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Abstract

We present the design and imple-
mentation of three variants of an
event-detection system called DIS-
CERN, one that used manually created
rules (DISCERN-R), one that used
machine-learned rules (DISCERN-ML),
and one that combined manual and
machine-learned rules (DISCERN-C).
All three used linguistic resources (Verb-
Net, CatVar, Semantic Role Labeling,
NER, POS tagging, dependency parsing,
and coreference resolution) and were
applied to two tasks in the NIST TAC
KBP 2015 Event Track: Event Nugget
Detection (EN) and Event Argument
Extraction and Linking (EAL). Two
contributions of this work are: (a) a web
interface that improved efficiency during
system development by enabling quick
changes to linguistic rules and examina-
tion of their effect on precision and recall
at runtime; (b) an approach to collapsing
support-verb and event nominals that
improved recall of event argument
detection enough to surpass the median
in the NIST TAC KBP evaluation. Future
refinements to the combination of lin-
guistic and machine learning approaches
may result in improvements due to the
complementarity of these approaches:
linguistically informed rules can improve
precision and machine-learned systems
can improve recall.

1 Introduction

With increasingly large volumes of textual data
available, most of which is unstructured, it has
become necessary to build and apply automatic
systems for extraction of information for the
analysis of data that is too large for fully man-
ual processing. The Text Analysis Conference
(TAC) at NIST attempts to encourage research
and development of such systems “by providing
a large test collection, common evaluation pro-
cedures, and a forum for organizations to share
their results.”

The 2015 NIST TAC Event track focuses on
detection of information about events from un-
structured text. The extracted information could
be used to populate a knowledge base, among
other uses. Two NIST TAC KBP tasks are de-
scribed in this paper, one for Event Nugget De-
tection (EN) and one for Event Argument Ex-
traction and Linking (EAL). Event Nugget De-
tection refers to the identification of explicit
events mentions, sometimes called “nuggets” or
“triggers”, in English texts.

The relevant event types/subtypes are taken
from the Rich ERE annotation guidelines. The
examples in 1.1 and 1.2 (Mitamura et al., 2015)
express the same event type, Conflict.Attack;
however, as the examples show, an event men-
tion may involve a single word (1.1) or a multi-
word expression (1.2).

Example 1.1
The attack by insurgents occurred on Saturday.



Example 1.2
Kennedy was shot dead by Oswald.

The EN task additionally involves identifying
a realis state (ACTUAL, GENERIC, OTHER)
for each event mention.

EAL involves extracting information about
entities and possibly times and/or locations of
an event, and the role these entities play in the
event. For example, in 1.2, the event type is
Conflict.Attack, the entity Kennedy plays the
role of a Target and entity Oswald plays the
role of an Attacker in the event. The EAL task
also involves linking the arguments that belong
to the same event, as well as identifying each
event’s realis state.

We present three variants of our event detec-
tion system for the two tasks described above,
as applied to a development data set from NIST
TAC 2014. We also discuss the application of
these variants to the NIST TAC 2015 evaluation
data. The structure of the paper is as follows:
Section 2 presents related work, section 3 de-
scribes our process of event detection and the
three system variants we built in detail, and sec-
tion 4 presents a discussion of the results for
our three variants on the development as well as
the evaluation data. Finally, section 5 presents a
summary of our findings and a brief discussion
of potential work.

2 Related Work
Previous work on event detection has focused
primarily on formal genre, such as news ar-
ticles. For example, Roberts and Harabagiu
(2011) focused on extraction and representa-
tion of the type of event and its participants,
using topic modeling to detect ‘event scenar-
ios’ in formal texts. However, in current times,
a huge amount of data is becoming available
in other genres as well. Social media, dis-
cussion forums, and various types of outlets
where individuals independently publish (with
corresponding comment sections) can provide
the most up-to-date information about current

events. The NIST TAC tasks involve detection
of events in both formal (news genre) and in-
formal (social media) texts. Thus, our work fo-
cuses on both these genres of texts.

