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1 Introduction

This year the RPI BLENDER team participated and
achieved top 1 in four tasks at KBP2015: Event
Nugget Detection (section ??), Event Nugget Coref-
erence Resolution (section 4), Cold-start Slot Fill-
ing Validation Filtering (section 5) and Tri-lingual
Entity Linking and top 2 in Tri-lingual Entity Dis-
covery and Linking (section 2).

2 Tri-lingual Entity Discovery and Linking

2.1 Entity Mention Identification

To extract English name mentions, we apply a
linear-chain CRFs model trained from ACE 2003-
2005 corpora (Li et al., 2012a). For Chinese and
Spanish, we use Stanford name tagger (Finkel et al.,
2005). We also encode several regular expression
based rules to extract poster name mentions in dis-
cussion forum posts. In this year’s task, person nom-
inal mentions extraction is added. There are two ma-
jor challenges: (1) Only person nominal mentions
referring to specific, individual real-world entities
need to be extracted. Therefore, a system should
be able to distinguish specific and generic person
nominal mentions; (2) within-document coreference
resolution should be applied to clustering person
nominial and name mentions. We apply heuristic
rules to try to solve these two challenges: (1)
We consider person nominal mentions that appear
after indefinite articles (e.g., a/an) or conditional
conjunctions (e.g., if ) as generic. The person nom-
nial mention extraction F1 score of this approach
is around 46% for English training data. (2) For
coreference resolution, if the closest mention of a

person nominal mention is a name, then we consider
they are coreferential. The accuracy of this approach
is 67% using perfect mentions in English training
data.

2.2 Unsupervised Entity Linking

Our entity linking system is a domain and language
independent system (Wang et al., 2015). This
system is based on an unsupervised collective in-
ference approach. Given a set of English entity
mentions M = {m1,m2, ...,mn}, our system first
constructs a graph for all entity mentions based
on their co-occurrence within a paragraph. Then,
for each entity mention m, our system uses the
surface form dictionary < f, e1, e2, ..., ek >, where
e1, e2, ..., ek is the set of entities with surface form
f according to their properties (e.g., labels, names,
aliases), to locate a list of candidate entities e ∈ E
and compute the importance score by an entropy
based approach (Zheng et al., 2014). Finally, it
computes similarity scores for each entity mention
and candidate entity pair < m, e > and selects the
candidate with the highest score as the appropriate
entity for linking. For Chinese and Spanish, we first
translate mentions into English using name trans-
lation dictionaries mined from various approaches
described in (Ji et al., 2009). If mentions cannot
be found in the dictionaries, we use Pinyin for
Chinese mentions and normalize special characters
for Spanish mentions.

2.3 Linking Feedback for Typing

This year’s pre-defined entity types are expanded
to Person, Geo-political Entity, Organization,



Location and Facility. Therefore, we implement
a fine-grained entity typing system based on
linking feedback and map them back to these five
types. We utilize Abstract Meaning Representation
(AMR) corpus (Banarescu et al., 2013) which
contains over 100 fine-grained entity types and
human annotated KB titles. DBPedia1 also
provides rich types for each page. Therefore,
we generate a mapping table between AMR
type and DBPedia rdf:type (e.g., university -
TechnicalUniversitiesAndColleges).
Finally, we can get a list of typing candidates
for each linking candidate. For example, give
a mention RPI, we can obtain a list of linking
candidates [ Rensselaer Polytechnic
Institute, Rensselaer at Hartford,
Lally School of Management &
Technology, ... ] using our entity
linking system. Each linking candidate has
a list of mapped AMR types, Rensselaer
Polytechnic Institute: [ university -
EducationalInstitution, university -
UniversitiesAndCollegesInNewYork,
organization - Organisation, ... ]. If the
confidence value of the top 1 linking candidate is
reliable, we only select its typing result. Otherwise,
we merge the typing results of all candidates. The
typing F1 score is 93.2% for perfect mentions in
English training data.

2.4 Build EDL for a New Language Over Night

We also propose a novel unsupervised entity typing
framework by combining symbolic and distribu-
tional semantics. We start from learning general
embeddings for each entity mention, compose the
embeddings of specific contexts using linguistic
structures, link the mention to knowledge bases and
learn its related knowledge representations. Then
we develop a novel joint hierarchical clustering and
linking algorithm to type all mentions using these
representations. This framework doesn’t rely on any
annotated data, predefined typing schema, or hand-
crafted features, therefore it is highly extensible and
can be quickly adapted to new languages. Different
languages may have different linguistic resources
available. For example, English has rich linguistic

1http://dbpedia.org

resources (e.g., Abstract Meaning Representation)
that can be utilized to model local contexts while
some languages don’t. For these low-resource lan-
guages, we can utilize the embeddings of context
words which occur within a limited size of window
instead of rich linguistic resource based compo-
sitional specific-context embedding. In addition,
for low-resource languages, there are not enough
unlabeled documents to train word embeddings and
KBs may not be available for these languages. In
this case, we can utilize other feature representations
such as bag-of-words tf-idf instead of embedding
based representations. To prove this, we apply our
framework to two low-resource languages: Hausa
and Yoruba. The mention-level typing accuracy with
perfect boundary is very promising: 85.42% for
Hausa and 72.26% for Yoruba. Experiments on var-
ious languages show comparable performance with
state-of-the-art supervised typing systems trained
from a large amount of labeled data. Then we can
apply the above unsupervised language-independent
linking component to link each mention to the En-
glish KB and use the linking feedback to refine
typing results.

