
Populating a Knowledge Base with Information about Events

Sean Monahan, Michael Mohler, Marc Tomlinson, Amy Book,

Maxim Gorelkin, Kevin Crosby, Mary Brunson

Language Computer Corporation
smonahan@languagecomputer.com

Abstract

This paper describes a system for populating

a knowledge base (KB) with events that are

identified in text. We first describe how men-

tions of an event can be discovered in a doc-

ument by utilizing lexical priors with contex-

tual sense disambiguation, and then describe

a machine learning model which identifies the

value of the realis attribute for each mention.

Finally, a multi-constraint architecture is used

for linking the event mentions within a doc-

ument into groups of coreferential events or

event hoppers. The grouped event mentions

begin to form a rich event structure within a

document that can then be incorporated into a

KB.

1 Introduction

In this paper, we present our work aimed at pop-

ulating a knowledge base (KB) with rich informa-

tion about events. The ability to acquire information

about an event from text, whether it be an election,

battle, product launch, or court case, is profoundly

important to understanding the state of the world.

The goal of the Text Analysis Conference (TAC)

Knowledge Base Population (KBP) evaluation is to

research novel approaches to populating knowledge

bases, especially with information about entities and

events. In the following sections, we describe a sys-

tem for the newly introduced 2015 TAC KBP Event

Detection and Coreference tasks.

The three components of the system are responsi-

ble for (1) detecting event mentions for a set of given

event types, (2) associating event mentions with re-

alis attributes, and (3) linking coreferential event

mentions into clusters called event hoppers. The ex-

ample below reflects the execution of the three com-

ponents over a text, which are detailed in the para-

graphs that follow.

“Yesterday, Google announced1 (B,ACTUAL) the

upcoming acquisition2
(M,OTHER) of one of their

main rivals. The merger2 (M,OTHER) will

net3(T,OTHER) the company’s CEO over $100 mil-

lion. The announcement1 (B,ACTUAL) comes only

days after a failed acquisition4
(T,OTHER).”

The first component, which performs event de-

tection, involves the identification and classifica-

tion of event mentions. Spans of text that indicate

a particular event (often verbal or nominal predi-

cates) are called triggers. In the example, three

types of events are associated with the italicized

triggers: Contact.Broadcast (B), Business.Merge-

Org (M), and Transaction.Transfer-Money (T). De-

termining which type of event is implied by a trigger

is challenging because of the many ways to refer-

ence a particular event in text, as well as the ambi-

guity that can result when contextual cues within the

document are not considered.

The second component identifies the value of the

event’s realis attribute. The realis attribute (hence-

forth ‘realis’) of an event refers to whether the men-

tioned event was a specific event that occurred (AC-

TUAL), one that did not occur (OTHER), or a gen-

eral class of occurrences (GENERIC).

Finally, event mentions which refer to the same

event must be grouped together into “hoppers”.

Most events that are interesting to real-world ap-

plications cannot typically be described by a sin-

gle utterance or sentence. Instead, the event’s ar-

Figure 1: The full pipeline of our 2015 KBP Event Trigger Detection and Coreference submission.

guments (Agent, Time, Place, etc.), attributes (e.g.

realis), relationships to sub-/super-events within an

event structure, and relationships to events outside

the structure are revealed across multiple mentions.

Hoppers execute the important function of gather-

ing all of this information about the event across the

entire document. In the example paragraph above,

the event hopper is indicated by the numerical su-

perscript on the event mention. Note that the same

event can be referenced using different triggers (e.g.

hopper 2), and similar triggers can refer to different

events (e.g. acquisition).

The TAC KBP 2015 Event Detection tasks eval-

uate systems’ ability to perform the functions de-

scribed above. This track consists of three separate

tasks: Task 1 - Event Detection, Task 2 - Event De-

tection and Coreference, and Task 3 - Event Coref-

erence. As the names indicate, the first task in-

volves event and realis detection alone, the second

task combines event detection and realis association

with placement into hoppers, and the third task re-

quires systems to group gold event triggers that are

provided by the LDC into hoppers. A diagram of

the complete system we used for the various compo-

nents of these tasks is shown in Figure 1.

2 Related Work

The KBP Event Detection and Coreference tasks

build on work being done in the areas of event ex-

traction, event attribute labeling, and event corefer-

ence. Event extraction typically starts with the con-

cept of an event trigger, which is defined in LDC

(2014a) as “the smallest extent of text (usually a

word or short phrase) that expresses the occurrence

of an event”. An alternative type of event men-

tion is Mitamura et al.’s (2015) concept of “event

nugget”, which represents the maximal extent of a

textual event indicator. Accordingly, event nuggets

encourage the selection of the full semantic breadth

of an event mention in text, as opposed to trig-

gers, which favor brevity over complete semantic

expression. While recent event detection annotation

schemas have explored the use of both of these kinds

of event mentions, the spans extracted in this year’s

tasks utilize event triggers.

Central to the notion of an event trigger is what it

means for an event to actually be indicated in text,

an area covered in Monahan and Brunson (2014),

which explored the concept of eventiveness and

its role in differing definitions of event extraction.

Eventiveness describes the degree to which a span

of text can be considered to indicate an event. Verbs

such as “protested”, “jailed”, and “died” are typi-

cally strongly eventive, as are many nouns, such as

“wedding” and “attack”. Other word classes, such

as adjectives (“married man”), personal descriptors

(“protester”), prepositional phrases (“behind bars”),

and object descriptors (“bomber plane”) tend to be

only weakly eventive.