In terms of the approaches used, many event
extraction systems use syntax-based approaches
to event detection. For example, Riloff (1993)
used syntactic patterns, while Grishman et al.
(2005) and McClosky et al. (2011) used a
combination of syntactic patterns and statistical
classifiers. Dependency parsing has been used
quite widely for relation and event extraction,
e.g., Nakashole et al. (2012), Alfonseca et al.
(2013), Lewis and Steedman (2013), and Rusu
et al. (2014).

While syntactic patterns can help us to de-
tect events and their arguments to some extent,
they are not always sufficient. Sometimes an
accurate characterization of an event requires
semantic context. Exner and Nugues (2011)
used semantic parsing (semantic role labeling;
SRL) to extract events from texts automatically,
but their system misidentified agents quite fre-
quently. Such errors could be reduced with the
help of named entity recognition (NER) and
syntactic parsing.
DISCERN differs from approaches above in

that it makes use of both syntactic and seman-
tic information, as well as manual and machine-
learning techniques, for the detection of event
triggers and their arguments. Prior work on
event detection (Dorr et al., 2014), combined
with a semantic approach (Ferguson et al.,
1996), enables a more robust event detection
capability, starting with syntactic dependency
relations upon which semantic analysis is ap-
plied. A semantic classification of verbs and ar-
guments that takes into account categorial vari-
ants of verbs widens the potential for event
extraction (see VerbNet (Levin, 1993; Schuler,
2005), the NIST ontology (NIST, 2015), and
CatVar (Dorr et al., 2003)).

Chen et al. (2014) designed ClearEvent,
which is similar to our approach in that it com-
bined syntax, deep semantic analysis as well as



machine learning. The use of CatVar in DIS-
CERN shows promising results for a wider cov-
erage of event triggers beyond what would be
available in the ClearEvent system.

A system developed by Mannem et al.
(2014), that also employed machine learning
techniques (joint extraction using beam search
for decoding and an early update perceptron
for training the model) and some syntactic fea-
tures, yielded results that were accurate, but
with limited recall. An advantage of this ap-
proach is that it captured interdependencies be-
tween event triggers and their arguments. Al-
though not yet explored, it is expected that the
combination of this approach with the semantic
classification of verbs and categorial variants in
DISCERN will be an important step in address-
ing the precision/recall tradeoff.

Sammons et al. (2014) used bag-of-words
and part-of-speech (POS) as features for deter-
mination of realis. Additional information be-
yond these features was used in DISCERN; for
example, negative lemmas such as not and the
notion of “collapsing” for support-verb triggers
such as the word conduct in conduct an attack.
These additions were critical for the correct as-
signment of realis, e.g., did not conduct an at-
tack (where the realis is OTHER) versus at-
tacked (where the realis is ACTUAL).

3 The Process of Event Detection

We developed three variants of DISCERN
(Discovering and Characterizing Emerging
Events), a system designed to detect a set of
events, such as those specified in the NIST
(2014) and NIST (2015) Event tasks.1 The de-

1The Events evaluated in the TAC 2015 Evalua-
tion are divided into 9 types, each with a number of
subtypes: Business (Start, End, Declare Bankruptcy,
Merge), Conflict (Attack, Demonstrate), Contact (Meet,
Correspondence, Broadcast, Contact), Manufacture (Ar-
tifact), Life (Be Born, Marry, Divorce, Injure, Die),
Transaction (Transfer Ownership, Money, Transaction),
Personnel (Start-Position, End-ition, Nominate, Elect),
Movement (Transport-Person, Transport-Artifact), and

scription of the process of event detection used
by the three variants of the DISCERN system
is provided below.

For both EN and EAL, DISCERN was ap-
plied after a set of rules for event trigger and
argument detection were manually crafted or
learned:

1. Preprocessing the data: Dependency and
constituency parses were generated for
each sentence and subsequently annotated
with linguistic features, such as VerbNet,
CatVar, SRL, NER, and coreference. This
step was common across the three variants
of DISCERN.

2. Implementation of DISCERN: Applica-
tion of predetermined rules to identify the
event triggers and their arguments, as well
as assigning realis values to them. The
three variants of DISCERN varied with re-
spect to the rules they applied (each variant
created its own set of rules using different
approaches, as described in section 3.3).