3 Nugget Detection

3.1 Baseline Maximum Entropy Model

We utilize a Maximum Entropy model (MaxEnt)
to predict the event type of realis type of each
candidate event nugget, based on linguistic features
as summarized in Table 1. They can be roughly
divided into the following categories:

Lexical features include nbr, sense and bro. nbrs
refer to the unigrams or bigrams within the text
window of size 2. bro is a Brown cluster, which
was learned from ACE English corpus (Brown et al.,
1992). We used the clusters with prefixes of length
13, 16 and 20 for each token. The synonyms are the
most possible synset in WordNet (George, 1995).

Syntactic features include dg words, dg typ,
be pron and be pron. They represent the
characteristics of dependency and coreference.

Entity features include en typ and en typ(dg),
which capture the participation of entities in events
of specific types.

Statistical feature refers to ev typ. The feature
ev typ is learned from the distributions of event



types over nuggets in the training corpus.

Feature Description
nbr neighbor grams and POS
sense lemma, synonyms and case of the

target token
bro Brown clusters (Brown et al.,

1992)
dg words dependent and governor words
be pron whether the target token is a non-

referential pronoun
be mod whether the target is a modifier of

job title
en typ types of entities within the text

window of size 3 if have
en typ(dg) types of dependent and governor

entity of the target token
ev typ argmax event type of the target

token in training data

Table 1: Features for Event Nugget Classification

Feature Description
nbr neighbor grams and POS
dg words dependent and governor words
dg typ dependency types associated of

dg woods
en typ(dg) types of dependent and governor

entity of the target token
nug attr lemma, POS, event type and

subtype of the nugget
fv first verb within the clause con-

taining the nugget
co neg whether occurred with a negative

word (e.g., not)
co unc whether occurred with a modifier

of uncertainty (maybe)
co madv whether occurred with a modal

adverb (possibly)
dis distance between the nugget and

co neg or co unc

Table 2: Features for Realis Classification

Table 2 shows the features used in realis classi-
fication. Besides the basic features (nbr, dg words,
dg typ, en typ(dg) and nug attr), we employed the
words that express negation and uncertainty, such
as co neg, co unc, and co madv. The feature dis is
used to identify the scope affected of negation and
hypothesis. In addition, we considered the first verb
of a clause (fv). An empirical finding shows that

some fvs are capable of constraining the realis type
in a clause.

3.2 Using Homogeneous Data to Improve
Nugget Classification

Homogeneous data refers to a set of samples that
have common attributes. The attributes can be
predefined in terms of specific needs. In rhetori-
cal analysis of discourse, for example, we employ
the stylistic characteristics (narrative, argumenta-
tive, lyric, etc) as the attributes for homogeneity
detection. The stylistically homogeneous discourses
generally contain similar rhetorical structure. This
helps an analyzer predict the rhetorical structure
of a specific discourse sample by learning the ho-
mogeneous samples. In other fields, similarly, we
may consider Part-of-Speech based homogeneity
detection for machine learning on syntax, semantics
for grammar, pragmatics for word sense, etc.

In this paper, we regard an occurrence of a nugget
as a sample. We focus on the application of prag-
matically homogeneous samples in event nugget
classification.

Context is the most important aspect of pragmat-
ics. In our case, it can be used to verify whether
the samples of a nugget indicate the events of the
same type. See the following sentences, where the
samples of the nugget “death” in (1) and (2) occur
in very similar contexts and both indicate an “Die”
event. By contrast, the samples in (1) and (3) occur
in different contexts and indicate different events.
Accordingly, we define the homogeneous samples
as the ones that occur in similar contexts. We
name such samples as pragmatically homogeneous
samples, which means that they convey similar
senses in a specific context, triggering the events of
the same type.

1) UN puts the conflict’s death
[Die/Actual] toll at over 67,000.

2) I urge you to take in a variety of
sources in researching the civilian death
[Die/Actual] toll of the conflict.

3) Elliott was the third convict put to
death [Execute/Actual] in the state since
the start of the year and number 105 since
1976. (here, death refers to death penalty)



It is worth noting that not just the pragmatically
homogenous samples of a single nugget, but the
ones among different nuggets can take advantage of
the homogeneity in revealing the same event type.
See sentences 4) and 5) where the samples of the
nuggets “executed” and “death” occur in similar
context, both of which evoke an “Execute” event.

4) A convicted murderer was executed
[Execute/Actual] in the electric chair
Tuesday in Virginia.

5) Larry Elliott, 60, was the first person
put to death [Execute/Actual] by electro-
cution since June of last year.

In order to reduce the errors caused by uncer-
tainty, a MaxEnt model always makes decision in
terms of the most reliable priori knowledge. Accord-
ingly, it always drives the classifier to assign a sam-
ple to the type class that represents its homogeneous
samples. For example, suppose that the nugget
“sentence” in either sentence (2) or (3) is a training
sample, while (1) a test sample. As mentioned
above, the nugget in (1) is pragmatically homoge-
neous with (2) but heterogeneous with (3). In a
view of pragmatic features, therefore, the context
in (2) provides reliable prior knowledge while (3)
doesn’t. To ensure the reliability of classification,
the MaxEnt model will predict (1) as the same event
type with (2) but not (3).

It is predictable that the nugget classification
system can be optimized if trained on rich homo-
geneous samples. From here on, the remaining
problems include 1) how to enrich homogeneous
data and 2) enable learning among the homogeneous
samples. To solve the problems, we respectively
propose a feature oriented transfer learning method
and a lexicon based enrichment method for homo-
geneous data.

