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Abstract 
In this paper, we report the participation of 
ZZ_INFO_TECH team in entity linking 
task for Knowledge Base Population at 
Text Analysis Conference 2013. Our team 
submitted 4 runs for this evaluation task. In 
our system, we adopts some simple 
heuristic rules and context similarity to 
filter irrelevant candidates; extracts 
multiple features and trains SVM Ranking 
model to realize candidate ranking; 
computes five common statistics and trains 
SVM model to identify NIL query. 

1 Introduction 

Entity Linking (EL) is the task of resolving Named 
Entity (NE) mentions in the given documents to its 
corresponding entries in a structured Knowledge 
Base (KB). The EL system can either return a 
matching entry or NIL to indicate there is no 
matching entry. It enriches unstructured documents 
with links to people, places and concepts in the 
world. Entity linking is a fundamental building 
block that supports a wide variety of information 
retrieval, document summarization and data 
mining tasks. In the information retrieval domain, 
for the results of NE queries, EL can introduce 
facts about an entity in addition to pages that talk 
about it (Bunescu and Paşca, 2006). 

The major challenge in EL is ambiguity. The 
entity mentions in the documents may be 
ambiguous for a wide variety of reasons: multiple 
entities share the same name; entities are referred 
to incompletely; entity mentions are pseudonyms 
or nicknames; and are often abbreviated. 

In this paper, we describe our EL system at KBP 
2013. This system adopts some simple heuristic 
rules and context similarity to filter irrelevant 
candidates; extracts multiple features and trains 
SVM Ranking model to realize candidate ranking; 
computes five common statistics and trains SVM 
model to identify NIL query. 

2 Data Preprocessing 

The Wikipedia infoboxes and entries are taken 
from an October 2008 snapshot of Wikipedia 
(LDC2009E58). The knowledge base contains a 
set of entities, each with a canonical name and title 
for the Wikipedia page, an entity type, an 
automatically parsed version of the data from the 
infobox in the entity’s Wikipedia article, and a 
stripped version of the text of the Wikipedia 
article. 

In our system, we mapped October 2008 
snapshot of Wikipedia (LDC2009E58) to newer 
English Wikipedia (the version of Wikipedia in 
December 2012) by matching their titles, because 
original snapshot does not contain the information 
such as redirects, bold text of first paragraph, et al. 
Although some Wikipedia entries had been edited, 
most of ones can obtain correct mappings. We 
expand the aliases of entities in the knowledge 
base by using newer English Wikipedia. Moreover, 
the following treatments are also useful in the 
phase of data preprocessing. 

Data Formatting: The initial knowledge base 
and source documents are in XML format with 
user-defined tags. To improve the efficiency of 
query, we convert these documents to structured 
index files or database files. In the process of 
source document formatting, lots of small files can 
be merged into big files for better file management 



(such as “LDC2010E12/2010/wb/”), inconsistent 
XML formats and incorrect paragraph divisions 
need to be processed. 

Name Formatting: The query names and entity 
names existed in the knowledge base need to be 
formatted. Note that, some special characters (such 
as “Ã”, “ş”) may lead to mismatch between query 
name and entity name, and this mismatch is also 
caused by the difference between American 
English and British English (such as “World 
Health Organisation” and “World Health 
Organization”). So some necessary 
transformations are used to realize name 
formatting. 

3 Entity Linking 

In our system, the EL task consists of three phases: 
candidate generation, candidate ranking and NIL 
detection. The details are described as follows. 

3.1 Candidate Generation 

Since the EL task involves the determination of 
whether the entry in the knowledge base is 
corresponding entity of a given query, a candidate 
set of entries is generated to avoid matching with 
all entries. We search query name in the name list 
of Wikipedia entries, and add the matching entries 
as candidates. In our system, query expansion and 
candidate filtering are adopted to generate 
high-quality candidate set. 

Query Expansion: Usually, we consider the full 
name can provide more unambiguous reference. 
But many times query names are given in the 
forms of the acronyms and incomplete names. 
Therefore we identify the full names of these query 
names from source documents, and consider them 
as expanded names. 

