 18th International Conference on
Applications of Natural Language to Information
Systems, NLDB 2013, pages 225-236.

Ben Hachey, Will Radford, Joel Nothman, et al. 2013.
Evaluating Entity Linking with Wikipedia. Artificial
Intelligence, 194: 130-150.

Thorsten Joachims. 2002. Optimizing Search Engines
using Clickthrough Data. In: Proceedings of the
ACM Conference on Knowledge Discovery and Data
Mining (KDD), ACM, pages 133-142.

J. Nothman, J. R. Curran, T. Murphy. 2008.
Transforming Wikipedia into Named Entity Training
Data. In: Proceedings of the Australian Language
Technology Workshop, pages 124-132.