3.2.1 Feature Oriented Transfer Learning
We detect pragmatically homogeneous samples

of a nugget in terms of contextual similarity. The
context appears as the co-occurred words with a
sample, such as the ones in a chunk, text window
and dependency tree. In some cases, a similar
context means that two nuggets have very similar
contextual words (see 1) and 2)). In other cases,

the agreement in contexts can be reached only at the
level of semantics. See 9) and 10) where the contexts
have the same meaning but they are consisted of very
different words.

9) A good deal of this hatred is related
to the fact that Congress has a tradition
of preventing its own members convicted
of crimes from ever going to jail [Arrest-
Jail/Other].

10) Scholars of Brazil’s judicial system
say legislators in corruption scandals of-
ten avoid jail [Arrest-Jail/Other].

We propose to employ semantic feature based
transfer learning for training the MaxEnt model.
Transfer learning is a process of learning homoge-
neous data. A feature based transfer learner devel-
ops uniform feature representation to characterize
the common attributes of homogeneous samples and
thus unifies them in the feature space. This usu-
ally facilitates the learning process of homogeneous
samples.

We use frame semantics for characterizing the
contexts of homogeneous samples. Given a sample
along with its context, we transform the words in
the context to their semantic frames. A semantic
frame is the conceptual representation of a cluster of
words, reflecting the general semantics of the words.
See Table 4. Using such frames as features, we can
generate a nearly uniform feature representation for
the semantically similar contexts. See 11) which
exhibits the common semantic frames of some key
words in 9) and 10).

Frame: Leadership (see Table 4)
Lexical units in 9) and 10): congress,
legislator

Frame: Preventing (see Table 4)
Lexical units in 9) and 10): prevent, avoid

Frame: Being Incarcerate
Lexical units in 9) and 10): jail

Accordingly, the homogeneous samples that have
similar context can be always transferred to the same
region in the feature space, far from the heteroge-
neous samples. In terms of the space partition, the



frm 1 Preventing frm 2 Leadership
prevent, stave off,
avoid, avert, obvi-
ate, prohibit, ob-
viate, upset, etc.

congressman, leg-
islator, adminis-
ter, bishop, chair-
man, chief, etc.

Table 3: Examples of semantic frames and the
lexical units they contained

MaxEnt model is capable of assigning a nugget to
the class type of the semantically-similar homoge-
neous samples, even if it has a very different context
in content from the samples, such as that in 9) and
10).

In practice, we fulfill the semantic-level transfer
learning for all kinds of homogeneous samples, i.e.,
the nuggets of 39 event types, including the 38 KBP
event types and a N/A type (means “Other” type).
In the feature space employed by the original clas-
sification system, we replace the contextual features
by their semantic frames. The contextual features
include the co-occurred words with a candidate
nugget in the same chunk, text window and the first-
level dependency subtree. We retrained the MaxEnt
model using the revised feature space over the same
training data.

3.2.2 Lexicon based Enrichment of
Homogeneous Data

Because of the lack of training data, diverse
nuggets in the test data and generally narrow scope
of application of homogeneity, we suspect that there
isn’t any reliable homogeneous sample to use for
some test samples during the process of machine
learning. Our solution is to introduce more potential
homogenous samples into the training data from ex-
ternal linguistic resources. We consider two classes
of words for the enrichment of homogeneous sam-
ples: one can serve as a nugget to trigger an event
even though it never occurred in the training data,
while the other have occurred as known ground-truth
nuggets but necessarily associated with some new
context. We name the former cases as brand-new
(BN) homogenous samples, by contrast, the latter
half-new (HN).

In practice, for either BN or HN samples, it is
necessary to add their contexts to the training data.
That is because the MaxEnt model can learn the

pragmatic features only from the contexts. From
this perspective, our goal is actually to diversify
the pragmatic context specific to a certain event type.

Acquisition of BN Samples
We propose to acquire BN samples from FrameNet,
which organizes lexical units (words and phrases)
into different clusters and assign a conceptual
representation to each cluster2. The conceptual
representation is also called semantic frame.
Moreover, FrameNet provides an index structure.
The index facilitates the search for the semantic
frames given a lexical unit as query. By accessing
frames, we can obtain all the lexical units
semantically similar to the query.

Technically, we use a ground-truth nugget as
query. By going through the index, we discover
all the related semantic frames and further the
semantically-similar lexical units. In terms of the
priori correspondence between the ground-truth
nugget and an event type, we associate the retrieved
lexical units with the event type, generating event-
type-specific candidate nuggets. By using all
ground-truth nuggets as queries, we search all
possible candidate nuggets in FrameNet. Based on
this approach we can filter the duplicated candidates
for each KBP event type to eventually produce
unique new nuggets.

As mentioned above, the newly found nuggets are
not yet eligible BN samples until we attach some
contexts to each of them. Similarly, we acquire the
contexts by using ad-hoc Information Retrieval (IR)
technique. We show the detailed retrieval procedure
as follows:

Input: a nugget x
Output: the set of contexts C

Step 1: Use x as query to search the related
documents D in the KBP dataset.
Step 2: Pick up a document d from D.
Step 3: Extract a sentence Scon that contains x and
the left and right neighbors Snei from d.
Step 4: Use the co-occurred words with x in chunks
and dependency trees in Scon respectively as the
context cinc and cdep; Use the words in a radar-fixed

2https://framenet.icsi.berkeley.edu/fndrupal/



text window as the context cwin (the window may
occupy contents in both Scon and Snei).
Step 5: Verify whether C is empty. If yes, add the
triple T(cinc, cdep, cwin) to C, else calculate the
similarity of the current triple Tcur to every existing
triple Texi in C. We use VSM based Cosine metric
in the similarity measurement. If the similarity to
each Texi is smaller than a threshold θsim, add Tcur
to C, else skip to Step 6 directly.
Step 6: If the number of the context triples T in C is
bigger than n, break out the loop.
Step 7: If there isn’t any Scon in d, go to Step 2,
else skip to 3.