The two stages of the event detection process
are described in sections 3.1 and 3.2, and in sec-
tion 3.3, the differences among the three DIS-
CERN variants are discussed with respect to
rule creation and learning. Finally, Section 3.4
describes a web interface created for rapid re-
vision of the manually created linguistic rules.
This interface was designed to provide quan-
tifiable guidance for determining where effort
should be expended in manual rule construc-
tion.

3.1 Preprocessing the data
Documents were first stripped of XML, tok-
enized, and then split into sentences using the
Stanford CoreNLP Natural Language Process-
ing Toolkit (Manning et al., 2014). Next, POS
Justice (Arrest-Jail, Release-Parole, Trial-Hearing, Sen-
tence, Fine, Charge-Indict, Sue, Extradite, Acquit, Con-
vict, Appeal, Execute, Pardon). An area of future work
is to expand from these more general categories to more
refined ones, and also to add new domains.



tagging, lemmatization, named entity recogni-
tion, and coreference annotations were applied
using the default CoreNLP English probabilis-
tic context-free grammars (PCFG) parse model
and 3class, 7class, and MISCclass (in that or-
der) NER models. The Stanford annotations
were then serialized to XML, and further bro-
ken out so that the annotations for each sen-
tence were written to a separate file to improve
parallelizability during subsequent annotation
stages, as described below.

Each annotated sentence representation from
a document was passed through a pipeline
wherein additional lexical and semantic re-
sources were automatically added to improve
DISCERN’s capabilities in recognizing pat-
terns. The pipeline included the following
stages:

1. Each lemma was used to search CatVar.
Any variations found were added as Word-
POS pairs.

2. Each token was POS-tagged as a verb was
augmented with the corresponding Verb
Class from VerbNet.

3. Each sentence was reprocessed by the
SENNA semantic role labeler and each to-
ken was labeled if it occurred within a se-
mantic role.

4. Finally, the sentence was restructured if it
contained a support-verb.

The primary benefit of CatVar was its abil-
ity to determine whether a categorial variation
of a known verb was encountered in the input.
This extends our ability to identify possible trig-
gers beyond only verbal lemmas for an event to
include categorial variants as well. The focus
here was on detecting nominalized verbs such
as “the merger of the two companies” or “the
destruction of the city” beyond the verbal lem-
mas merge or destroy, respectively. If a token
was found to have a verb variation in addition

to its given POS, the serialized annotation was
extended to include it.

The final step of the pipeline used all previ-
ous information for the application of a support-
verb and event nominal merger rule that “col-
lapsed” the structure of a phrasal unit contain-
ing a support-verb head coupled with a nomi-
nal trigger. For example, while the dependency
parser might pick “declare” as the root of the
tree in the phrase “declare bankruptcy”, the de-
sired event is a Business.Declare-Bankruptcy
event, not a declare event. Detecting support-
verbs was also used in determining the realis
values for events with nominal triggers, as de-
scribed in Section 3.2.

3.2 Implementation of DISCERN
Each of the DISCERN variants was applied
to the preprocessed data in 4 steps. First,
DISCERN located potential triggers for each
event subtype. Second, each trigger was as-
signed a realis value according to linguistic
rules. Next, the system located role filling ar-
guments for a trigger among its dependents. Fi-
nally, DISCERN resolved arguments to canon-
ical argument strings (CAS) according to anno-
tated coreference and named-entity data. For
the EN task, the process stopped after the realis
assignment took place.

Each DISCERN variant employed a differ-
ent strategy for locating potential triggers, as
described in section 3.3. DISCERN’s operation
relied on lemma and CatVar annotations primar-
ily to find potential trigger words. CatVar anno-
tations enabled the generalization of results to
unspecified, but semantically related, variants
of the verbs denoting relevant events.

Once a trigger was identified, realis was as-
signed according to a series of linguistically-
motivated rules. The realis values (ACTUAL,
GENERIC, or OTHER) were based on tense
and aspect encoded in the POS tags, negative
lemmas, etc. For the cases where the triggers
involved support-verbs and event nominals, re-
alis was assigned after the support-verb trigger



collapsing had taken place, so the anchor for the
realis value was the merged result and had the
POS of the original support-verb. The rules are
described in pseudocode in Code 1.