Candidate Filtering: By matching query names 
and their expanded names with entity names and 
aliases in the knowledge base, we can generate a 
candidate set for each query. But this set contains 
many irrelevant candidates sometimes. In our 
system, we design simple heuristic rules to identify 
and filter non-entity candidates firstly. For 
example, the candidates, whose names start with 
special characters (such as “.”), contain the 
character “:” or time expressions, contain 
pre-defined common’s text considered as 
non-entity tags (such as “novel”, “album”), will be 
removed from the candidate set. 

In a practical application, entity classification 
methods of Wikipedia entries can be applied to 
classify all entries into pre-defined NE or 
non-entity types. The capitalization feature of 
aliases in incoming links is also utilized to identify 
large portions of non-entity articles in English 
Wikipedia (Nothman et al., 2008). The methods 
based on heuristic rules usually achieve high 
precision. Heuristic rules can be established more 
easily than those of other NLP applications, such 
as NER. 

Moreover, we computed the context similarity 
between the candidate’s article and query’s source 
text. A minimum threshold is set to determine 
whether each candidate is related to the query. If 
the value of context similarity is less than the 
minimum threshold (in our system it is set to 0.01), 
the candidates will be removed from the candidate 
set. And only the top 10 candidates sorted by 
context similarity in descending order are reserved. 

3.2 Candidate Ranking 

We select a single correct candidate for a query 
using a supervised machine learning ranker. We 
represent each query by a D  dimensional vector 
x  ( Dx∈R ). We adopt support vector machine for 
ranking algorithm to realize candidate ranking, and 
SVMRank tool1 is used in our system. 

(1) Features for Candidate Ranking 

In the section, we will introduce the features used 
in the ranking module. Each feature is listed in 
Table 1, and some detailed descriptions are given 
below. Our system uses Stanford Log-linear 
Part-Of-Speech Tagger2 and Stanford NE 
Recognizer3 to realize English Part-of-Speech 
tagging and NER. 

                                                        
1 
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html 
2 http://nlp.stanford.edu/software/tagger.shtml 
3 http://nlp.stanford.edu/software/CRF-NER.shtml 



Table 1 The features that used in the candidate ranking module of our system. 
ID Name Description 

1  Context Similarity 
The feature value is the TFIDF similarity between the candidate’s article 
and query’s source text. The words of predefined parts of speeches (noun, 
verb and adjective) are reserved as the features of vector space model. 

2  Entity Similarity The feature value is the TF similarity between NEs in the candidate’s 
article and NEs in query’s source text. 

3  Query Name in Candidate’s 
Article The feature value is 1 if query name exists in candidate’s article. 

4  Candidate Name (Alias) in 
Query’s Source Text 

The feature value is 1 if candidate name (alias) exists in query’s source 
text. 

5  
Comment's Text of 
Candidate Name in Query’s 
Source Text 

The feature value is 1 if comment's text of candidate name exists in 
query’s source text. The comment’s text of candidate name is the text in 
the parenthesized expression or after the comma, which is used to resolve 
the ambiguity between articles sharing a name. 

6  
Other Words of Candidate 
Name in Query’s Source 
Text 

The feature value is 1 if other words except ones contained by query name 
exist in query’s source text. 

7  
Match for Entity Type of 
Query Name and Candidate 
Name 

The feature value is 1 if the entity type of query name is same as that of 
candidate name (alias). 

8  Name Similarities The feature values are name similarities computed by five types of edit 
distant methods (Dice, Levenshtein, JaroWinkler, Jaro and Jaccard). 

9  Average Name Similarity The feature value is the average of names similarities above. 

10  Word Similarity in the 
Names 

The feature value is computed by using the method ( wordSim ) below. This 
similarity considers the same words and the prefix relation, such as query 
name “Ed Zwick” and candidate name “Edward Zwick”. 

11  Exact Match for Query 
Name and Candidate Name 

The feature value is 1 if query name is same as candidate name (alias) 
exactly. 

12  Candidate Name in Query 
Name The feature value is 1 if query name contains candidate name. 

13  Query Name in Candidate 
Name The feature value is 1 if candidate name contains query name. 

14  Query Name Starts with 
Candidate Name The feature value is 1 if query name starts with candidate name. 

15  Query Name Ends with 
Candidate Name The feature value is 1 if query name ends with candidate name. 

16  Candidate Name Starts with 
Query Name The feature value is 1 if candidate name starts with query name. 

17  Candidate Name Ends with 
Query Name The feature value is 1 if candidate name ends with query name. 

18  Acronym of Candidate 
Name The feature value is 1 if query name is the acronym of candidate name. 

19  Acronym of Query Name The feature value is 1 if candidate name is the acronym of query name. 

20  Known Entity Type of 
Candidate 

The feature value is 1 if the entity type of candidate tagged in the 
knowledge base is known (PER, ORG or LOC). 