There is no fixed rule for determining the bound-

ary between “event” and “non-event”; indeed, this

threshold can vary greatly among use-cases and an-

notators. Thus, for the KBP tasks, it is important to

lean heavily on annotated data to determine where

this boundary lies. As such, of the three general ap-

proaches to event extraction that are described by

Hogenboom et al. (2011) — data-driven, expert

knowledge-driven, and hybrid — the 2015 Event

Detection task requires a data-driven approach, even

though hybrid approaches have proven successful

for previous tasks (Monahan et al., 2014).

Labeling event attributes has received significant

interest in the last several years. A wide variety of

different event attributes have been examined, in-

cluding polarity (Morante and Blanco, 2012), gener-

icity (Mathew and Katz, 2009; Reiter and Frank,

2010), factuality (Saurı́ and Pustejovsky, 2009; de

Marneffe et al., 2012), and author perspectives

(Bracewell et al., 2014). Although the KBP realis

status is more general than these attributes, it can be

derived from combinations of attributes, as in Mon-

ahan et al. (2014).

Associating events into hoppers is similar to the

procedure of event coreference. Early work in event

coreference, such as that of Bejan and Harabagiu

(2010), utilized an unsupervised approach with rich

features. More recent work, such as that of Liu

et al. (2014), has made use of recent annotation

work to develop a supervised system for event coref-

erence that propagates information between events

and their arguments.

3 Data Sources

In order to build our components for event detection,

realis labelling, and event coreference, we lever-

aged a variety of different data sources. The LDC

provided several resources, including E73 (2015c),

E121 (2014b), and E29 (2015b). For training our

event detection and realis systems, we split allEN

into trainEN, which consists of 60% of each of

the three, devEN, which was 20% of each, and

testEN with the remainder. Since E121 did not pos-

sess hopper data, we only utilized E73 and E29

for training the event hopper system. We addition-

ally derived data from other data sources such as

TAC2014 (2015a) but only for background knowl-

edge, as these data sources had not been specifically

annotated for triggers, and hence were unsuitable for

training data in the KBP trigger tasks.

4 Event Detection

Our event detection system is a pipeline consisting

of event discovery, prior probability estimation, con-

textual probability, and event extraction. First, the

event discovery module searches in text and finds the

triggers that are possibly indicative of events. Then,

we associate a prior probability with each lexical

item, and subsequently employ a contextual system

to determine whether the event type is being indi-

cated correctly in the text. Finally, the event detec-

tion model combines these features to make the final

determination to accept or reject each candidate trig-

ger.

4.1 Event Trigger Lexicon

The event discovery module consists of an exten-

sive lexicon of words and phrases that can indicate

events. The purpose of this lexicon is to serve as a

high-recall selector of text, which can then be further

processed using other statistical modules.

To develop the lexicon, we first leveraged the

event argument extractors that we developed for the

KBP 2014 Event Argument Extraction (EAE) task

(NIST, 2014). Each of these extractors had a lexicon

of manually curated terms which were indicative of

these event types. We developed additional extrac-

tors for event arguments for the ten new event types

introduced in 2015. We then extended the lexicon

with the annotated triggers for the 2014 EAE task,

which were made available as part of LDC (2015a).

Specifically, we added all of the words in any Word-

Net synset that contained two or more triggers for a

given event type in the 2014 training data. Finally,

for the evaluation, we also added the triggers from

the trainEN portion of our data set.

During the event detection process, we attempt

to match candidate triggers against our lexicon us-

ing the exact form found in the aforementioned lex-

icon sources, the porter-stemmed form, or any de-

rived form1. For example, the lexical item “injure”

can be matched to all possible inflections of the verb

“to injure” as well as to the nominal form “injury”.

In total, the lexicon had approximately 31,000 items

(including morphological variants).

4.2 Prior Probabilities

For each lexicon item, we estimate the prior prob-

ability that the item indicates a given event type

E. We consider a variety of different estimates,

based on the exact string S (“attacked”) P (E|S),
exact string with part-of-speech (“attack#v” or “at-

tack#n”) P (E|S, pos), lemma P (E|lemma), and

lemma with part-of-speech P (E|lemma, pos).
To conduct this estimation, we utilize the human-

annotated event triggers in trainEN. For example, if

1We used both the derivational relations in WordNet and re-

sources from the NOMLEX project (Macleod et al., 1998) to

map between verbs and nouns.

the word “attack” occurs 38 times in E73, and 34 of

those are event mentions , then the prior probabil-

ity for the string “attack” is 89.5%. Overall, counts

were found for 2,868 of the lexicon items.

4.3 Contextual Probability

Lexical items with a high probability of being an-

notated as signaling an event (“death”, “sentenced”)

see little benefit from the use of additional context

for disambiguation. However, lexical items with low

probabilities (“went”, “have”), require significant

contextual clues to disambiguate. Sometimes, these

contextual cues are expressed as arguments that can

be detected with a semantic parser, but in many in-

stances, the disambiguating words have no direct se-

mantic or syntactic relation to the event trigger, or

they are too distant to be reliably linked. Therefore,

we have created a context model for each event type

that detects contextual cues without relying on a se-

mantic parser.

To do this, we used a context-level neural embed-

ding approach (Řehůřek and Sojka, 2010; Le and

Mikolov, 2014), which creates a vector representa-

tion for an entire sentence. This extends Mikolov et

al. (2013) by jointly learning a vector representa-

tion for the sentence along with the representations

of the words within that sentence. Sentences with

similar vectors in this representation thus have sim-

ilar meanings. For each event type, we created a

kernel density estimator for the relative likelihood

of the event’s presence or absence based on a set

of context vectors from the training data. We uti-

lized a product of Gaussian kernels to estimate the

relative likelihood of a new context vector, x, being

a positive instance of the event across each dimen-

sion, i, based on the set of vectors for positive event

instances, y ∈ E+.

f̂h(x,E+) =
1

n

∑

y∈E+

∏

i∈dim

1√
2πhi

e
−

(xi−yi)
2

2h2
i

The optimal bandwidth, hi, was selected indepen-

dently for each dimension through cross-validation.

