
Event Nugget Detection, Classification and Coreference Resolution using
Deep Neural Networks and Gradient Boosted Decision Trees

Nils Reimers† and Iryna Gurevych†‡
†Ubiquitous Knowledge Processing Lab (UKP-TUDA)

Department of Computer Science, Technische Universität Darmstadt
‡Ubiquitous Knowledge Processing Lab (UKP-DIPF)

German Institute for Educational Research
http://www.ukp.tu-darmstadt.de

Abstract

For the shared task of event nugget detec-
tion at TAC 2015 we trained a deep feed for-
ward network achieving an official F1-score
of 65.31% for plain annotations, 55.56% for
event mention type and 49.16% for the realis
value.

For the task of Event Coreference Resolution
we prototyped a simple baseline using Gradi-
ent Boosted Decision Trees achieving an over-
all average CoNLL score of 70.02%.

Our code is publicly available on GitHub1.

1 Introduction

The Event Nugget Detection task at NIST TAC KBP
2015 aimed to identify the mention of events in text.
Every instance of a mention for the defined event
types must be identified. An Event Nugget is defined
as the smallest extent of text (usually a single word
or a few words) that expresses the occurrence of an
event.

For this shared task, 360 documents were an-
notated using the Rich ERE Annotation Guideline
v2.5.1 (Zhiyi et al., 2015). 158 of those documents
were provided for training and the systems where
evaluated on the remaining 202 documents. Both,
newswire articles as well as posts from discussion
forums were annotated. The Rich ERE Annotation
Guideline specifies eight main event types (Busi-
ness, Contact, Conflict, Justice, Life, Manufacture,
Movement, Personnel, Transaction) with each up to

1https://github.com/UKPLab/
tac2015-event-detection

13 subtypes totaling to 38 distinct type and sub-
type combinations. Table 1 depicts the distribution
of the event types in the provided training and test
sets. In addition to the mention type, systems were
supposed to identify three realis values (ACTUAL,
GENERIC, OTHER).

Some examples for the Event Nugget Detection
task are:

• President Obama will nominate [realis:Other
type:Personnel.Nominate] John Kerry for Sec-
retary of State.

• He carried out the assassination [re-
alis:Actual type:Life.Die].

The same event nugget may be tagged more than
once for different event types/subtypes, for exam-
ple when the nugget instantiates different events. As
this was the case for less than 5% of the events in
the training dataset, we decided to ignore possible
multi-tags and simplified this task to a single-tag
classification problem.

Our proposed tagger works in three phases: The
first phase determines whether a token is part of an
event nugget or not. The second and third phases de-
termine consecutively the event type and realis value
for all identified event nuggets. For all three phases
we used the same neural network based on the de-
sign of Collobert et al. (2011) with the same prepro-
cessing. The best run achieved in the official met-
ric an F1-score of 65.31% for plain annotations, i.e.
detecting event nuggets without determining their
mention type. For the mention type, we achieve an
F1-score of 55.56% and an F1-score of 49.16% for



the realis value. We also experimented with directly
tagging the event type, however, this resulted in an
F1-score for plain annotations of 60.16%, a drop of
around five percent points in comparison to the three
phase approach.

For the task of event coreference resolution, we
implemented a simple prototype using Gradient
Boosted Decision Trees (Breiman, 1997; Friedman,
2000; Friedman, 2002) with some basic features.
This implementation achieves for task 3 an overall
average CoNLL score of 70.02% on the evaluation
data.

This work is organized as follows. Section 2 de-
scribes our experience with re-annotating the cor-
pus. Sections 3 and 4 describe the used preprocess-
ing and extracted features for event nugget detection
and classification, and section 5 describes the used
neural network for this task. Section 6 presents our
results. Section 7 presents our baseline and the re-
sults for the event coreference resolution.

2 Manual Re-Annotation

No inter-annotator-agreement was reported for the
dataset, therefore we decided to perform a manual
re-annotation on a subset. This re-annotation also
allows us to estimate an upper-bound for the auto-
matic approach. The annotator was trained on some
documents of the training data and then annotated
randomly sampled sentences. He annotated around
4500 tokens containing 190 event nuggets and, when
compared to the provided gold labels, achieved an
F1-score of 76.57%. We observed a low agreement
on words like told or said. In some parts of the
dataset, these are annotated as Contact events, in
other parts they are not annotated as event nuggets.
We were not able to discover a consistent annotation
for these words, and it appears that the annotation
mainly depends on the original annotator who an-
notated the document. This type account for 27%
of the missed event nuggets, while only 14% of the
event nuggets were Contact events.