The next step was to determine an event’s ar-
guments from its trigger’s dependents. As with
the first step, the method for detecting argu-
ments was dependent on the DISCERN variant.
However, each variant generally relied on some
combination of dependency type, semantic role
label, named entity type, and POS annotations
when extracting event arguments.

The final canonical argument string (CAS)
represented the first mention of entity argu-
ments. The DISCERN variants resolved CAS
according to the Stanford CoreNLP coreference
annotations where available. For named enti-
ties, entity type information was used to find
the full named entity string, e.g., “States” be-
comes “The United States”. Lastly, time argu-
ments were resolved according to TIMEX an-
notations.

3.3 Three DISCERN Variants

The three variants of DISCERN, namely
DISCERN-R, DISCERN-ML and DISCERN-
C, differed with respect to how the rules
were created or learned for the detection of
event types and corresponding arguments. The
DISCERN-R system variant was based on
hand-designed linguistic rules that were later
applied automatically. The DISCERN-ML
variant applied rules that were learned through
a supervised machine learning algorithm. The
DISCERN-C variant combined these two ap-
proaches to deriving the rules. Below we dis-
cuss each of these approaches in more detail.

3.3.1 DISCERN-R: Based on Manually
Created Linguistic Rules

DISCERN-R used output from the Stan-
ford Dependency Parser to extract events
through previously hand-crafted linguistically
motivated rules according to the NIST event
descriptions. Triggers for event types were

identified in the rules based on lemma match-
ing against various lexical resources, such as
dictionaries, thesaurus, VerbNet, CatVar, and
OntoNotes. Once a trigger was identified, each
of its dependents was considered as a possible
argument for the event-type. Semantic rules for
roles such as Agent, Victim, Prosecutor, etc.
were used to determine which dependents filled
them. For example, a Conflict.Attack event re-
quires an Agent role to be filled by an entity,
hence based on a rule for the Agent role for this
event type, that entity was extracted from the
dependency relations nsubj (subject for a verb)
or poss (possessive, as in “The United State’s
invasion of Iraq”).

3.3.2 DISCERN-ML: Based on Machine
Learned Rules

DISCERN-ML employed a supervised ML
algorithm, a variation of the iterative di-
chotomiser 3 (ID3) algorithm (Quinlan, 1986),
to induce a random forest of decision tree rules
for the detection of event triggers and their ar-
guments. It used 10 decision trees that were
trained on 10 random partitions of the train-
ing data (Rich ERE Training, 2015 EAL Train-
ing and 2014 EA Assessments). For each tree,
the algorithm selected a random sample (with
replacement) of training documents where the
sample size was 66% the size of the entire train-
ing set.

The ID3 algorithm created a decision tree
by greedily partitioning training data based on
the attribute which maximizes information gain
of the next partition. The information gain
IG(A, S) for attribute A on data subset S was
defined as

IG(A, S) = H(S)−
∑
t∈T

p(t)H(t).

where T was the set of partitions of S for each
value of attribute A, p(t) was the proportion of
data in partition t, and H(S) was the entropy of



Code 1: Realis rules depend on a combination of tense, aspect, POS, and negation.

i f a nc h o r i s non−v e r b a l :
check d e p e n d e n t s and g o v e r n o r f o r c o p u l a ( t y p e ‘ cop ’ )
i f c o p u l a found :

c o n t i n u e wi th a nc ho r := c o p u l a
e l s e :

r e a l i s := ACTUAL
End

i f no d e p e n d e n t s o f a nc h o r have t a g ‘MD’
i f t h e a nc h o r i s p a s t t e n s e ( t a g ‘VBD’ or ‘VBN’ )

OR an a u x i l i a r y ( t y p e ‘ aux ’ ) d e p e n d e n t i s p a s t t e n s e
OR t h e an ch o r i s ‘VBG’ wi th any a u x i l i a r y d e p e n d e n t s :

i f t h e r e i s a n e g a t i v e d e p e n d e n t ( t y p e ‘ neg ’ ) :
r e a l i s := OTHER
End

e l s e :
r e a l i s := ACTUAL
End

e l s e :
r e a l i s := GENERIC
End

e l s e :
r e a l i s := OTHER

the set S. The entropy of a set S was

H(S) = −
∑
c∈C

p(c) log2 p(c)

where C is the set of target classes in the train-
ing data.