In addition, we estimated the relative likelihood of

the event being contraindicated using vectors where

the event is explicitly absent, but valid triggers are

present y ∈ E−. The sets E− and E+ were taken

from the gold data and from system responses for

TAC2014 that had been reannotated (5,118 events in

total) as being true-positives or true-negatives.

4.4 Event Detection Model

We combine the trigger-event probability estimate

with the context-event probability estimate using a

logistic regression model. The model utilizes the

following features: (1) P (E|S), (2) P (E|lemma),
(3) P (E|S, pos), and (4) P (E|lemma, pos), as de-

fined in section 4.2, as well as (5) the relative like-

lihood of the event type given the sentence con-

text vector f̂h(x,E+); and (6) the relative likeli-

hood of a non-event given the sentence context vec-

tor, f̂h(x,E−). The logistic regression model was

trained on trainEN.

For around half of the event types, our experi-

ments showed that the system utilizing only the lex-

ical probability feature (word only) produced the

highest performance, and for those types, we did not

utilize the ML model. Also note that we individually

selected which system to utilize for each event type

based not on the F-measure for that particular event

type, but rather on the effect on the overall micro

F-measure across all event types.

4.5 Other Event Detection Techniques

In addition to utilizing the statistical lexicon and

contextual systems described above, we also cap-

italized on LCC’s system for identifying the argu-

ments of the event mentions in the KBP 2014 EAE

task. Our previous approach (Monahan et al., 2014)

consisted of an expert semantic pattern approach and

an ML system called CiceroCustom. The expert se-

mantic pattern system lacked sufficient recall for the

2015 tasks, given that many of the event triggers

occurred without specific semantic frames. How-

ever, its argument extraction capabilities were suffi-

cient for extracting the mentions’ arguments for re-

alis classification and event clustering.

5 Realis Labeling

Once detected, event mentions in text offer a wealth

of information to the end user. One such element

is the certainty with which the event can be under-

stood to have occurred. The process of determin-

ing and selecting one of three values — ACTUAL,

GENERIC, and OTHER — to capture this infor-

mation is known as realis labeling. An ACTUAL

event refers to a specific event that has occurred, a

GENERIC event refers to a general class of events,

and an OTHER event refers to an event that has not

occurred.

One set of event attributes that our system uti-

lizes to perform realis labeling is the four attributes

that are described in the ACE (2005) specification:

genericity, polarity, tense, and modality. Generic-

ity indicates whether the event mention describes a

specific occurrence (or bounded set of such occur-

rences) or whether it represents a general class of

occurrences, polarity refers to whether the event’s

occurrence is positively stated or explicitly negated,

tense refers to the time of an event’s occurrence, and

modality refers to the level of certainty surrounding

its occurrence as presented by the speaker. The rela-

tionships between the ACE event attributes and KBP

realis labels are displayed in Table 1 below.

KBP ACE

Realis Genericity Polarity Tense Modality

ACTUAL

SPECIFIC

POSITIVE PAST / PRESENT ASSERTED

OTHER
NEGATIVE ANY

ANY
ANY

FUTURE

GENERIC GENERIC ANY

Table 1: Comparison of ACE and KBP event attributes.

For polarity, tense, and modality, we directly uti-

lize models trained on the ACE data as features for

the realis system. For genericity, there are several

cases where this simple mapping to ACE is incorrect

in practice. Thus, we trained the genericity model on

trainEN, with GENERIC event triggers serving as

positive examples, and triggers that were ACTUAL

or OTHER serving as negative examples.

Monahan et al. (2014) used models for the four

ACE event attributes as well as 14 additional heuris-

tics to detect lexico-syntactic indicators of different

realis values. In this work, these models and heuris-

tics are incorporated into a single machine learning

model as part of a suite of linguistic features that

capture a variety of realis indicators, as shown in Ta-

ble 2.

Group Features

Lexical attributes Word sense

Grammatical features Voice, tense-aspect-mood, POS, number, person

Syntactic relations Dependency relation, clausal head

Sentential components Arguments, adjunct PP, determiner, modifiers

Discourse functions Headline/prose, interrogative/declarative

Table 2: Realis Feature Groups

Additionally, each feature is configured to operate

over a pre-defined scope, which is roughly the span

of text considered when calculating that feature. The

scopes that correspond with each feature are shown

in Table 3 below.

Scope Features

Trigger Phrase Words or parts-of-speech of the trigger

Argument Words, POS, or semantic category of the argument

Clause Entire clause containing the trigger and arguments

Parent/Ancestor Verb which dominates the trigger, trigger’s parent, and so on

Sentence Entire sentence level

Table 3: Realis Feature Scopes

In addition to the features listed above, we also

utilized a set of higher-level attributes (genericity,

modality, polarity, and veridicality) that were largely

derived from features in Mathew and Katz (2009)

and Reiter and Frank (2010) and also drew in the

functionality of underlying models that were already

in place in our system. Aside from the aforemen-

tioned sources, much of the literature that deals with

these higher-level attributes also explores similar

types of lexical, semantic, and syntactic phenomena

that are embodied in our lower-level features.

One caveat of using the features above is that

many of them, such as modal adverbs, are specific

to verbal triggers, and notably, only 53.7% percent

of event triggers in E73 are verbs. Of the non-verbal

triggers, 26.7% percent of these are nominal triggers

with semantic frames (as specified in NOMLEX),

and the remaining triggers are eventive words that

bear other parts of speech. To make use of features

specifically designed for verbal triggers for other-

POS triggers, we utilize a dependency parse to find

the parent verb of the event trigger and then use that

verb’s features as the pseudo-features of the non-

verbal trigger.