Another anomaly detected in the dataset was the
tagging of pronouns like this or it. In some doc-
uments, they are tagged with the same tag as the
event they refer to. In other documents, they are not
tagged, even when they were referring to an event.

Type Subtype #Train #Test
Business Declare Bankruptcy 33 44
Business End Org 13 6
Business Merge Org 28 33
Business Start Org 18 35
Conflict Attack 800 591
Conflict Demonstrate 200 149
Contact Broadcast 417 510
Contact Contact 337 587
Contact Correspondence 95 110
Contact Meet 244 272
Justice Acquit 30 31
Justice Arrest-Jail 37 69
Justice Appeal 287 348
Justice Charge-Indict 190 155
Justice Convict 222 96
Justice Execute 66 97
Justice Extradite 63 60
Justice Fine 55 45
Justice Pardon 239 51
Justice Release-Parole 73 124
Justice Sentence 144 158
Justice Sue 55 72
Justice Trial-Hearing 196 155
Life Be Born 19 17
Life Die 514 408
Life Divorce 45 49
Life Injure 133 87
Life Marry 76 83
Manufacture Artifact 22 90
Movement Transport.Artifact 70 66
Movement Transport.Person 517 439
Personnel Elect 97 71
Personnel End Position 209 291
Personnel Nominate 35 63
Personnel Start Position 77 94
Transaction Transaction 51 63
Transaction Transfer-Money 551 554
Transaction Transfer-Ownership 280 265

6538 6438

Table 1: Distribution of event types in the provided train-
ing and test datasets.

3 Preprocessing

Given the existent segmentation of the documents,
we performed only minimal preprocessing. We de-
cided to remove all HTML tags. The href-attribute
of some HTML <a> tags contained event nugget
annotations. We decided to ignore all HTML tags,
even though this might decrease the system perfor-
mance for this shared task. This is because we think



that in typical use cases, the user is not interested
to tag tokens inside HTML tags. After removing
HTML tags, the document was split into sentences
at every single period, exclamation mark, or ques-
tion mark.

To simplify processing, we decided to convert the
documents and annotations to a format as it has been
used for many different CoNLL shared tasks on tag-
ging problems, including POS-tagging and Named
Entity Recognition. A sentence is encoded as one
token per line, with information provided in tab-
separated columns. Spans are encoded in the BIO-
scheme (Sang and Buchholz, 2000).

Some event nuggets might trigger multiple events,
for example the event nugget bought in the sen-
tence “I bought a car for $5.000” triggers the
events Transaction Transfer-Money and Transac-
tion Transfer-Ownership. Such multiple events
were annotated in the dataset. This transforms the
task to a multi-label tagging task, which is a lot
more complicated to model than a single-label tag-
ging task. As only around 5% of the event nuggets
triggered more than one event, we decided to ig-
nore the multi-label setup and only extracted a sin-
gle label per token. An alternative approach would
be to transform the multi-label task to a single label
task by introducing new labels for tokens that trigger
more than one event.

4 Feature Extraction

The main strength of our classifiers originates from
pre-trained word embeddings using methods like
word2vec (Mikolov et al., 2013) or GloVe (Penning-
ton et al., 2014). Given only the target token and
the neighboring tokens, our classifier achieves an F1

score of 61.73% on the test set.
To test the impact of different features on the clas-

sification results, we used DKPro-Core (Eckart de
Castilho and Gurevych, 2014) to extract some fea-
tures. More specifically, we extracted the lemma
of each word, the POS-tag and, if present, the
subject and object linked to the token based on
the parse tree. For these steps, we used Stanford
CoreNLP2. We also extracted the initial and final 2

2http://nlp.stanford.edu/software/
corenlp.shtml

to 6 characters of the token, the word-shape3 given
by wordShapeChris2 from Stanford CoreNLP,
and a feature to indicate that tokens are inside
quotes. The documents came either from newswire
or from discussion forums. We also experimented
with including the document source type into the
classifier.

5 Neural Network Design

Collobert et al. (2011) propose a unified neural net-
work architecture that can be applied to various nat-
ural language processing tasks. The presented deep
neural network architecture uses only features based
on minimal preprocessing and several layers of ab-
stractions are learned.

The first layer is a lookup operation which maps
each word and its associated features (e.g. POS) to
a d-dimensional vector. The second layer makes the
assumption that the entity of a word can be predicted
from its neighboring words. The vectors from the
lookup operation for the target word and the neigh-
boring words are concatenated and fed through an
affine transformation followed by a non-linear acti-
vation function like the hyperbolic tangent function.