In the procedure, we set n to 50 while θsim 0.05.
Accordingly, we can obtain various contexts T(cinc,
cdep, cwin) for each newly found nugget. We use
every pair of nugget x and context T as a BN sample.

In the set of BN samples, however, there is
a lot of noise. Most cases are caused by the
ambiguous ground-truth nuggets. For example,
the nugget “strike” can have many meanings,
such as “walk off the job and protest”, “hit in a
forceful way” and “be impressed”, corresponding
to the semantic frames “Political actions”,
“Attack/Cause harm” and “Coming to believe”
respectively. The nugget indicates a “Demonstrate”,
“Attack” or “Injury” event only if it conveys the
former two meanings. In this case, the eligible
semantic frames are “Political actions” and
“Attack/Cause harm”. Undertaking the remaining
meaning (i.e., “Coming to believe”), it cannot
trigger any kind of KBP events.

To filter the noise, we need to disable the in-
eligible semantic frames at the beginning of the
acquisition process. We employed two rules to
identify such frames:

r1: FrameNet associates each semantic
frame of a lexical unit with a POS tag. It
means the POS is fixed when the unit indi-
cates a specific meaning. For example, the
word “fine” conveys the semantic frame
“Fining” (which means “penalty paid”)
only if its POS is noun or verb. By
contrast, the frame “Fining” (which means
“penalty paid”). Similarly, a nugget gen-
erally has a fixed POS when triggering

a type of KBP event. For a ground-
truth nugget, accordingly, we detect its
general POS in triggering specific types of
events. Then we can determine the seman-
tic frames unassociated with the POS to be
ineligible.

r2: Given all the ground-truth nuggets of
a specific event type etyp and a semantic
frame sfrm, we measure the agreement
of the nuggets in taking on the meaning
of sfrm. If the agreement is high, we
determine sfrm to be eligible. Of course,
in this case, sfrm should be associated
with the event type etyp. It means that
the lexical units in sfrm are very likely to
trigger events of the type etyp. Therefore,
they should be used as new candidate
nuggets.

We measure the agreement in rule 2 by calculating
the average joint probability of the nuggets of Etyp
occurring as a unit in the semantic frame Sfrm:

P (etyp|sfrm) =
ne∑

i=1,gi⇒etyp

Bool(gi, sfrm)

nens

Bool(gi, sfrm) =

{
1, gi ∈ sfrm
0, otherwise

where, gi is a ground-truth nugget indicting an event
with type etyp, ne is the total number of the ground-
truth nuggets known to trigger etyp, while ns is the
number of lexical units in the semantic frame sfrm.
The boolean logic indicates whether a gi occurs as
a unit in sfrm in FrameNet. The equation implies
that a semantic frame is associated with a KBP event
type only if many lexical units of such semantics
have occurred as a nugget of the event type in the
training data.

We only employ sfrm that has an agreement
P(etyp|sfrm) bigger than θagr in acquiring BN sam-
ples for etyp. We empirically set θagr equal to 0.01.

Acquisition of HN Samples
HN samples are the ground-truth nuggets attached
with new context. To acquire HN samples, similarly,
we employ an IR system to search for sentence-level



contexts. To ensure the diversity of the context, we
only search and keep distinctive contexts. Different
from the initial condition in searching BN, the set of
contexts C for the acquisition of HN is nonempty.
The scale of context in the sets is imbalanced: some
can be loaded with rich contexts, others few. We
focus on increasing the scale in the latter cases,
adding new contexts to the sets until their scale
reaches the level of the known largest set.

3.3 Topic based Nugget Disambiguation

There exist many ambiguous nuggets in reality. We
define an ambiguous nugget as the word that may
trigger multiple types of KBP events. Considering
the feasibility of topic in word sense disambigua-
tion, we suggest that topic is also an important clue
to the real event type of a nugget.

Now the question is how we use topic model-
ing for nugget disambiguation (our goal). It is
predictably useful to generate a relation network
between topics and the KBP event types. The
relationship strength, empirically, enables the de-
termination of the exact event type. Therefore
the utilization of the topic-event relationship as a
discriminative feature is probably a feasible way to
achieve the goal. However the size of the dataset is
not large enough to provide robust estimates for the
topic-event relationship, considering the condition
that a topic in the test data may never occur in the
training data.

We propose to implement a Case-Oriented Real-
Time topic-event relation detection system (CORT
for short). CORT fulfills a case study S(g,d) for each
nugget g in a test document d. It collects a cluster
C of related documents to d in real time. At the
document level, CORT regards the documents in C
as the same topic tC , similar to the topic td of d. Un-
der the precondition that g frequently occurs in C,
CORT detects the most probable event type eC of g
and associates it with the topic tC . According to the
strong similarity between the single-document topic
td and the multiple-document tC , CORT propagates
the association of eC with tC to td.

The main characteristics of CORT include:

Reliable: CORT analyzes the topic-event
relation in a dataset containing abundant
related documents. Compared to the orig-

inal single document, the related docu-
ments provide richer topic-related infor-
mation for surveying the closest topic-
event relation. The estimation, therefore,
is more reliable.

