
CMU-LTI at KBP 2015 Event Track

Zhengzhong Liu Jun Araki Dheeru Dua
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213 USA

{liu, junaraki, ddua, teruko, hovy}@cs.cmu.edu

Teruko Mitamura Eduard Hovy

Abstract

We describe CMU LTI’s participation in the
KBP 2015 Event Track. We officially partici-
pated in Task 1: Event Nugget Detection track
and Task 3: Event Coreference track. Our sys-
tem rank high in both tracks. We found that
our combined system is competitive but have
room to improve. In addition, we have con-
ducted follow up experiments by creating a
simple piplined system, and We found it com-
petitive comparing to the official submissions.

1 Introduction

CMU LTI officially participates in 2 tasks in the
event track. In the event nugget detection task, we
submit two separate systems. Both systems employ
a Conditional Random Field (CRF) system, but dif-
fers in implementation details and selection of fea-
tures. In particular, LTI1 uses a vanilla average per-
ceptron CRF model and consider multi-type men-
tion simply as new class, while LTI2 uses a Passive-
Aggressive CRF model and make use of 5-best de-
coding to deal with multi-type mentions.

In the event hopper coreference task, we submit 3
runs generated by 2 systems. Both coreference sys-
tems are based on the Latent Antecedent Tree (LAT)
model, there are some differences in the implemen-
tation and the choice of features as well. Our system
rank competitively among the participants, our team
rank second in the event nugget detection task and
rank third in the hopper coreference task.

In follow up experiments, we found that some
features in our hopper task are not actually imple-
mented correctly. After fixing the problem, our

system rank the first in all submissions. In addi-
tion, we’ve also conducted follow up experiments on
the nugget and hopper joint task by combining our
nugget system and coreference system as a pipeline.
Our simple pipeline system is very competitive and
score higher than all the submissions. LTI1 system
on mention detection and coreference can be both
found on an online repository1.

2 Task 1: Event Nugget Detection

2.1 System 1 : LTI1

LTI1 deploys a discriminativly trained Conditional
Random Field (CRF) model to detect mention span
and event type, and a linear Support Vector Machine
(SVM) model to determine mention realis status.
The CRF model is trained with the structured per-
ceptron(Collins, 2002), which is outlined in Algo-
rithm 1. The decoding step is done using standard
Viterbi algorithm. Our final system always make
use of the average weight variation as described in
Collins (2002).

A number of “Double tagging” mentions are an-
notated in the corpus, in which a mention might have
one or more event types. In LTI1 we simply com-
bine multiple labels for each mention into a single
label2. The intuition behind is that some surface
forms are usually associated with some fixed men-
tion types, for instance, ”KILL” is normally associ-
ated with “Life.Die” and “Conflict attack”.

1https://bitbucket.org/hunterhector/cmu-script/
2Multi-label classification can be solved with sophisticated

methods when simple concatenation creates too many classes.
In the KBP event dataset, the number of extended classes is
small (56 in the training data).

Algorithm 1 Structured perceptron.
Input: training examples {(x(i), y(i))}Ni=1

Input: number of iterations T
Output: weight vector w

1: w← 0 . Initialization.
2: for t← 1..T do
3: for i← 1..N do
4: ŷ(i) = arg maxy∈Y(x(i)) w · Φ(x(i), y)

5: if ŷ(i) 6= y(i) then
6: w← w + Φ(x(i), y(i))− Φ(x(i), ŷ(i))

7: return w

An event mention is normally composed by its
mention trigger and the arguments. To get a
list of arguments for the event mention. We run
two Semantic Role Labeling system, the PropBank
style Fanse Parser (Das and Smith, 2011) and the
FrameNet style Semafor Parser (Tratz and Hovy,
2011). In addition, to reduce sparsity, LTI1 also
employs a few external data resources, including
WordNet (Fellbaum, 1998) and a Brown Clustering
trained on newswire data (Sun et al., 2011). We also
use the Stanford CoreNLP system to obtain lemma,
part-of-speech and parsing information (Manning et
al., 2014).