During implementation, each tree voted on
the triggers. If the majority of decision trees de-
termined that a token was a trigger for a given
event, it was assigned a realis and a set of argu-
ments as described in section 3.2. Each trigger
detection decision tree had an associated argu-
ment detection decision tree. These candidate
arguments were voted on similarly to the trig-
gers, with a majority of votes determining an ar-
gument. An argument detection tree only voted
on an argument if its associated trigger detec-
tion tree voted for the trigger to which that ar-
gument would be assigned.

3.3.3 DISCERN-C: Combining the
Manually Created Linguistic Rules
and the Machine Learned Rules

One would anticipate that the DISCERN-
ML variant might discover complementary
rules to the ones encoded in DISCERN-R.
Therefore, a third variant, DISCERN-C, com-
bined both of the other variants. This vari-
ant was a preliminary exploration of further at-
tempts to merge linguistic and machine-learned
knowledge.
DISCERN-C combined the two sets of rules

from the other two runs (with DISCERN-
R rules and with the random forest of de-
cision trees from DISCERN-ML). The fact
that both DISCERN-R and DISCERN-ML fol-
lowed roughly the same path for implemen-
tation, as described in section 3.2, allowed
DISCERN-C to compare the output of both



without reconfiguring either variant. In fact,
DISCERN-C implemented the same voting ap-
proach as DISCERN-ML, but the rules from
DISCERN-R counted for 5 votes while each
decision tree rule from DISCERN-ML counted
for 1.

3.4 The Web Interface for Developing the
DISCERN-R variant

A web-based front-end was added to DISCERN
in 2015 to improve decision making of linguis-
tic informants in deciding where to focus efforts
when designing new rules. The front-end in-
cludes interfaces such as (i) an overview of the
comparative performance of different rule sets
in terms of precision, recall, and F1 score, (ii)
a detailed breakdown of error types (true posi-
tive vs false negative) and location of errors (for
example, if the base filler, event type, event ar-
gument role or realis was inaccurate) per run,
and (iii) an in-depth view of the annotations
and parse structure of each sentence to provide
the necessary information for constructing new
rules. Finally, DISCERN now includes an in-
terface where informants can interactively de-
sign rules and apply them to the development
data set in order to determine whether a new
rule effectively captures the syntactic and se-
mantic phenomena it targeted while improving
the overall performance of the system.

The interface proved to be particularly use-
ful when the SENNA module was added to the
DISCERN pipeline and new rules needed to
be created to incorporate semantic role label-
ing. Figure 1 shows a portion of the document
view that included a Contact.Meet event that we
had not been able to capture before the SENNA
module was added. Using the insights gained
through improved visualizations and structured
layout of the document content, we were able
to improve the overall F1 score on the develop-
ment set from 8.8 to 9.4.

Figure 1: A sample of the DISCERN sentence de-
tail interface

4 Evaluation and Discussion
This section describes the results of develop-
ment experiments as well as the evaluation re-
sults for the TAC 2015 Event Argument and
Event Nugget detection tasks. Section 4.1 de-
scribes the various experiments run during the
development of the DISCERN system, includ-
ing feature ablation studies. Section 4.2 ana-
lyzes the results of the TAC KBP 2015 evalua-
tion, exploring what worked and what might be
improved.