Case oriented: CORT regards a test
document as an independent scenario.
A nugget in the document only evokes
events of the type specific to the sole
topic of the scenario. This facilitates a
case study for every nugget in each test
document.

Unsupervised: During the case study,
CORT collects related documents in
real time for the test document by
using a content-based local text search
engine. Over the documents, CORT
analyzes topic-event pairs in terms of
their probability distributions.

CORT is used as post-processing behind the su-
pervised nugget classification system. Its input is
a document in the test data. The available priori
knowledge is a list of ambiguous nuggets found
by the classifier. CORT looks through the test
document, word by word, and enforces disambigua-
tion for every occurrence of an ambiguous nugget.
Specifically CORT re-estimates the event types in
terms of the topic-event association strength, using
the new estimate to replace the original if they are
different from each other.

We employed a Lucene-based search engine to
support the acquisition of the related documents.
Toward a test document, we use the keywords to
formulate the query. In terms of the content sim-
ilarity, we retrieved the related documents from the
KBP dataset. In the ranking list of the search results,
we uniformly contained top n (n=100) most similar
documents as the reliable related documents.

To determine the topic-related event type, we
introduce a margin model in topic-event association
strength determination. Given an ambiguous nugget
g and the event types E it evoked in the cluster C
of the retrieved related documents, the margin M is
calculated as:

M(ei, ej) =
O(ei)−O(ej)

O(ei)O(ej)
, ∀ei, ej ∈ E



R(e∗, TC) =

{
1, M(e∗, ei) > θM

0, otherwise

where, e∗ is an event type evoked by g, O(*) denotes
the occurrence frequency of e∗ in C, TC is the
common topic of the related documents, and θM is
a threshold for the margin M. Actually, the margin
is used to reflect whether there is an event type of
g occurred in C much more frequently than any
other type. Constrained by the threshold (θM=0.7),
the most frequently occurred event type in C is
determined related to the topic TC . The rest will be
regarded as some unreliable estimates. Accordingly,
for each ambiguous nugget g, CORT only remains
only one reliable topic-related event type as the
determination result.

To drive CORT to make the decision on topic-
event relationship, it is important to note the event
types of the ambiguous nuggets beforehand. How-
ever, there are no ground-truth event type anno-
tations in the real-time retrieved documents. To
solve this problem, we can use a weaker IE system
to detect the event types beforehand. Obviously,
the detection results definitely involve some errors.
The event types used in the margin calculation,
therefore, are some pseudo-relevant data in reality,
easily causing a wrong decision on the topic-related
event type. The way to reduce the risk of making
mistake is to enhance CORT using adaptive boosting
method. In detail, the IE system can be used to
generate the event types in the retrieved related
documents, while CORT can serve as the post-
processing to improve the IE system. The iterative
cycle can proceed iteratively

3.4 Multi-word Nugget Identification
A nugget can also be a phrase or chunk, such as
shoot up (phrase) and thrown in jail (chunk). A
basic step to identify such nuggets, accordingly, is
to parse sentence constituents and extract phrases
and chunks. However, it is difficult to solve the
problem of jump-over connection, such as throw
in jail in throw him in jail. Instead of syntactic
parsing, we employ dependency parsing to extract
candidate multi-gram nuggets. Specifically, we use
the dependency structures of the ground-truth multi-
gram nuggets as the templates to extract the nuggets
from the test data. By using these templates, we

extract nearly all eligible event nuggets (0.99 recall
score). Nevertheless, the precision is very low due
to two problems:

Some general dependency structures in-
troduce large-scale noise, such as to be,
to throw, in the, over and, by step, etc. In
contrast, the eligible grams should be as
to be, throw out, in the jail, over and over,
step by step, etc.

Most candidate multi-grams are not KBP
event related nuggets.

To filter the noise, we propose a bilingual word
alignment based multi-gram qualification verifica-
tion method. It determines the eligibility of an
English multi-gram by checking whether the gram
has a consistently aligned Chinese word or phrase in
bilingual data.

For type-specific multi-gram nugget detection,
we evaluated three methods, including rule based
detection, supervised classification using linguistic
features and semantics based clustering. Instead of
words, we use the multi-grams as the objects, no
matter in the stage of training or test. In the cluster-
ing, we generate the semantic vector for both candi-
date multi-gram nuggets and the ground-truth word-
level ones. On the basis, we partition the nuggets in
different clusters in terms of semantic similarity. In
each cluster, we use the word-level nuggets and their
event types as references to determine the event type
of those semantically similar multi-gram nuggets.
Similarly, we employ the propagation algorithm in
the determination procedure.

3.5 Experiment and Analysis
3.5.1 Data and Evaluation Metrics

We trained and tested our system based on the
TAC KBP 2015 Event Nugget Training Data set,
which contains 158 documents. We chose 126
documents as training data and 32 documents as
testing data. We evaluated our system on four
metrics: CEAFe, B3, Muc and Blanc.

3.5.2 Analysis of New Methods for Event
Nugget Detection

We separately evaluated the proposed methods on
the KBP 2015 nugget detection training data by 4-



System plain typ rls typ+rls
Baseline(Bas) 63.19 53.28 44.91 37.35
Bas+FTL 64.84 60.05 45.95 42.21
Bas+BN 67.68 62.01 47.25 42.99
Bas+TND 67.93 63.09 47.57 43.73
all 68.16 62.64 47.52 43.34
typ: mention type; rls: realis status

Table 4: Improvement Achieved over the Baseline

fold cross validation. See the performance in Ta-
ble 4. BN denotes the collected type-specific Bran-
New homogeneous samples, including BN nuggets
acquired from FrameNet and their contexts retrieved
from local KBP dataset. We added BN homo-
geneous samples to the original training data and
retrain the MaxEnt classifier. The goal is to increase
priori knowledge about potential nuggets as well
as the contexts. The remaining results show that
the supervised MaxEnt classifier achieves better dis-
criminative ability by learning from rich knowledge.