Algorithm 1 for event realis label extraction en-

compasses the machine learning models we de-

signed to extract the four ACE event attributes. Al-

gorithm 2 contains a machine learning (logistic re-

gression) model that we trained using the four ACE

models, including the re-trained genericity model).

Algorithm 3 consists of a Random Forest2 approach,

which proved to be the best strategy on testEN af-

ter we experimented with a variety of different ML

models to use for combining the full set of rich fea-

2Cognitive Foundry: http://foundry.sandia.gov/

tures. The results of these algorithms are shown in

Table 4. Note that we additionally experimented

with utilizing separate models for verbal and nom-

inal triggers, but did not achieve noticeable gains as

a result.

Method F-Measure

Algorithm 1 68.18

Algorithm 2 69.43

Algorithm 3 70.83

Table 4: Results of our realis labels on gold events.

6 Event Linking into Hoppers

After extracting typed event triggers and identifying

their realis labels, we then cluster individual event

mentions that are intuitively equivalent into loosely

coreferential groups called event hoppers. This dif-

fers from traditional event coreference only insofar

as it permits a looser definition of equivalence, al-

lowing (among other things) differing event argu-

ments when facts are being debated, realis labels that

change over time, and varying levels of trigger and

argument specificity (not to be confused with event

structure granularity).

Beginning with a collection of event mentions

from a single document, we construct these hop-

pers by independently determining the compatibil-

ity of each pair of event mentions in the document

by using a multi-stage pipeline (see Figure 2) that

considers event type, realis, trigger- and argument-

level compatibility, and discourse characteristics.

For event argument extraction, we make use of an

in-house semantic parser along with LCC’s Even-

tion and CiceroCustom argument extraction tech-

nologies, as described in our 2014 KBP submission

paper (Monahan et al., 2014).

Once these pairwise-compatibility ratings have

been determined, we employ a greedy iterative clus-

tering algorithm to produce high-quality event hop-

pers that serve to model an event at the document

level. In particular, we define an N by N com-

patibility matrix, where N represents the number of

event mentions in a document. Each element in this

matrix is filled with either (1) a binary variable in-

dicating that the pair must not be included in the

same hopper, or (2) a non-negative score indicat-

ing the overall level of compatibility between the

event mentions. Once the matrix is filled, we begin

the iterative process of building hoppers. In the be-

ginning, each mention belongs to its own singleton

hopper. Then, at each subsequent step, we greed-

ily select the two mentions across different hoppers

that possesses the highest positive score and attempt

to merge their corresponding hoppers. If merging

the hoppers would result in any pair of incompati-

ble mentions being included in the same hopper, the

selected pair is itself marked for non-inclusion. Oth-

erwise, the hoppers are merged. This process ends

when all positively-scored pairs have been consid-

ered.

In the following subsections, we discuss each of

the following modules of our event hopper compo-

nent as shown in Figure 2: event type compatibility,

realis compatibility, trigger compatibility, argument-

level compatibility, and discourse processing. For

each module, we will (1) show the impact of that

module independent of the modules further down-

stream in the pipeline, and (2) compare against two

baselines: (a) keeping all event mentions as single-

tons, and (b) merging all mentions with the same

event type.

We report three types of metrics. First, we re-

port the official evaluation criterion for the 2015

TAC KBP event, which KBP represents as the av-

erage of four well-known coreference metrics used:

BCUBED, CEAFE, MUC, and BLANC, as defined

by NIST (2015). In addition, we report PairP and

PairR, which are the precision and recall over event

mention pairs. More specifically, assuming that (1)

GH is the number of event mention pairs in the

gold-standard hoppers, (2) SH is the number of

pairs in the system-generated hoppers, and (3) JNT

is the number of system hopper pairs that are also

paired in the gold hoppers, then PairP = JNT
SH

and

PairR = JNT
GH

. We evaluate the hopper system

on our test data in two modes: a “primary” mode

in which the triggers, event types, and realis labels

have been identified by our event trigger system (as

with TAC KBP Task 2); and a “diagnostic” mode,

which uses gold standard triggers, event types, and

realis labels provided by the LDC (as with TAC KBP

Task 3).

Figure 2: The five modules of our Event Hopper compatibility component along with the selection module.

6.1 Event Type Compatibility Module

Our first module makes a binary decision on whether

a pair of event mentions can be in the same hopper

by determining whether their event types are com-

patible. Only mentions with the same event type and

subtype can be included in the same hopper, except

for the underspecified Contact.Contact and Trans-

action.Transaction subtypes, which can be included

with other Contact and Transaction mentions.

6.2 Realis Compatibility Module

Our second module determines whether the realis at-

tributes are consistent between event mentions in the

same hopper. It can often happen that two events

with differing realis are situated in a text so as to in-

dicate one of a variety of event-event relationships,

such as those shown in Table 5.

Sentences Realis Type Hopper?

Pair 1 “Attacks are unavoidable.” GENERIC
Instance No

“The base was attacked.” ACTUAL

Pair 2 “John will attack tomorrow.” FUTURE
Completion Yes

“John attacked as expected.” ACTUAL

Pair 3 “Bill met with me.” ACTUAL
Disagreement Yes

“No, he didn’t.” NEGATE

Table 5: Example pairs for different realis with indica-

tions as to the specified relationship and whether they

should be placed in the same hopper.

With this in mind, we have experimented with two

modes for assessing realis compatibility: (1) pre-

venting GENERIC mentions from being in the same

hopper as any other type [BASIC], and (2) further

preventing ACTUAL and OTHER mentions from

being placed in the same hopper except for future

tense subtypes of OTHER [STRICT]. We report the

results in Table 6 along with an All-Event baseline

that ignores realis.