Using these resources, LTI1 employ regular lin-
guistic features for mention type detection, which
are summarized as followed:

1. Part-of-Speech, lemma, named entity tag of
words in the 2-word window of the trigger
(both side), the trigger word itself and the di-
rect dependent words of the trigger.

2. Brown clusters, WordNet Synonym and deriva-
tive forms of the trigger.

3. Whether surrounding words match some se-
lected WordNet senses, these senses are
”Leader”, ”Worker”, ”Body Part”, ”Mone-
tary System”, ”Possession”, ”Government”,
”Crime” and ”Pathological State”.

4. Closest named entity type.

5. Dependency features, including lemma, depen-
dency type and part-of-speech of the child de-
pendencies and head dependencies.

Precision Recall F1
Span 74.36 55.72 63.62
Type 67.08 50.25 57.38
Realis 51.79 38.75 44.27
All 46.29 34.63 39.56

Table 1: Event Nugget score over 5-fold validation on
training data for LTI1.

Precision Recall F1
Span 82.46 50.30 62.49
Type 73.68 44.94 55.83
Realis 62.09 37.87 47.05
All 55.12 33.62 41.77

Table 2: Official Event Nugget score for LTI1.

6. Semantic role related features includes the
frame name and the argument role, named en-
tity tag, argument head word lemma and Word-
Net sense (selected from the above list as well)
of the arguments.

The WordNet related features are selected fol-
lowing the intuition that certain category of words
are likely to imply the existence of certain events.
For example, “Leader” are normally associated with
“Personnel” type. We are currently working on
methods that can automatically select such senses
instead of using explicit human intervention.

In the current implementation, all the raw fea-
tures are simply concatenated with the mention type.
However, one can further make use of the hierar-
chy of mention to extract features on the higher on-
tology. For example, when extracting features for
“Personnel.End-Position”, one can also add a fea-
ture about “Personnel”. We didn’t finish the imple-
mentation of this variation and will leave it to our
future work.

The realis model is a simple SVM model trained
using LIBLINEAR3. We use similar window fea-
tures and dependency features as in mention type
detection. We also add frame argument role names
in to the model (i.e. Attacker). However, we didn’t
include most of the lexicalized features used in type
detection to avoid overfitting. We design a specific

3https://www.csie.ntu.edu.tw/ cjlin/liblinear/

Fold Precision Recall F1
1 71.68 71.63 71.66
2 64.06 64.06 64.06
3 62.07 62.07 62.07
4 72.66 72.66 72.66
5 62.21 62.21 62.21

Table 3: 5-fold validation for Realis detection on training
data with gold span and types for LTI1

feature to capture whether the phrase containing the
event mention is quoted (if the whole sentence is
quoted, we do not fire this feature). In order to test
the effect of our realis model, we evaluate its perfor-
mance given gold standard mention span and types
in the training data. We report the 5-fold validation
result in Table 34.

We report our score averaged on the 5-fold valida-
tion in the training data in Table 1, and our official
score in Table 2. LTI1 ranks 2nd among all the par-
ticipants in terms of the final event type + realis sta-
tus (All in the table) F1 score. LTI1 also rank high
according the other metrics. Notably, we found that
the system is very robust against across datasets. Al-
though we have different precision, recall trade off
between the training and test set, the F-score is rela-
tively stable.

2.2 System 2 : LTI2

The event extraction task entails detecting the event
mention span in the documents and classifying
them into pre-defined types and subtypes as per the
RichERE guidelines. In LTI2 submission we treat
this as a sequence prediction task and use Condi-
tional Random Fields for predicting the sequence
of target variables in the sentence. For instance, in
the sentence “If the US pressured the Jamaican gov-
ernment to capture and extradite him, then it was
the Jamaica that arrested and imprisoned him, not
the US”, the event mention extradite can be clas-
sified as type(subtype) Justice(Extradite) as well as
Movement(Transport-Person). In order to cater this
multi-label sequence prediction task we optimized
over k-Best Viterbi parses during CRF training.