There are two different approaches for the last
layer of the network, depending on whether the iso-
lated tag criterion or the sentence tag criterion is
used. For the isolated tag criterion, each word in the
sentence is considered independently. The probabil-
ities of the different tags for each word are computed
by the softmax-function.

The sentence tag criterion optimizes the label se-
quence over the entire sentence. Tag probabilities
from each window are concatenated and the depen-
dencies between tags are factored into the model by
learning initial probabilities and transition probabili-
ties between tags. The Viterbi algorithm is used dur-
ing inference.

We compared the performance of both variants for
the task of event nugget detection and did not find an
improvement from the more complex sentence tag
criterion-model. Event nuggets are in most cases
isolated within a sentence with non-event-tokens be-
fore and after the event nugget. Also, event nuggets

3The word-shape feature transforms a word to a string repre-
senting the shape of the word. Upper-case characters are for ex-
ample represented by X, low-case characters by x and digits by
#. The token CoNLL’03 would be transformed to XxXXX’##.



rarely span over multiple tokens. Optimizing the la-
bel sequence does therefore not make a difference
in our task, and we decided to use the simpler and
more efficient isolated tag criterion for further ex-
periments.

We experimented with different context window
sizes, hidden layer sizes and feature combinations.
Our final submission, achieving an F1-score of
65.31% on the plain annotations, used the token, the
lemma, the POS, the capitalization, the initial / final
2 to 6 characters, and the subject / object as features.

We used a context window size of 3. For the
lookup of the lemmas, we used the pre-trained word
embeddings by Levy and Goldberg (2014) on the
English Wikipedia using dependency links as con-
text. As Levy and Goldberg demonstrated, word
embeddings trained on dependencies favor syntac-
tic functions over semantic similarity. For the task
of event nugget recognition, we were mainly inter-
ested in tokens with similar syntactic functions. As
Table 2 shows, those embeddings also resulted in the
highest F1 score.

For the tokens, the idea was to use different
embeddings than for the lemmas. We used there
the pre-trained word embeddings by Mikolov et al.
(2013) on the Google News dataset. The embed-
dings by Levy et al. capture syntactic similarity well,
while the vetors trained on the Google News dataset
capture semantic similarity well. The combination
of both embeddings allows the neural network to
choose the more suitable embeddings for the task.
For the subject and object we used the pre-trained
embeddings by Levy and Goldberg. For the other
features, i.e. capitalization, POS, initial and final
characters of the token, we randomly initialized the
embeddings and updated them during training. We
chose a dimension of 5 for bi- and trigrams, as there
is only a limited number of bi- and trigrams, and a
dimension of 10 for four- to sixgrams.

It is known that updating the word embeddings
helps to fit those for the specific task. However, up-
dating bears the risk that the updated embeddings
overfit on the training data and result in a worse
test performance. We decided therefore to update
those only for the first four epochs of the training
and stopped updating after that to prevent overfit-
ting.

For the hidden layer, we achieved the best result

with 100 hidden neurons and the tangent hyperbolic
activation function. For training, we used stochastic
gradient descent with an initial learning rate of 0.1.
The cross entropy error with no weight regulariza-
tion was used. We used a mini-batch size of 35.

We used the same features and setup to detect first
the plain event nuggets in the text, and we then la-
beled the event type and realis value for each de-
tected event nugget. For the plain event nugget de-
tection, the system was trained for 8 epochs, 243
epochs for the event type classification and 8 epochs
for the realis classification. All hyperparameters
were derived by training the network on 75% of
the provided documents and computing the perfor-
mance on the remaining 25% documents.

6 Evaluation

Pre-trained word embeddings have a major impact
on the performance of the classifier (Collobert et
al., 2011). We therefore examined as the first step
the performance for different existent word embed-
dings. Table 2 depicts the F1-score for a context
window size of 3 and a hidden layer of 100 for dif-
ferent, publicly available word embeddings. During
the shared task, we computed the scores on our in-
ternal train-test-split. Throughout this section, we
will report the F1 score on the provided test dataset.

As depicted in Table 2, we get the worst F1-score
with the pre-trained embeddings from the GloVe
website4. The best results are achieved with the
word2vec embeddings from Levy’s website5. De-
tecting an event nugget is in the first step a syntactic
challenge and classifying it to one of the 38 types
is in the second step a semantic challenge. The em-
beddings by Levy and Goldberg that were trained
on dependency links are especially suitable to cap-
ture syntactic relatedness of words which we think
gave this small increase in performance.

Next we tested the impact of the window size. As
shown in Table 3, there is only a slight difference
in terms of performance for different context win-
dow sizes. With a window size of 1, i.e. only using
the embedding and capitalization information for the
target word, we achieve an F1-score of 60.04%.