The recall scores indicate that around 4.4% of all

paired event mentions in the gold standard data rep-

Task 2 Task 3

Method PairP PairR KBP PairP PairR KBP

Singleton Baseline 0.0% 0.0% 37.96 0.0% 0.0% 48.85

R=STRICT 23.6% 63.3% 50.69 30.4% 88.8% 66.30

R=BASIC 19.3% 65.0% 48.65 22.9% 94.7% 61.24

All Events 15.6% 65.6% 46.65 18.3% 99.1% 57.52

Table 6: Results of varying the mode in the realis com-

patibility module, given that event types are compatible.

resent either a GENERIC-OTHER or GENERIC-

ACTUAL pairing. Furthermore, 5.9% of gold stan-

dard pairs represent relations between ACTUAL-

OTHER mention pairs (excluding future tense).

While preventing such pairings results in a slight re-

duction to recall, we believe that the accompanying

gain in precision (and the improvement to the over-

all score) suggests that filtering out such pairs is still

appropriate. Based on these observations, experi-

ments in subsequent sections will assume that the

realis module is in [STRICT] mode.

6.3 Trigger Compatibility Module

If the event types and their realis labels are com-

patible, this module makes a binary decision on the

compatibility of their event trigger words. To this

end, we have experimented with six categories of

trigger compatibility, each of which also accepts

pairs that satisfy the stricter categories. A descrip-

tion of these categories along with our experimental

results can be found in Table 7.

The results in Table 7 show that over 50% of all

trigger pairs in the gold hoppers had no direct se-

mantic relation in WordNet, but around 30% con-

sisted of exact lexical matches. This suggests that

any attempt at maintaining a high recall will require

a source of knowledge outside of WordNet — in

our case, learned equivalence sets — to determine

trigger-level compatibility. As shown, we are able

Task 2 Task 3

Method Description PairP PairR KBP PairP PairR KBP

Singleton Baseline Baseline 0.0% 0.0% 37.96 0.0% 0.0% 48.85

T=EXACT Triggers exactly the same 39.6% 27.0% 54.72 57.0% 29.1% 69.36

T=SAME STEM Triggers have same stem 35.6% 34.7% 55.69 52.4% 41.5% 72.01

T=SYNONYM Triggers found in same synset 35.3% 38.2% 56.59 50.2% 47.4% 72.58

T=HYP*NYM Triggers occur in a hypernym or hyponym relation 31.7% 40.0% 56.42 49.9% 49.5% 72.13

T=MANUAL Triggers occur together in manually crafted equivalence set 27.1% 58.2% 55.44 38.0% 76.8% 73.44

T=ALL Any two triggers can occur in the same hopper 23.6% 63.3% 50.69 30.4% 88.8% 66.30

All Events Baseline 15.6% 65.6% 46.65 18.3% 99.1% 57.52

Table 7: Results of varying the mode of the trigger compatibility module, given that the event types and realis are

compatible (R=STRICT). For SAME STEM mode, we use a Porter stemmer, and for SYNONYM/HYP∗NYM modes,

we use WordNet 3.0.

to improve our pairwise recall by 18% and 27% over

a WordNet-based compatibility module for system-

based and gold mentions, respectively. For this rea-

son, experiments in subsequent sections will assume

that the trigger module is in [MANUAL] mode.

6.4 Argument Compatibility Module

While event type, realis, and trigger compatibility

are necessary conditions for inclusion in the same

event hopper, they are not sufficient. In order to de-

termine that two seemingly compatible event men-

tions genuinely represent the same event, it is also

necessary to consider their arguments. In addition,

different types of arguments need to be handled dif-

ferently. For example, by definition, an event hopper

represents a single event with a particular spatiotem-

poral context; thus, argument compatibility of the

spatiotemporal context is required for inclusion into

an event hopper. To this end, we use separate sub-

modules for determining the compatibility of tempo-

ral arguments (temporal sub-module), spatial argu-

ments (spatial sub-module), and all other arguments

(general sub-module). In order to detect event argu-

ments, we utilize a semantic parser and the argument

extraction techniques described in Section 4.5.

First, temporal arguments are extracted and con-

verted into a range representing the earliest possible

start time and the latest possible end time associated

with the event mention. The temporal ranges asso-

ciated with the two mentions are then compared in

the temporal sub-module to determine if there is any

overlap. For instance, “over the summer” is broader

than “in July”, but the two ranges overlap, and for

that reason, they are deemed compatible.

Second, spatial arguments are extracted and

linked to a hierarchical gazetteer3 of place names

in the spatial sub-module with three possible re-

sults. If both arguments successfully link to the

gazetteer, they may be found to be either (1) compat-

ible (e.g., “France” and “Lyon”) or (2) incompatible

(e.g., “France” and “Italy”). If (3) one or both argu-

ments cannot be linked to a known place name —

e.g., “the church on the corner” — the pair is instead

handled by the general sub-module.

Third, extracted arguments (of the same semantic

role) are tested for agreement, utilizing five different

techniques as shown in Table 8 as part of the gen-

eral sub-module. These techniques detect matching

arguments with a high precision, but lack sufficient

recall.

Submodule Match Type Description

Lexical Match

Lex:Exact Exact lexical match

Lex:Head Exact lexical match of arg heads

Lex:Partial One argument text contains the other

Coreference
Coref:Head Coref chain linking the heads

Coref:Any Coref chain between any text in the args

WordNet

Syn:Any Heads share any WordNet synsets

Syn:WSD Heads share WordNet synsets after WSD

Hyp:Any Heads have any hyper/hyponym relation

Hyp:WSD Heads have hyp* relation after WSD

Numbers

Num:Match Both heads are the same number

Num:Both Heads are different numbers

Num:One Only one head is a number

Entity Type
Match:NOM Head match entity type (one is nominal)

Match:NAM Head match entity type (both named)

Table 8: Argument compatibility submodules with the

names and descriptions of particular match types.