4Because the span detection is given, the precision and recall
are the same all the time.

Attributes Prec. Recall F1
Span 77.00 39.53 52.24
Type 68.79 35.31 46.67
Realis 51.41 26.39 34.88
All 45.47 23.34 30.85

Table 4: Official Results on Test Set for LTI2

Algorithm 2 Passive-Aggressive style CRF
Input: training examples {(x(i), y(i))}Ni=1

Input: number of iterations T
Output: weight vector w

1: w← 0 . Initialization.
2: for t← 1..T do
3: for i← 1..N do
4: ŷ

(i)
t ← arg maxy∈Y(x(i)

t) w · (xt
(i), wt)

5: if ŷt(i) 6= yt
(i) then

6: losst ← s(x, ŷ)− s(x, y) + sqrt(d(ŷ, y))
7: τt ← losst

||xt
2||

8: wt+1 ← wt + τtytxt

9: return w

Algorithm 3 Merging Top-n sequences to handle
multiple-tagging
Input: 5-Best-Viterbi-Parses (yj , scorej), 1 ≤ j ≤ 5
Input: Threshold, ε and Scaling Factor p
Output: Top-n Predicted Sequence

1: prediction← {y1}
2: µ←

∑5
i=1 scorei

5

3: σ ←
√∑5

i=1 (scorei−µ)2

5
4: for j ← 2...5 do
5: Nscorej = [(scorej − µ)/σ] ∗ p
6: if Nscorej −Nscorej+1 ≤ ε then
7: prediction← prediction ∪ yj
8: else
9: return prediction

At the testing time we extract the 5-best Viterbi
sequences and merge the results from the top-n
sequences. The algorithm for choosing top-n se-
quence is described in Algorithm 3, where p and
ε were set to 0.4 and 0.1 respectively after cross-
validation. These top-n sequences are then merged
to get multiple-taggings of triggers in prediction se-
quence.

The features used in training the CRF were POS
tags, previous five words and next five words and
their POS tags, two verbs in past and future, brown

Attributes Prec. Recall F1
Span 81.7 44.36 57.52
Type 72.91 39.56 51.29
Realis 61.84 33.55 43.50
All 55.37 30.04 38.95

Table 5: Fixed Results on Test Set for LTI2 (Precision
Oriented)

Attributes Prec. Recall F1
Span 77.59 49.14 60.17
Type 69.61 44.08 53.98
Realis 52.71 33.38 40.87
All 47.17 29.87 36.58

Table 6: Fixed Results on Test Set for LTI2 (Recall ori-
ented)

clusters with thirteen bits, lemmas of the event trig-
ger in the WordNet hierarchy, parse trees from Stan-
ford dependency parse, two events seen in the his-
tory, event arguments types extracted Semantic Role
Labeling followed by Named-Entity Recognition of
the arguments.

The LTI2 system could be run in two modes -
high precision and high recall. The high recall sys-
tem used additional features including brown clus-
ters with 8 bits, a gazatteer of event triggers and
WordNet synsets. The synsets increased recall but
reduced the precision a bit.

For extracting the realis information, we used a
two step approach. First, we extracted the event
mention spans and types as described earlier, then,
conditioned on the event information we performed
yet another sequence predcition over the training in-
stances using CRFs to find out the realis type.

Due to errors introduced by parallelizing the pro-
cess, the official submission of LTI2 contains some
formatting errors: results of one single document is
scattered in multiple places and only the last seg-
ment of the submission are getting scored. Table
4 shows the official performance. We’ve fixed the
problem after the official runs. We rerun the system
with two variations, Table 5 and 6 show the results
on the test-set using our high precision and high re-
call variants respectively.