4.1 Development Experiments
As described in section 3, the implementa-
tion of the three variants of DISCERN can
be broadly divided into two stages: prepro-
cessing/annotation and detection. The devel-
opment process consisted of iteratively exper-
imenting with annotation features and incor-
porating them into rules for DISCERN-R or
learning for DISCERN-ML.
DISCERN includes five features: support-

verb collapsing, semantic role labels, named en-
tity recognition, CatVar, and dependency types.
Table 1 presents the results of an ablation ex-
periment to determine the benefits of each of



support-verbs + - - - - - -
SRL + + - - - + +
NER + + + - - + -
CatVar + + + + - - +
dependencies + + + + + + -
Precision 10.88% 10.89% 11.99% 11.00% 11.71% 12.08% 10.93%
Recall 5.49% 5.39% 3.76% 3.76% 3.66% 3.66% 4.99%
F-Score 7.30% 7.21% 5.73% 5.61% 5.58% 5.62% 6.85%

Table 1: Ablation results showing the effects of five features on precision, recall, and F-score with rules
from DISCERN-R.

these features on the joint detection of events
and their arguments. The experiment used the
rules from DISCERN-R. DISCERN uses ei-
ther syntactic dependencies or SRL relations to
search for potential arguments, so the last ex-
periment explored the use of SRL with no de-
pendency information or features annotated on
the dependencies (CatVar is still used to find
triggers).

As the features were removed, the recall
and/or precision of the event detection system
decreased, indicating the contribution each of
these features makes in DISCERN-R. Perfor-
mance dropped when the two rule-based fea-
tures, CatVar and support-verb rules, are re-
moved. Losing the support-verb merger rules
resulted in a drop in recall (as well as the
F-score). Additionally, without the catego-
rial variants from CatVar, DISCERN-R missed
syntactic variations with same eventuality (e.g.,
verb destroy and noun destruction). Thus, the
recall dropped, and while precision went up
without CatVar, the overall F-score was still
lowered.

As the semantic role labeller (SRL) was re-
moved, there was a big drop in recall (an in-
crease in false negatives). This is presum-
ably due to the fact that SRL helps the system
identify arguments corresponding to participant
roles in an event by providing the semantic links
between a verb and its arguments when there
is no direct syntactic link. DISCERN-R relied
on named entity recognition (NER) to eliminate

inappropriate argument roles (e.g., a PERSON
entity cannot fill the role of a Crime argument)
– notice the drop in precision from 11.99% to
11% when NER is removed.

The final column of Table 1 shows the effect
of semantic role information on determining ar-
guments and their roles. More than one in five
of the arguments found by the system with only
SRL would not be detected without it. This re-
inforces the hypothesis that semantic roles as a
feature provided the biggest boost to event ar-
gument recall. However, the low precision in-
dicates that many arguments that were detected
using the SRL feature were actually incorrect—
although not enough to outweigh the benefits to
F-score. Improved precision in the annotated
semantic roles would greatly improve the preci-
sion of DISCERN.

The linguistically-motivated rules for
support-verbs were synergistic with those for
categorial variants. The support-verb collapser
captured arguments of nominal triggers that
CatVar found. The combination of the two
contributed almost as much to recall as SRL
(an absolute gain of 1.83 versus 1.63) with a
similar loss of precision. DISCERN captured
many support-verb instances with a list of only
42 different verbs. CatVar is not exhaustive and
could be expanded using Verb-Noun lists and
dictionary resources. Improving either of these
two resources would also improve DISCERN’s
performance.

The benefits of the data-heavy features, by



Run Precision Recall F-Score
DISCERN-R 23.3% 26.7% 24.9%
DISCERN-ML 5.9% 30.7% 9.9%
DISCERN-C 6.1% 25.3% 9.9%

Table 2: Precision, Recall, and F-score results from
final event nugget systems on development data.

themselves, were less clear-cut. While SRL
provided the largest positive effect on F-score of
any single feature, it also had the most negative
effect on precision (as seen by the drop from
11.99% to 10.89% when the feature is added).
For every true positive found with SRL that was
not found without it, about 9 false positives
were wrongly detected. DISCERN-R used
the SENNA semantic role labeler (Collobert
et al., 2011) for its SRL system. SENNA’s
SRL system was trained on WSJ sections 02-
21 (Collobert et al., 2011) annotated for the
CoNLL 2005 SRL shared task. Its training data
was comprised of approximately 85,000 sen-
tences with 250,000 arguments (Carreras and
Màrquez, 2005). On the other hand, NER had
a positive effect on precision (increasing preci-
sion from 11% to 11.99% when included) with-
out reducing recall. However, Stanford NER
system was trained on Reuters Corpus (Col-
lobert et al., 2011), which contained approx-
imately 14,987 sentences and 203,621 tokens
(Tjong Kim Sang and De Meulder, 2003), con-
siderably less than the data needed for SRL.