By contrast, FTL doesn’t rely on rich homoge-
neous samples. It is illustrated that FTL achieves
significant improvements over the baseline using the
same training data. It proves that the MaxEnt model
obtains a real-time reasoning ability by transfer
learning from the homogeneous data at the semantic
level.

TND yields the most significant improvement
than the baseline. It performs particularly well in
determining the mention types. It proves that topic-
event relationship specific to a nugget benefits the
disambiguation of the nugget in different scenarios.

4 Event Nugget Coreference

4.1 Approach

We propose a method that views the event nugget
coreference space as an undirected weighted graph
in which the nodes represent all the event nuggets
and the edge weight indicates coreference confi-
dence between two event nuggets. There’re two
modules in our system: Maximum Entropy Model
and clustering module.

4.1.1 Pairwise Model
We train a Maximum Entropy model to generate

the cofidence matrix W . Each confidence value in-
dicates the probability that there exists a coreference

link C between event nuggets eni and enj .

P (C|eni, enj) =
e(Σkλkgk(eni,enj ,C))

Z(eni, enj)

where gk(eni, enj , C) is a feature and λk is its
weight; Z(eni, enj) is the normalizing factor.
The feature sets used during train are listed in
Table 5.

4.1.2 Clustering
Let EN = {enn : 1 ≤ n ≤ N} be N event

nuggets for one event type in a document and
EH = {ehk : 1 ≤ k ≤ K} be K event hoppers.
Let f : EN → EH be the function mapping from
an event nugget enn ∈ EN to an event hopper
ehk ∈ EH . Let coref : EN × EN → [0, 1] be the
function that computes the coreference confidence
value between two event nuggets eni, enj ∈ EN .
For each event type in the document,
we construct a graph G(V,E), where
V = {enn|f(enn).enn ∈ EN} and E =
{(eni, enj , coref(eni, enj))|eni, enj ∈ EN}.
We then apply a hierarchical clustering algorithm
to the graph. Because the number of hoppers K,
which has to be set in advance, is unknown, we
define a parameter ε to quantify the performance
of the clustering results by varying the number
of hoppers K from 1 to N . N is the number of
event nuggets. For each K, ε is the ratio of the
number of conflicting edges(Nc) to the number of
all edges(Ne). The smaller ε is, the better the result
of clustering is.

εK =
Ne

Na

An edge between two event nuggets is defined as
conflicting in either of the following two cases,
where δ is the confidence threshold:

1. f(eni) = f(enj) but coref(eni, enj) < δ

2. f(eni) 6= f(enj) but coref(eni, enj) > δ

Here’s an example to demonstrate how
to compute ε. In Figure 1, five event
nuggets are classified into three event
hoppers, and there are three conflicting
edges(coref(en1, en5), coref(en2, en4), coref(en3, en4))



Features Remarks(EN1: the first event nugget, EN2: the second event nugget)
type subtype match 1 if the types and subtypes of the event nuggets match
trigger pair exact match 1 if the spellings of triggers in EN1 and EN2 exactly match
stem of the trigger match 1 if the stems of triggers in EN1 and EN2 match
similarity of the triggers(wordnet) quantized semantic similarity score (0-5) using WordNet resource
similarity of the triggers(word2vec) quantized semantic similarity score (0-5) using word2vec embedding
token dist how many tokens between triggers of EN1 and EN2
realis conflict 1 if the realis values of EN1 and EN2 exactly match
Sentence match 1 if the sentences of EN1 and EN2 exactly match
extent match 1 if the extents of EN1 and EN2 exactly match
POS match 1 if two sentences have the same NNP, CD

Table 5: Features for the Pairwise Model

EM3	  

EM4	  

EN1	  

EN2	  

EN5	  

Cluster	  1	  

Cluster	  2	  

Cluster	  3	  

Weight	  >=threshold	  

Weight	  <threshold	  

Coref(en1,	  en5)	  

Coref(en2,	  en5)	  

Coref(en2,	  en3)	  

Figure 1: Clustering Example

according to our definition. Thus

ε3 =
3

10
= 0.3

4.1.3 Adding Cross-Media Features

In our recent work (Zhang et al., 2015), we
proved that additional visual similarity features can
be used to improve cross-document event coref-
erence resolution for news videos. In this event
nugget coreference resolutio we extend it to retrieve
related images automatically, though we didn’t use
it for the evaluation because we are not allowed
to use web access. The rich visual concepts in
images can help us to identify event hoppers, even
when they are difficult to be identified just based
on the text resources. For example, when there
are many different arguments in two event nuggets,
it’s very challenging for text features to tell if
they are coreferential or not. However, we can use

arguments as keywords to search for images online.
If we can get similar or even the same images, it’s
quite likely that two event nuggets refer to the same
event hopper.
For example, the following two event nuggets refer
to the same event hopper. However it’s very difficult
to make the correct judgement just based on text
information.

• EN1: Nigeria’s graft-facing ex-governor
{arrested} in Dubai.

• EN2: London’s Metropolitan Police confirmed
Ibori’s {arrest}.