3 Task 3: Event Nugget Coreference

3.1 System 1: LTI1 and LTI3

LTI1 and LTI3 use the perceptron model with la-
tent antecedent tree method (Fernandes et al., 2012;
Björkelund and Kuhn, 2014). These two systems
only differs with slight training variations. The fea-
tures employed can be roughly classified into 3 cat-
egories:

Trigger match: exact and fuzzy match on the
trigger word, uses standard linguistic features (pos,
lemma, etc.) and resources like Brown Clustering
and WordNet. Information from mention type and
realis type are also used;

Argument match: exact and fuzzy match on the
arguments, including their string, argument role and
coreference information;

Discourse features: encodes sentence and men-
tion distances.

We train the Latent Tree model with a passive-
aggressive algorithm(Koby Crammer, 2006) similar
to that of Björkelund and Kuhn (2014). Our im-
plementation is slightly difference in the Passive-
Aggressive step. Our algorithm is detailed in al-
gorithm 4, where: A represent the set of possi-
ble antecedents on the left; Ã represent the set of
antecedents that are allowed by the gold standard
coreference; Φ is the feature function over the tree; ŷ
represent the best decoding given current features; ỹ
represent the current best decoding among the cor-
rect coreference structure, i.e., the latent tree. The
algorithm iterativly update the weight vector in a
Passive-Aggressive manner. During implementa-
tion, we found that the PA algorithm is important
for the algorithm to converge well.

Algorithm 4 PA algorithm for latent trees in LTI1
Input: Training data D, number of iterations T
Output: Weight vector w

1: w = ~0
2: for t← 1..T do
3: for 〈Mi,Ai, Ãi〉 ∈ D do
4: ŷi = arg maxY(A) score(y)
5: if ¬Correct(ŷi) then
6: ỹi = arg maxY(Ã) score(y)

7: ∆ = Φ(ỹi)− Φ(ŷi)
8: τ = ∆∗w

||∆||2
9: w = w + τ∆

return w

B3 CEAF-E MUC BLANC Aver.
LTI1 82.27 75.14 60.90 71.56 72.47
LTI2 79.72 71.49 49.38 68.33 67.23
LTI3 82.63 76.32 58.86 71.08 72.22

Table 7: Official results of LTI1-3 on Hopper Coreference
task6

We didn’t submit the averaged perceptron ver-
sion for LTI1 due to a system bug. In later exper-
iments, we observe that the performance are better
and consistent with the averaged version. Our av-
eraged score on the development set reports 77.25
over 5-fold validation, better than 71.71 with the
vanilla version. And our final evaluation result is
now 76.78, which rank highest in all the submis-
sions. Our official results for the final system are
summarized in Table 7. Using the fixed model, we
also run a simple end-to-end pipeline by putting the
two steps together. We obtained 64.08 (official) and
38.24 (updated) averaged coreference score for task
2. In terms of the new updated scores, we rank at the
3rd place among all official submissions.

3.2 System 2: LTI2
We formalize event nugget coreference as a problem
of document-level structure prediction. Given in-
put document x with n gold standard event nuggets
{enj}nj=1, the goal of our algorithms is to predict
an event graph y whose edges represent coreference
links between the event nuggets. To solve the prob-
lem, we employs latent antecedent trees (Fernandes
et al., 2012; Björkelund and Kuhn, 2014) with struc-
tured perceptron (Collins, 2002), as shown in Algo-
rithm 1.