21  Same Acronym Name The feature value is 1 if candidate name and query name are the same 
acronym. 

 



Word Similarity in the Names: For each word 
set qW  and cW , which is composed of the words 
(except stop words) existed in query name and 
candidate name, the intersection of two word sets 
is denoted as q cQ W W= ∩ , and complementary 

sets are denoted as \q qL W Q= , \c cL W Q= . 

We define suffix-word sets qS  and cS . For 

each word i qw L∈ , if there is a word '
j cw L∈  

satisfying the criterion that iw  is the prefix of '
jw , 

the word iw  is considered to belong to the set qS , 

namely i qw S∈ . We can also get the set cS  using 
the same way. Then the word similarity in the 
names is computed by using follow method. 

| | | | /2 | | | | /21 ( )
2 | | | |

q c
word

q c

Q S Q SSim
W W
+ +

= +  

where | |⋅  denotes the size of set. 

(2) SVM Ranking 

The correct candidate y  should receive a higher 
score than all other possible candidates 
ˆ ˆ,y Y y y∈ ≠  plus some margin γ . This learning 

constraint is equivalent to the SVM ranking 
algorithm of Joachims (2002), where we define an 
ordered pair constraint for each of the incorrect 
candidates ŷ  and the correct candidate y . 
Training sets parameters such that 

ˆscore( ) score( )y y γ≥ + . We used the SVMRank 
tool to solve this optimization problem. 

3.3 NIL Detection 

In the process of NIL detection, we build the 
feature vector based on five common statistic 
values that are used to determine whether the 
maximum prediction is suspect, and train SVM 
model to identify NIL query. 

(1) Features for NIL Detection 

In this section, five common statistic values are 
computed. For all candidates 1 2 | |{ , , , }qC c c c= L  of 

query q , the prediction of candidate ic  
computed by SVM ranking algorithm is denoted as 

( )iscore c . Then we sort all predictions in 
descending order, and denote the variable as 

1 2 | |{ , , , }qX x x x= L  ( 1 2 | |qx x x> > >L ). A 

five-dimension feature vector 1 2 5( , , , )F f f f= L  is 
built to train SVM model and predict whether the 
query is NIL. 

If | | 1q > , each feature is computed as 
following: 
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� Dixon Testing 1 2
4

1 | |q

x xf
x x
−

=
−

; 
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Dixon and Grubbs testing are used to determine 
whether the maximum prediction 1x  is suspect. 

(2) SVM Classification 

In our system, we realized Support Vector 
Machine (SVM) algorithm by using the toolkit 
libSVM4 with linear kernels. The training data is 
selected from KBP evaluation corpus to train SVM 
model. The type (in-KB or NIL) is considered as 
the class label of each instance in the training set. 
Then trained SVM model is used to predict the 
target class label (in-KB or NIL) of the test data 
given only the feature vector. 

Given a training set of instance-label pairs 
( , ), 1, ,i iy i l=x L  where n

i R∈x  and {1, 1}l∈ −y , 
the SVM requires the solution of the following 
optimization problem: 

, , 1

1min   
2

subject  to    ( ( ) ) 1 ,    0
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=
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Here training vectors ix  are mapped into a 
higher (maybe infinite) dimensional space by the 
function φ . SVM finds a linear separating 
hyperplane with the maximal margin in this higher 
dimensional space. 0C >  is the penalty 
parameter of the error term. Furthermore, 
( , ) ( ) ( )T
i j i jK φ φ=x x x x  is called the kernel 

function. There are the following four basic 
kernels: 

                                                        
4 http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html 



� linear: ( , ) T
i j i jK =x x x x ; 

� polynomial: ( , ) ( ) , 0T d
i j i jK rγ γ= + >x x x x ; 

� radial basis function (RBF): 
2( , ) exp( || || ), 0i j i jK γ γ= − − >x x x x ; 

� sigmoid: ( , ) tanh( )T
i j i jK rγ= +x x x x . 

Here, γ , r  and d  are kernel parameters. 