We experimented with three modes for detect-

ing argument compatibility, requiring arguments to

match according to the particular match types in Ta-

ble 8. However, the requirement that there be some

argument agreement between two mentions in order

3from http://geonames.nga.mil/gns/html/

to include them in the same hopper is, in practice,

too restrictive. Often, there are mentions in the same

hopper that share no arguments in common. For this

reason, we experimented with three more permissive

modes of operation which do not require any argu-

ments to match, but rather penalize argument mis-

matches. The impact of this module (along with de-

scriptions of each mode) can be seen in Table 9.

Based on the results of this table, we observe that

less than 20% of pairs within our hoppers have any

argument match detectable by our modules, and that

around half of those that do should not be placed

in the same hopper due to some mismatch associ-

ated with (1) another pair of arguments, (2) the trig-

gers, or (3) the realis. Likewise, over 20% of gold

pairs in the same hopper have some detected argu-

ment mismatch. Furthermore, it appears that over

30% of all gold pairs have neither a detectable match

nor a detectable mismatch. Taken together, these re-

sults suggest that a sizable number of mentions in

each text do not provide the argument-level evidence

needed to determine event hopper coreference using

the modules described thus far. This suggests that

an additional module capable of analyzing discourse

patterns is required to extract explicit and implicit

cues for assigning such mentions to an event hop-

per.

6.5 Discourse Processing Module

This final module serves to alleviate some of the dif-

ficulties associated with argument-based event hop-

per coreference by defining a discourse model of

event coreference. This module is based on the in-

sight that repeated mentions of the same event will

follow the Gricean Maxim of Quantity and will not

duplicate all of the information each time. This

module provides a score for two events’ compati-

bility.

Processing event mentions within the discourse

module consists of two steps. First, we must identify

the preceding mention in an event discourse chain.

Then, we must determine if the adjacent mentions in

the chain should be included in the same hopper, us-

ing particular discourse cues, trigger relationships,

and arguments where available.

For simplicity, we define an event discourse chain

as a sequence of mentions with the same trigger

stem (e.g., “attacks”, “attacked”, “attacking”, “at-

tacker”). Then, for a given event discourse chain, we

determine whether adjacent mentions in the chain

should be included in the same hopper. To accom-

plish this, we make use of negative indicators (e.g.,

“unrelated”, “similar”, “different”), as well as posi-

tive indicators (e.g., “the”, “this”, “these”). Our dis-

course module first filters out mentions which match

a negative indicator. Then, it directly detects those

mentions which exhibit a positive indicator and links

them to their predecessor in the discourse chain.

Table 10 shows the results for the discourse mod-

ule without the argument compatibility module. We

report scores assuming that the pairwise mentions

in the chain have been analyzed in one of three

modes: (1) all pairs are linked [ALL], (2) the pairs

are linked if the later mention has a positive indi-

cator [POSITIVE], or (3) the pairs are linked if it

has a positive indicator (and no negative indicator)

[POS NO NEG].

Task 2 Task 3

Method PairP PairR KBP PairP PairR KBP

Singleton Baseline 0.0% 0.0% 37.96 0.0% 0.0% 48.85

D=ALL 47.4% 27.9% 54.63 53.6% 31.3% 68.93

D=POS NO NEG 39.9% 5.7% 43.70 50.9% 8.5% 56.94

D=POSITIVE 39.9% 5.8% 43.78 50.7% 8.6% 57.05

D=NONE,A=ALL 27.1% 58.2% 55.44 38.0% 76.8% 73.44

All Events 15.6% 65.6% 46.65 18.3% 99.1% 57.52

Table 10: Results of varying the discourse module, given

that the event types, realis, and triggers are compatible

(R=STRICT, T=MANUAL).

According to our experiments, only a small per-

centage of pairs were linked via explicit cues (less

than 9%). Furthermore, the effect of including neg-

ative cues was minimal. Overall, it remains an

open research question as to how best to incorporate

discourse-level information into models of within-

document event coreference and event hopper con-

struction.

6.6 Other Models

In the interest of generalizing beyond the narrow

rule-based discourse module, we have also experi-

mented with using a maximum entropy-based dis-

course classifier (Discourse ML), which uses as fea-

tures the positive and negative indicators described

in Section 6.5, as well as features for realis mis-

match, argument role presence or absence, argument

match type, and trigger compatibility type.

Task 2 Task 3

Method Description PairP PairR KBP PairP PairR KBP

Singleton Baseline Baseline 0.0% 0.0% 37.96 0.0% 0.0% 48.85

A=REQ HIGH Require Lex:Exact, Lex:Head, Coref:Head, WN:Syn:WSD, or Num:Match 63.3% 10.6% 49.50 68.1% 12.0% 61.89

A=REQ MED + WN:Syn:Any, WN:Hyp:WSD, Num:Both, or EType:Match:NOM 51.2% 13.2% 50.57 56.9% 17.1% 63.27

A=REQ LOW + Lex:Partial, Coref:Any, WN:Hyp:Any, or Num:One 51.4% 14.5% 50.69 54.4% 18.0% 63.20

A=NO MISS Join events if no arg mismatches 30.7% 42.4% 55.89 47.3% 54.9% 73.18

A=SPACE TIME Join events if no space/time arg mismatches 26.1% 52.1% 55.53 38.5% 73.1% 73.25

A=NO MULTI Join events if less than 2 argument mismatches 26.5% 55.0% 55.35 38.2% 73.7% 73.33

A=ALL Always join events (ignore arguments) 27.1% 58.2% 55.44 38.0% 76.8% 73.44

All Events Baseline 15.6% 65.6% 46.65 18.3% 99.1% 57.52

Table 9: Results of varying the argument compatibility module, given that the event types, realis, and triggers are

compatible (R=STRICT, T=MANUAL).