LTI2 also employs latent antecedent trees, trained
with averaged perceptron (Collins, 2002). It uses a
handful of features, which are string match, part-of-
speech combinations, and word embedding similari-
ties. The motivation for the first two features are rel-
atively obvious. As for the first feature, we assume
that two event nuggets with the same surface form
are likely to corefer to the same event. With respect
to the second feature, we assume that some partic-

6We report the updated results using the newest Scorer
(V1.7). The new score is slightly different from the official
score (by around 0.02 points in this case). See Liu et al. (2015)
for details.

ular pairs of part-of-speeches such as (verb, verb)
and (noun, noun) will be a relatively strong indica-
tor for event nugget coreference. The string-match
feature can be effective to some extent, but in gen-
eral it is weak since event coreference can happen
frequently with different lexical types such as para-
phrases. To complement the weakness, we also de-
vised the word embedding features to help the model
resolve such event coreference. Word embeddings
have been shown to capture lexico-semantic regu-
larities; semantically similar words are close to each
other in the embedding space (Agirre et al., 2009;
Mikolov et al., 2013). Our assumption for the word
embedding features is that if two lexically different
event nuggets corefer, their semantics should be still
similar, and thus their corresponding word embed-
dings should be close to each other in the embedding
space. For word embeddings, we use the pre-trained
300-dimensional word vectors from Google News
dataset (around 100 billion words) using word2vec
tool7, and apply cosine similarity as a numeric fea-
ture value to indicate how likely two event nuggets
corefer. Since event types are also given with the
gold standard event nuggets in Task 3, we further
added a constraint that coreferential event nuggets
should share the same even type.

4 Conclusion

In this paper we briefly report CMU LTI’s partici-
pation in the event nugget track. Due to time con-
straint, we could not participate the joint mention
detection and coreference track. In follow-up exper-
iments, we found that our final pipelined system is
competitive. However, We are interested in finding
better methods to combine these two systems and
make use of the interactions of the two stages. The
LTI1 coreference and detection system is currently
available at an online repository8.

References

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
Kravalova, Marius Pasca, and Aitor Soroa. 2009.
A study on similarity and relatedness using distribu-
tional and wordnet-based approaches. In Proceedings
of NAACL-HLT 2009, pages 19–27.

7https://code.google.com/p/word2vec/
8https://bitbucket.org/hunterhector/cmu-script/

Anders Björkelund and Jonas Kuhn. 2014. Learning
structured perceptrons for coreference resolution with
latent antecedents and non-local features. In Proceed-
ings of ACL 2014, pages 47–57.

Michael Collins. 2002. Discriminative training meth-
ods for Hidden Markov Models: Theory and experi-
ments with perceptron algorithms. In Proceedings of
EMNLP 2002, pages 1–8.

Dipanjan Das and NA Smith. 2011. Semi-Supervised
Frame-Semantic Parsing for Unknown Predicates. In
HLT ’11 Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies - Volume 1, volume 1,
pages 1435–1444.

Christiane Fellbaum. 1998. WordNet. Wiley Online Li-
brary.

Eraldo Fernandes, Cı́cero Nogueira dos Santos, and
Ruy Luiz Milidiú. 2012. Latent structure percep-
tron with feature induction for unrestricted coreference
resolution. In Proceedings of EMNLP/CoNLL 2012,
pages 41–48.

Joseph Keshet Shai Shalev-Shwartz Yoram Singer
Koby Crammer, Ofer Dekel. 2006. Online passive-
aggressive algorithms. In Journal of Machine Learn-
ing Research 7, page 551585.

Zhengzhong Liu, Teruko Mitamura, and Eduard Hovy.
2015. Overview of TAC KBP 2015 Event Nugget
Track. In Proceedings of Text Analysis Conference
2015.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language Pro-
cessing Toolkit. Proceedings of 52nd Annual Meeting
of the ACL: System Demonstrations, pages 55–60.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space word
representations. In Proceedings of NAACL-HLT 2013,
pages 746–751.

A Sun, R Grishman, and S Sekine. 2011. Semi-
supervised relation extraction with large-scale word
clustering. Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics, pages
521–529.

Stephen Tratz and Eduard Hovy. 2011. A fast, accu-
rate, non-projective, semantically-enriched parser. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, number 2010, pages
1257–1268.