While the ablation studies showed the bene-
fits of each feature on argument detection, they
focused only on the DISCERN-R variant. Ta-
ble 2 shows the performance of each variant of
DISCERN on the event nugget detection devel-
opment set from the TAC 2014 evaluation data.

Table 2 shows that while each DISCERN
variant had similar recall, the DISCERN-ML
and DISCERN-C had much lower precision
than DISCERN-R. In fact, DISCERN-C had
almost the same precision as DISCERN-ML,
indicating that many of the incorrect nuggets
detected by the DISCERN-ML variant had a

Run Plain Type Realis Both
R 43.4% 38.9% 25.5% 23.3%
ML 12.5% 10.4% 7.4% 5.9%
C 13.5% 11.1% 7.7% 6.1%

Table 3: Precision scores for each DISCERN vari-
ant on event nugget development data by error.

strong enough majority to override the extra
votes of DISCERN-R.

Table 3 provides a more fine-grained insight
into the precision of the DISCERN variants,
breaking it down by error type. Approximately
1 in 8 nuggets identified by DISCERN-ML are
true positives, half of which are assigned the
correct type and realis. On the other hand,
43.4% of the nuggets identified by DISCERN-
R were correct, with 23.3% overall precision
(almost four times DISCERN-ML). This sug-
gests that the DISCERN-ML decision trees did
not generalize well, which could be addressed
with better pruning algorithms. Furthermore, a
considerable number of errors were a result of
incorrect realis assignment – nearly half of cor-
rectly identified nuggets were labeled with in-
correct realis across all variants.

Finally, Table 4 shows the results of the fi-
nal DISCERN event argument system for each
variant. Interestingly, while DISCERN-R had
worse recall than DISCERN-ML on nugget de-
tection, its recall was better for arguments. This
relative improvement in recall for DISCERN-
R comes at a cost: while DISCERN-ML event
argument precision was almost the same as its
event nugget precision, the DISCERN-R preci-
sion dropped considerably. This suggests that
when DISCERN-ML found a correct trigger,
most of the arguments it found for that trigger
were also correct. This may be because the trig-
gers it does identify have simple argument con-
structions. Alternatively, the argument decision
trees might have relatively high precision.



Run Precision Recall F-Score
DISCERN-R 11.6% 8.4% 9.7%
DISCERN-ML 5.8% 5.9% 5.9%
DISCERN-C 4.8% 3.3% 3.9%

Table 4: Precision, Recall, and F-score results from
final DISCERN event argument variants on devel-
opment data.

4.2 Evaluation Results

The evaluation results of DISCERN do not
completely match those from the development
experiments: for example, DISCERN-C out-
performs DISCERN-ML in both tasks on the
evaluation data. This section presents and ana-
lyzes the evaluation results for each task.

4.2.1 Event Nuggets

Table 5 presents the DISCERN results from
the Event Nugget evaluation. Unlike the devel-
opment results, DISCERN-C showed the high-
est recall for each possible error type. How-
ever, the low precision of DISCERN-ML was
still evident and still severely affected the F-
score of both DISCERN-ML and DISCERN-
C. Future improvements to the machine learn-
ing system would benefit from an emphasis on
improving precision. Pruning the learned de-
cision trees to create more general leaf nodes
would be one possible approach. Alternatively,
a new combined system could be created that
uses the high precision rules from DISCERN-
R for trigger detection and only learns argument
detection trees.

As in the development results, precision, re-
call, and F-score dropped considerably when
assigning realis. Few nuggets were assigned the
correct realis type but wrong event type relative
to the converse. The realis rules were designed
to capture a variety of simple cases; more com-
prehensive rules might improve overall event
nugget performance.

Run Precision Recall F-Score
DISCERN-R 12.8% 14.1% 13.5%
DISCERN-ML 7.4% 9.2% 8.2%
DISCERN-C 8.2% 15.0% 10.6%
median 30.7% 11.7% 16.9%
LDC 73.6% 39.4% 51.4%

Table 6: Precision, Recall, and F-score results for fi-
nal event argument system variants in the TAC KBP
2015 Event Argument Evaluation.