Let’s make the use of powerful multimedia informa-
tion. Figure 2 shows the top retrieved images using
[“Nigeria”, “ex-governor”, “arrested”, “Dubai”] as
the query via Google image search, and Figure 3
shows the top retrieved images using [“London”,
“Metropolitan”, “Police”, “Ibori”, “arrest”] as the
query. We can see that the retrieved images of these
two event nuggets share a lot of visual features,
which indicate they might talk about the arrest of
the same person. Thus it’s highly possible that they
are coreferential.

Figure 4 and Figure 5 shows another example
including the following two event nuggets. The
queries for image search are [“attacked”, “oil”, “fa-
cility”, “Niger”, “Delta”] and [“attacked”, “Agip”,
“facility”] respectively.

• EN3: A militant group says it {attacked} an oil
facility in the Niger Delta.

• EN4: A statement sent to reporters from the
Joint Revolutionary Council claims militants



Figure 2: Retrieved Images for EN1

Figure 3: Retrieved Images for EN2

{attacked} the Agip facility early Wednesday
morning.

Figure 4: Retrieved Images for EN3

Figure 5: Retrieved Images for EN4

4.1.4 Feedback for Realis Improvement
The realis classification accuracy in the event

nugget detection system is quite low (around 0.5).
We hypothesize that event nuggets which refer to
the same event hopper should have the same realis
type. So we trained another classifier without the
feature of realis conflict, and used the event coref-

erence results from this classifier to improve realis
classification.
For example, the following three event nuggets from
the evaluation data are automatically clustered into
the same event hopper:

• EN1: E3 prison Justice Arrest-Jail Generic
0.54

• EN2: E20 prison Justice Arrest-Jail Actual
1.00

• EN3: E21 prison Justice Arrest-Jail Actual
1.00

And according to the output of our event nugget de-
tection system, the realis calues of these three event
nuggets are (“Generic”, 0.54), (“Actual”, 1.00) and
(“Actual”, 1.00) respectively. While the realis confi-
dence of EN1 is low, that of EN2 and EN3 are pretty
high. Thus we modify the realis of EN1 to “Actual”
by a majority voting. This feedback approach yields
substantial improvement on realis classification.

4.2 Experiments
4.2.1 Analysis on Metrics

Figure 6: F-socres based on four metrics versus
confidence threshold

Fig 6 shows the F-scores versus threshold δ based
on four evaluation metrics. The maximal CEAFe
score 0.83 was obtained when the threshold was
0.68. Thus we chose 0.68 as the cofidence threshold.
However, it’s obvious that the F-scores based on
Muc and Blanc metrics are highly sensitive to δ.



This is similar to the observation from previous
work on ACE event coreference resolution (Chen et
al., 2015). Event nugget coreference is a new task,
so we think it’s not necessary to use them just for
comparison with previous work. We recommend to
use B3 and CEAFe only to evaluation event nugget
coreference resolution.

4.2.2 Remaining Challenges
Even though we achieved top 1 in end-to-end

event nugget detection and coreference resolution,
some challenges remain. We observed that some
coreferential event nuggets share very few features.
For example, the following two event nuggets refer
to the same hopper:

• EN1: After months of speculation, the Simon
Property Group on Tuesday finally made an un-
solicited $10 billion offer for General Growth
Properties, its {bankrupt} rival.

• EN2: it is not sufficient to pre-empt the process
we are undertaking to explore all avenues to
emerge from {Chapter 11} and maximize value
for all the Company’s stakeholders

However, it’s hard for the system to tell that they
refer to the same event. First of all, it’s challenging
to determine that two trigger phrases “bankrupt”
and “Chapter 11” are semantically similar. Second,
these two sentences don’t share any obvious patterns
or arguments.

5 Slot Filling Validation - Filtering

Our basic assumption is that a response is more
likely to be true if it is supported by multiple strong
teams. In order to validate this assumption, we first
propose an unsupervised method to roughly esti-
mate the performance of teams with little/no prior
knowledge. After that, we focus on categorizing
runs into multiple tiers based on their estimated
performance and apply a tier-specific voting strategy
incorporating linguistic constraints.

5.1 Tier Classification
Our objective is to classify a team as strong, rela-
tively strong or relatively weak. The performance of
a team is usually consistent regardless of individual
queries. Thus, we can take advantage of the team

ranking based on the preliminary assessments to
estimate the overall performance/rank of a run.

Unfortunately, preliminary assessment results are
often not available. But we can still obtain reliable
initial credibility scores of runs by analyzing the
common characteristics among various runs. Given
the set of runs R = {r1, . . . , rm}, we initialize their
credibility scores c(r) based on their interactions on
claims (i.e., a combination of query, slot type and
filler). Suppose each run ri generates a set of claims
Mri . The similarity between two runs ri and rj is
defined as follows (Mihalcea, 2004).

simlairty(ri, rj) =
|Mri ∩Mrj |

log (|Mri |) + log (|Mrj |)
(1)

Then we construct a weighted undirected graph
G = 〈R,E〉, where R(G) = {r1, . . . , rm} and
E(G) = {〈ri, rj〉}, 〈ri, rj〉 = similarity(ri, rj),
and apply TextRank algorithm (Mihalcea, 2004) on
G to obtain c(r).

In our task, the classification problem can be
regarded as finding two intervals within a set of
credibility scores C = {c(r1), . . . , c(rm)} with
optimal interval borders. We implemented the Jenks
optimization method to determine the best arrange-
ment of runs into three tiers. This is done by
minimizing each tier’s average deviation from the
tier mean, while maximizing each tier’s deviation
from the means of the other groups (McMaster and
McMaster, 2002).