4http://nlp.stanford.edu/projects/glove/
5https://levyomer.wordpress.com/2014/04/

25/dependency-based-word-embeddings/



Embeddings Token Lemma
word2vec, Google News Corpus 58.93% 59.32%
word2vec, Wiki., dep. links 60.70% 59.76%
word2vec, Wiki., word context 60.16% 59.23%
GloVe - 6B - 100d 58.38% 58.62%
GloVe - 6B - 300d 57.76% 58.23%
GloVe - 840B - 300d 58.12% 59.43%

Table 2: F1 score with different pre-trained word embed-
dings. 1) word2vec on 100 billion token Google News
Corpus (Mikolov et al., 2013), 2) word2vec with depen-
dency links on Wikipedia (Levy and Goldberg, 2014), 3)
word2vec with context window size of 5 on Wikipedia
(Levy and Goldberg, 2014), 4) GloVe (Pennington et al.,
2014) on Wikipedia 2014 and Gigaword 5 (6 billion to-
kens) with 100 dimension, 5) GloVe on Wikipedia and
Gigaword with 300 dimensions, 6) GloVe on Common
Crawl with 300 dimensions (840 billion tokens).

Hence, local context information appears to be of
minor importance for the task of event nugget detec-
tion.

Window Size Precision Recall F1F1F1

1 82.02% 47.35% 60.04%
3 81.92% 48.21% 60.70%
5 81.94% 48.68% 61.08%
7 81.32% 49.75% 61.73%

Table 3: Performance using different window sizes. Win-
dow size 1 means that only the target token is included.
The word embeddings by Levy and Goldberg (2014) and
a 100 dimensional hidden layer is used.

As described in section 4, we extracted different
additional features. Table 4 compares the perfor-
mance for different feature combinations. As the
table shows, adding further local features like POS
or initial/final characters, does not improve the per-
formance. Adding more long distance and global
feature, for example the subject and object linked to
the word (if existent) or the document source type
(newswire vs. discussion forum), can have a slight
impact on the performance. Instead of modeling
this information as additional features, a network
that automatically captures information on sentence
level, for example by using a convolutional layer that
convolves over all tokens in the sentence, might be a
more suitable approach.

In all our experiments, we noticed a compara-
tively high precision of around 80% while only a

Features F1F1F1

Token 61.73%
Token + POS 60.84%
Token + initial / final characters 61.67%
Token + Lemma 61.15%
Token + subject & object 62.10%
Token + document source type 62.24%
Token + quote detector 61.84%

Table 4: Performance using different feature combina-
tions with window size 7, 100 dimensional hidden layer
and the word embeddings presented by Levy and Gold-
berg (2014).

comparatively small recall of around 50%. Further,
we noticed a large performance difference between
our internal development set6 and the test set. While
our system achieves an F1 score of 73.00% on the
development set, it only achieves 65.31% on the pro-
vided test set. In fact, when training on the complete
training set, the performance drops on the test set to
62.26%. It appears that this effect is due to some
inconsistent annotations in the datasets. As noted
in section 2, the annotation for Contact events is
fairly noisy and in the test set, Contact events ap-
pear nearly twice as much as in the train set which
could be due to an inconsistent annotation of those.

After detecting the event nuggets, we used the
same network to determine the event type and the
realis value. Those networks were trained only on
event mentions, ignoring all other non-event tokens.
For determining the event type, we achieve an ac-
curacy of 71.38% for all event nuggets on the test
set and an accuracy of 73.00% for the realis value.
When combining it with the automatic event nugget
detection, we achieve in the official evaluation an F1

score of 55.56% for event mention type and 49.16%
for the realis value.

6.1 Error Analysis
Table 6 depicts the precision, recall and F1-score per
event type. A predicted event nugget was considered
correct, if the span, the type, and the subtype were
correctly identified. As the table depicts, identifying
and classifying Justice-events resulted in the high-
est F1-score of 70.98%. Events of type Manufac-
ture were not retrieved by our classifier, which we

6We hold out 25% of the provided training documents to
optimize hyper-parameters.