4.2.2 Event Arguments
Table 6 presents the event argument eval-

uation results of DISCERN. As with the
event nugget evaluation results and contrary
to the development experiments, DISCERN-C
outperformed DISCERN-ML. Consistent with
the development tests, the low precision of
DISCERN-ML brought down the precision of
DISCERN-C.

Both DISCERN-R and DISCERN-C sur-
passed the median recall on this task by a fair
margin. Based on the development ablation ex-
periments, this improvement in recall was at-
tributable to two new additions to DISCERN.
The first was the annotation of semantic role
labels as features for argument detection. The
second was the collapsing of support-verbs and
event nominals. Detecting nominal triggers
with CatVar benefited the event nugget detec-
tion, but did not improve event argument extrac-
tion without the support-verb collapsing.

However, low precision in all variants re-
sulted in below-median F-scores. Precision
overall is a key focus for further improvement
for DISCERN. One possible solution would
be the implementation of role saturation. Ap-
proximately 4.3% of the base fillers found by
DISCERN-R in the evaluation data were as-
signed to multiple roles. If those base fillers
were only assigned to the one correct role, pre-
cision could increase by up to 4.6%.

Another avenue of improvement for preci-
sion is to improve the precision of the seman-
tic role annotations. Most of the arguments



Run Plain Type Realis Both
P R F1 P R F1 P R F1 P R F1

DISCERN-R 52% 42% 46% 47% 38% 42% 35% 28% 31% 32% 26% 29%
DISCERN-ML 18% 51% 27% 14% 41% 21% 12% 34% 18% 9% 26% 14%
DISCERN-C 17% 60% 26% 13% 48% 21% 11% 40% 17% 9% 31% 14%

Table 5: Event Nugget evaluation precision (P), recall (R), and F-score (F1) results for each DISCERN
variant by error type

that were detected due to SRL alone were in-
correct. More accurate labels would improve
the precision of DISCERN. One potential im-
provement would be to adapt the semantic role
labeler to the domain to improve accuracy. An-
other would be to migrate to a deeper semantic
parser, such as TRIPS (Allen et al., 2008).

5 Conclusion and Future Work

In this paper we presented our results on the
three variants of DISCERN. The first main
contribution of this work is the web interface
that improved efficiency during system devel-
opment by enabling quick revisions to linguis-
tic rules and examination of their effect on pre-
cision and recall at runtime.

Our second contribution is the merger be-
tween support-verbs and event nominals for de-
tection of event triggers. This process, in con-
junction with CatVar, greatly improved the re-
call of event argument detection on the eval-
uation data. The combined system variant
DISCERN-C, which outperforms DISCERN-
R and DISCERN-ML, surpassed the median
recall value.

Future efforts to improve DISCERN will fo-
cus on improving precision. There are several
potential directions for improving precision of
DISCERN. One possible solution is to explore
a joint learning method for event triggers and
event argument extraction. Another possible so-
lution would be the implementation of role sat-
uration so that the base fillers will be assigned
only to the one correct role. Adapting seman-
tic role labeler to the specific domain may be

another option or migrating to a deeper seman-
tic parser, like TRIPS (Allen et al., 2008) for
an overall improvement in semantic parsing ac-
curacy. Additionally, a better handling of events
expressed by multi-word expressions might also
lead to more precise event nugget detection.
Finally, currently the dependency parse plays
a small role in the current DISCERN system,
as only the trigger’s immediate dependents are
taken into account. In the future, we seek to
take further advantage of the information pro-
vided by the dependency parses.

References
Alfonseca, E., Pighin, D., and Garrido, G.

(2013). Heady: News headline abstraction
through event pattern clustering. In Proceed-
ings of the 51st Annual Meeting of the Asso-
ciation for Computational Linguistics, page
1243–1253.

Allen, J. F., Swift, M., and de Beaumont, W.
(2008). Deep semantic analysis of text. In
Proceedings of the 2008 Conference on Se-
mantics in Text Processing, STEP ’08, pages
343–354, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.
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