Tier 1 

Tier 2 

Tier 3 

Supported by 
≥ 2 teams 

𝐴11 𝐴12 

𝐴21 𝐴22 

𝐴31 𝐴32 

Supported by 
only one team 

Figure 7: Tier-specific constraints.

5.2 Linguistic Constraints
We analyze the evidence sentence extracted for each
claim by checking if it satisfies trigger constraints or
the candidate filler satisfies type constraints.



Trigger Constraints
A trigger is defined as the smallest extent of a

text which most clearly indicates a relation type.
For trigger-driven slot types such per:city of birth,
a response without sufficient lexical support will be
directly judged as wrong by annotators.

We generally follow our previous work (Yu et al.,
2015) on trigger mining. We mined fact-specific
trigger lists based on patterns (Chen et al., 2010;
Min et al., 2012; Li et al., 2012b) and correct
evidence sentences from KBP 2012-2014 training
corpus. In our experiment, we use 8,237 triggers
and 392 triggers on average for each trigger-driven
slot types3.

Type Constraints
In Slot Filling (SF)/Cold Start Slot Filling (CSSF)

task, slots are labeled as Name, Value, or String
based on the content of their fillers.

Name slots (e.g., per:spouse, org:parents) are
required to be filled by a person, organization or
geopolitical entity (GPE). We rely on name tagging
results to validate type constraints for name slots.
We also use city/state/coutry dictionaries to further
validate if an entity belongs to a GPE subtype.

Value slots should be filled by a numerical value
(e.g., per:age, per:date of death and org:website).
We use regular expressions and/or the name tagging
result to verify the correctness of a value format.

For a string slot (e.g., per:religion and per:origin),
we collected category dictionaries from SF source
corpus such as religion, origin, disease, title and
crime which can help us make a rough judgement
whether a candidate filler belongs to a specific cat-
egory or not. We also mined dictionaries from
NELL (Carlson et al., 2010) annotated KBP corpus
which contains rich semantic category labels for
millions of noun phrases. We mapped these seman-
tic categories to slot types and keep high-confidence
noun phrases in order to generate clean dictionaries.

5.3 Tier-specific Voting based on Constraints

We divided all the responses into 6 fields as shown
in Figure 7. Ai1 represents the responses submitted
by at least two teams in Tier i and Ai2 denotes
the responses submitted by only one team in Tier i.

3The trigger lists are publicly available for research purposes
at: http://nlp.cs.rpi.edu/data/triggers.zip

Method τ Zτ
PageRank 0.69 8.35
Preliminary Assessment 0.79 9.59
Golden Standard 1.00 N/A

Table 6: Performance of estimating the ranks.

Note that a team can submit at most five runs during
the evaluation. In this step, we keep the responses
which are submitted by multiple strong or relatively
strong teams. In other words, the responses from
A11, A21 and common responses of A12 and A22

are annotated as correct.
We discard all the responses in A32 since these

responses are extremely noisy and we only lost less
than 3% correct claims. A response in the remaining
fields will be annotated as correct if it satisfies the
above slot-specific trigger and type constraints.

5.4 Evaluation
Based on the released CSSF assessment result (69
runs in total), we can use the Kendall rank corre-
lation coefficient τ (Kendall, 1948) to evaluate the
degree of similarity between our estimated ranking
and the standard ranking given the same set of N
runs. The symmetric difference distance between
two sets of ordered pairs P1 and P2 is denoted
d∆(P1,P2). For example, the ordered set of N = 3
runs [r1, r2, r3] gives the ranks [1,3,2] and can be
decomposed into 1

2N(N − 1) ordered pairs P =
{[r1, r3], [r1, r2], [r3, r2]}. For N ≥ 10, a null
hypothesis test can be performed by transforming τ
into a Z value as shown in Formula 3 (Abdi, 2007).

τ = 1− 2× [d∆(P1,P2)]

N(N − 1)
(2)

Zτ =
τ√

2(2N + 5)

9N(N − 1)

(3)

From Table 6, we can see that the value of Z
of both methods is large enough to reject the null
hypothesis and therefore we can conclude that our
predicted ranking and the final ranking displayed a
significant agreement. In addition, the tier classifi-
cation method can successfully annotate the top 31
runs as tier 1 and the bottom 15 runs as tier 3.



CSSF run F-score (%)
Original Filtered

SFV2015 KB 12 4 30.1 36.7
SFV2015 KB 12 1 30.4 34.9
SFV2015 KB 12 5 30.9 34.3
SFV2015 KB 12 3 29.6 33.7
SFV2015 SF 03 3 31.4 31.4
SFV2015 KB 12 2 33.8 33.1
SFV2015 KB 03 2 30.5 34.1

Table 7: Performance upon top runs (CSLDC level).

CSSF run F-score (%)
Original Filtered

SFV2015 KB 12 4 27.6 30.3
SFV2015 KB 12 1 27.5 28.4
SFV2015 KB 12 5 27.1 27.3
SFV2015 KB 12 3 26.7 27.3
SFV2015 SF 03 3 27.5 29.1
SFV2015 KB 12 2 28.8 26.9
SFV2015 KB 03 2 22.9 26.8

Table 8: Performance upon top runs (CSSF level).

In Table 7 and 8, we show that our method can
improve upon the top CSSF runs. Here we used the
final scores which are computed considering both
hops. Compared with the SF task, CSSF runs have
relatively lower recall and therefore more sensitive
to the filtering process. In addition, the majority
voting method has a relatively worse performance
since there are no pre-assigned queries. In this case,
a correct claim is more likely to be submitted by
only one team. Our strategy of discarding all the
responses in A32 lead to the failure of our method in
annotating responses of weak runs.
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