More generally still, we have also experimented

with a general machine learning approach (Full ML)

that determines whether a given pair of event men-

tions should be combined into the same hopper. Full

ML utilizes a maximum entropy classifier with the

same features, but considers all pairs of the same

event type, whereas the discourse model considers

only adjacent pairs in a discourse chain.

Finally, we have taken into account the relative

confidence of our trigger compatibility and argu-

ment compatibility modules to produce a tiered ap-

proach to event hopper combination (Tiered Model).

In particular, for a given trigger compatibility rat-

ing, we require a given argument compatibility rat-

ing based on three tiers of trigger compatibility, as

described in Algorithm 1.

Algorithm 1 Tiered Compatibility Algorithm

if T=EXACT,SAME STEM,SYNONYM then

A=NO MULTI

else if T=MANUAL then

A=M LEARNING

else

A=REQ STRICT

end if

Results for the machine learning models —

argument-level, discourse-level, and both together

(Combined ML) — are compared against one an-

other in Table 11. The tiered approach, both with

and without a discourse-level ML model, is in-

cluded as well. For all ML models, we compare

the model (1) with no realis/trigger filtering and (2)

with the optimal realis/trigger filtering (R=STRICT,

T=MANUAL).

Results for the event hopper system — for Task

Task 2 Task 3

Method PairP PairR KBP PairP PairR KBP

Singleton Baseline 0.0% 0.0% 37.96 0.0% 0.0% 48.85

Full ML 34.7% 36.5% 54.09 45.9% 40.4% 68.92

with best R/T 38.6% 36.1% 55.17 50.3% 39.1% 70.42

Discourse ML 35.8% 35.4% 52.36 42.6% 43.8% 67.11

with best R/T 48.9% 30.4% 54.87 59.5% 35.4% 70.05

Combined ML 39.2% 31.2% 53.57 50.2% 37.2% 68.28

with best R/T 45.8% 31.8% 55.22 54.4% 36.3% 70.20

Tiered Model 32.3% 44.2% 55.54 44.4% 53.8% 71.78

with Discourse ML 35.4% 36.1% 53.50 48.1% 47.1% 69.96

Best R/T 27.1% 58.2% 55.44 38.0% 76.8% 73.44

All Events 15.6% 65.6% 46.65 18.3% 99.1% 57.52

Table 11: Results of the machine learning models and

the tiered model, separate and in conjunction. The

phrase “best R/T” indicates that the system uses modes

R=STRICT and T=MANUAL.

2 with system-provided events and realis labels, and

for Task 3 with gold-standard events and labels —

can be found in Sections 7.2 and 7.3.

7 Evaluation

In this section, we describe our system’s perfor-

mance on the KBP evaluation. For each task, we

submitted several runs to test different parameters

of the system.

7.1 Task 1: Event Detection

For Task 1, we submitted runs using two differ-

ent strategies for event trigger detection. Our first

run utilized our event detection strategy that made

use of 60% of the available data sets (trainEN)

to determine prior lexical probabilities, while the

second run made use of the full dataset (allEN).

This variation serves to test the impact of addi-

tional training data on the system. The results

are shown in Table 12. The Event metric corre-

sponds to the KBP mention type metric, which is the

micro-average F-measure over all of the event types

for detecting triggers with the correct event type.

The Event+Realis metric is equivalent to the men-

tion type+realis status, which additionally requires

the trigger and event type to have the correct realis

label. Note that the Rank1 and median scores for

the different metrics do not necessarily come from

the same system.

Event Event+Realis

Method P R F P R F

Rank1 — — 58.41 — — 44.24

LCC2 73.95 46.61 57.18 49.22 31.02 38.06

LCC1 72.92 45.91 56.35 48.92 30.81 37.81

Median — — 48.79 — — 34.78

Table 12: Results of our generated event triggers, types,

and realis labels.

7.2 Task 2: Event Detection and Coreference

Task 2 measures the performance of the event hop-

per system on top of events produced by the event

detection system. We submitted three runs for Task

2, each of which utilized our event detection and

realis labeling systems as input. Each of the three

submissions (with scores) is indicated in Table 13,

along with the median score and the score of the

top-performing system.4 LCC1 and LCC2 each uti-

lized allEN for the Event Detection task and differ

only in the configuration of the hopper system, while

LCC3 utilized only trainEN to train the event detec-

tion component.

Method KBP Score

Rank1 63.23

LCC2 62.95

LCC1 62.80

LCC3 62.63

Median 54.62

Table 13: Results of our generated event triggers, types,

realis labels, and hoppers.

7.3 Task 3: Event Coreference

Task 3 specifically measures the performance of the

event hopper systems. To this end, the TAC or-

ganizers provided all systems with event triggers,

along with their event types and realis information.

4LCC1 and LCC3 utilized R=GENERIC, T=SYNONYM,

D=POS NO NEG, A=SPACE TIME, while LCC2 utilized

R=GENERIC, T=TIERED, D=POSITIVE, A=TIERED.

We also submitted three runs for Task 3, which are

shown in Table 14, along with the median score

and top-performing score for this task, which in this

case was LCC3.5 Due to the different characteristics

of system events/realis and gold events/realis, these

models are significantly different from those submit-

ted as part of Task 2.