4 Submissions and Results 

In the evaluation of KBP 2013, we have submitted 
4 runs for the entity linking task. These runs have 
differences on which training data is used and 

whether uses the feature of NE similarity or not. 
The detailed differences between each system are 
shown in Table 2.  

Table 3 lists the runs that we submitted to KBP 
2013. There are 2% improvements while the 
feature of NE similarity is used (Run 2 and Run 4). 
Table 4 gives the B3+F1 scores for different 
subsets of the queries. Compared with WB (Web 
blogs and newsgroups) and DF (Discussion Forum) 
data, NW (Newswire) data has achieved better 
performance. And for each NE type, GPE type 
performs better than PER and ORG types. 

 
Table 2 The differences between each system. 

Run ID Training Data Feature of NE Similarity 
1 KBP 2009-2010 data NO 
2 KBP 2009-2010 data YES 
3 KBP 2009-2012 data NO 
4 KBP 2009-2012 data YES 

 
Table 3 Evaluation for all queries (TAC 2013 data). 

ID micro-average B3 Precision B3 Recall B3 F1 B3+Precision B3+Recall B3+F1 
1 0.644 0.907 0.467 0.617 0.594 0.342 0.434 
2 0.657 0.906 0.485 0.632 0.606 0.363 0.454 
3 0.653 0.905 0.478 0.625 0.603 0.356 0.447 
4 0.669 0.903 0.504 0.647 0.619 0.385 0.475 

 
Table 4 B3+F1 scores for different subsets of the queries (TAC 2013 data). 

 All KB NIL NW WB DF PER ORG GPE 
Num. 2190 1090 1100 1134 343 713 686 701 803 
Run 1 0.434 0.407 0.457 0.502 0.402 0.339 0.425 0.437 0.439 
Run 2 0.454 0.454 0.441 0.520 0.402 0.373 0.447 0.424 0.484 
Run 3 0.447 0.437 0.448 0.517 0.403 0.355 0.434 0.421 0.480 
Run 4 0.475 0.497 0.432 0.534 0.416 0.405 0.475 0.420 0.520 

 
5 Conclusion 

We have gotten deeper understanding about the 
technology of EL by participating in the evaluation 
of this task. Furthermore, we also summarized 
several important factors, which might be able to 
improve the EL performance, with the help of 
systematic evaluation. 

(1) Previous works on EL have been focused on 
candidate recall because if the target entity is 
absent in the candidate set, no ranking method can 
return the correct result. However, with large 
candidate sets, the difficulty of candidate ranking 
is increased and candidate precision will decrease. 

The technology, which identifies and filters 
irrelevant candidates under the requirement of high 
candidate recall, is also important in EL systems 
(Guo et al, 2013). We can add more language 
resources except Wikipedia (such as 
cross-language dictionary) to construct richer alias 
lists, and adopt more strict query condition (such 
as exact match including case). 

(2) The popularity of name can provide critical 
factor for EL decisions. Without any other 
information, the popularity of name can tell that in 
the document “Michael Jordan” will more likely 
refer to the basketball player “Michael Jeffrey 
Jordan”, rather than the less popular Berkeley 



professor “Michael I. Jordan”. Usually, the more 
popular entity appears more times than a less 
popular entity in a large text corpus, i.e., more 
name mentions refer to this entity. If the name is 
common and refers to the entity with high 
popularity, we can determine the reference even if 
there is not the evidence. 

(3) Some words existed in the source text are 
important evidences for resolving ambiguity. For 
example, there is a mention “Li Na” in the 
document who is a Chinese professional tennis 
player. Throughout the whole document we can 
find only one word “tennis” related to the 
identification, but we can still determine that it 
refers to tennis player “Li Na” rather than singer 
“Li Na”. Therefore, the technology of core 
evidence identification related to query name in the 
source text is necessary to achieve better EL 
performance. 

In our system, there are two main problems 
summarized as follows: 

Firstly, there are some missed or inaccurate 
processes while generating Wikipedia name list 
and expanding query name, such as the process of 
disambiguation pages. We need to take more 
experiments following Hachey’s work (Hachey et 
al., 2013); 

Secondly, we only use basic content features 
extracted from query’s source text and candidate’s 

article. Many features, such as document topic, the 
popularity of name, structure information 
expressed by incoming and outgoing links, are not 
used in our system. 
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