Method System KBP Score

Rank1 Rule-Based 75.69

LCC3 Rule-Based 75.69

LCC2 Tiered 74.87

LCC1 Machine Learning 71.86

Median — 71.31

Table 14: Results of our submitted hopper system using

provided event triggers, types, and realis labels.

8 Conclusion

In this paper, we presented a system that can suc-

cessfully detect and extract events with the end goal

of populating a knowledge base. Each event men-

tion is associated with its trigger in text, provided

with an event type and a realis label, and linked to

other event mentions in the same document to pro-

duce an event “hopper”. This system exemplifies

one method for achieving a much richer knowledge

base of events.

9 Acknowledgements

This work was sponsored in part by the Air Force

Research Laboratory (AFRL).

5Note that LCC1 represents our best-performing machine

learning model (R:STRICT, T:MANUAL, A:ML, D:ML:Type),

LCC2 represents our best-performing tiered model (R:STRICT,

T:TIERED, D:ALL:Syn, A:TIERED), and LCC3 represents our

best-performing rule-based system (R:STRICT, T:MANUAL,

D:ALL:Type, A:ALL).

References

Cosmin Adrian Bejan and Sanda Harabagiu. 2010. Un-

supervised Event Coreference Resolution with Rich

Linguistic Features. In Proceedings of the 48th Annual

Meeting of the Association for Computational Linguis-

tics, pages 1412–1422, Uppsala, Sweden, July. Asso-

ciation for Computational Linguistics.

David B. Bracewell, David Hinote, and Sean Monahan.

2014. The Author Perspective Model for Classifying

Deontic Modality in Events. In The Twenty-Seventh

International Flairs Conference.

Marie-Catherine de Marneffe, Christopher D. Manning,

and Christopher Potts. 2012. Did It Happen? The

Pragmatic Complexity of Veridicality Assessment. In

Computational Linguistics, volume 38(2), pages 301–

333.

Frederik Hogenboom, Flavius Frasincar, Uzay Kaymak,

and Franciska de Jong. 2011. An Overview of Event

Extraction from Text. In Proceedings of Derive2011

Workshop.

Quoc V. Le and Tomas Mikolov. 2014. Distributed

Representations of Sentences and Documents. arXiv

preprint arXiv:1405.4053.

Linguistic Data Consortium (LDC). 2005. ACE (Auto-

matic Content Extraction) English Annotation Guide-

lines for Events Version 5.4.3 2005.07.01.

Linguistic Data Consortium (LDC). 2014a. DEFT Rich

ERE Annotation Guidelines: Events V2.9.

Linguistic Data Consortium (LDC). 2014b.

LDC2014E121 DEFT Event Nugget Evaluation

Training Data.

Linguistic Data Consortium (LDC). 2015a.

LDC2015E22 TAC KBP English Event Argu-

ment Extraction Comprehensive Pilot and Evaluation

Data 2014.

Linguistic Data Consortium (LDC). 2015b.

LDC2015E29 DEFT Rich ERE English Training

Annotation V2.

Linguistic Data Consortium (LDC). 2015c.

LDC2015E73 TAC KBP 2015 Event Nugget Training

Data Annotation V2.

Zhengzhong Liu, Jun Araki, Eduard Hovy, and Teruko

Mitamura. 2014. Supervised within-document event

coreference using information propagation. In Pro-

ceedings of the International Conference on Language

Resources and Evaluation.

Catherine Macleod, Ralph Grishman, Adam Meyers,

Leslie Barrett, and Ruth Reeves. 1998. NOMLEX:

A Lexicon of Nominalizations. In Proceedings of EU-

RALEX, volume 98, pages 187–193. Citeseer.

Thomas A. Mathew and E. Graham Katz. 2009. Su-

pervised Categorization for Habitual Versus Episodic

Sentences. Dissertation. Georgetown University.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey

Dean. 2013. Efficient Estimation of Word Representa-

tions in Vector Space. In In Proceedings of Workshop

at ICLR.

Teruko Mitamura, Yukari Yamakawa, Susan Holm, Zhiyi

Song, Ann Bies, Seth Kulick, and Stephanie Strassel.

2015. Event Nugget Annotation: Processes and Is-

sues. In The 2015 Conference of the North American

Chapter of the Association for Computational Linguis-

tics - Human Language Technologies (NAACL HLT

2015) . 3rd Workshop on EVENTS: Definition, Detec-

tion, Coreference, and Representation.

Sean Monahan and Mary Brunson. 2014. Qualities of

Eventiveness. In ACL 2014.

Sean Monahan, Dean Carpenter, Maxim Gorelkin, Kevin

Crosby, and Mary Brunson. 2014. Populating a

Knowledge Base with Entities and Events. In In Proc.

Text Analysis Conference (TAC2014).

Roser Morante and Eduardo Blanco. 2012. *SEM 2012

Shared Task: Resolving the Scope and Focus of Nega-

tion. In First Joint Conference on Lexical and Compu-

tational Semantics (*SEM), pages 265–274.

National Institute of Standards and Technology (NIST).

2014. TAC KBP 2014 Event Argument Track. http:

//www.nist.gov/tac/2014/KBP/Event/.

Accessed: 2015-10-14.

National Institute of Standards and Technology

(NIST). 2015. TAC KBP 2015 Event Track.

http://www.nist.gov/tac/2015/KBP/

Event/index.html. Accessed: 2015-10-15.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-

work for Topic Modelling with Large Corpora.

Nils Reiter and Anette Frank. 2010. Identifying generic

noun phrases. In Proceedings of the 48th Annual

Meeting of the Association for Computational Linguis-

tics.

Roser Saurı́ and James Pustejovsky. 2009. FactBank: a

corpus annotated with event factuality. In Language

Resources and Evaluation, volume 43 Issue 3, pages

227–268.