System Plain Type Realis
Human upper bound 76.57% - -
Our system 65.31% 55.56% 49.16%

Rank 1 65.31%65.31%65.31% 58.41% 49.16%49.16%49.16%
Rank 2 63.66% 57.18% 48.70%
Rank 3 62.49% 55.83% 47.05%
Rank 4 60.77% 55.56%55.56%55.56% 45.54%

Median 58.52% 48.79% 39.33%

Table 5: Official event nugget detection results
(micro F1-score) for Plain=detecting event nuggets,
Type=detecting event nuggets with correct event type,
Realis=detecting event nuggets with correct realis value.
Human upper bound was determined as described in sec-
tion 2. Our system ranks numer 1, 4, and 1 out of 14
submitted systems for the categories Plain, Type, and Re-
alis.

believe is mainly due to the small number of train-
ing instances. Only 22 out of 6538 event nuggets
are tagged as a Manufacture-event. As noted in sec-
tion 2, Contact-events are fairly noisy and the an-
notations appear to be inconsistent. The submitted
system achieves for those events an F1 score of just
32.70%.

Event Type Precision Recall F1F1F1

Business 77.94% 44.92% 56.99%
Conflict 61.18% 49.19% 54.53%
Contact 34.81% 30.83% 32.70%
Justice 75.19% 67.21% 70.98%
Life 72.08% 48.91% 58.28%
Manufacture − 0.00% 0.00%
Movement 51.47% 38.22% 43.86%
Personnel 74.50% 50.67% 60.32%
Transaction 54.19% 32.99% 41.01%

Table 6: Overview of performance per event type. Each
event nugget must match exactly on the type and subtype.

Table 7 shows the confusion matrix for the sub-
mitted system and for the different event types. We
can observe that the most errors come from not de-
tecting an event as an event (the right No-column).
Those count for 63% of the errors. The second
largest source of error is that a token is wrongly
classified as an event nugget (the bottom No-row).
Those count for 29% of the errors. A wrong event
type counts only for 8% of the errors. Wrongly
classified Contact-events count for 28% of the er-
rors. We can conclude that distinguishing between

the event types is comparatively easy, while detect-
ing that a token or a phrase is an event nugget is
much more challenging.

That 63% of the errors originate from the fact that
an event nugget was not identified as an event in-
dicates that generalization is a big challenge in the
detection of event nuggets. The system works well
for event nuggets that it has seen in the training data,
but it fails to learn the general concept of how to
spot an event in a text. That in the training data only
events of a certain type were annotated is an addi-
tional challenge, as the system must not only learn
how to detect the textual representation of an event,
but also how to spot only the textual representation
of certain events. As distinguishing between event
types appears to be much easier, a more suitable ap-
proach might be to first learn the general concept of
events and then in the next step to decide whether
the event matches one of the predefined event types
or not.

7 Event Coreference Resolution

For the task of Event Coreference Resolution we
decided to implement a simple baseline by using
Gradient Boosted Decision Trees (Breiman, 1997;
Friedman, 2000; Friedman, 2002). We model this
task as a binary mention pair classification prob-
lem, predicting whether two event triggers belong
to the same coreference chain or not. Such mod-
els have been very effective for coreference resolu-
tion (Soon et al., 2001; Bengtson and Roth, 2008).
When combined with a secondary clustering algo-
rithm, such approaches can achieve state-of-the-art
results (Clark and Manning, 2015).

For the gradient boosted decision trees, we use
the existent library XGBoost 7. We decided to use
a simple clustering strategy and to merge all clus-
ters with a positive link between them, i.e. if an
event e1 in cluster 1 and an event e2 in cluster 2 re-
fer to the same event (according to our classifier),
the two clusters are merged together. This approach
achieves an overall average CoNLL score of 70.02%
for task 3 with given event nuggets.

7https://github.com/dmlc/xgboost



Predicted
Bu Co Ca Ju Li Ma Mo Pe Tr No

A
ct

ua
l

Bu 53 0 0 0 0 0 0 0 1 64
Co 0 368 2 0 33 0 8 4 0 325
Ca 0 4 784 13 7 0 15 0 2 654
Ju 0 3 7 1017 13 0 3 0 4 414
Li 0 72 1 32 319 0 0 7 1 212
Ma 0 1 1 0 0 0 0 0 0 88
Mo 0 5 8 37 1 0 202 1 9 242
Pe 0 4 2 0 3 0 9 274 5 222
Tr 1 4 0 4 1 0 9 0 386 477
No 14 134 505 203 60 0 129 67 129 0

Table 7: Confusion matrix for the extracted event nuggets split by the different types. Bu=Business, Co=Conflict,
Ca=Contact, Ju=Justice, Li=Life, Ma=Manufacture, Mo=Movement, Pe=Personnel, Tr=Transaction, No=Not anno-
tated

7.1 Setup of the Training

For a certain event class, for example
Conflict Attack, all possible event pairs
in a document were considered. We only matched
to compatible event classes, i.e. the other event
class must be of the same subtype (except for the
Contact * and Transaction *, according
to the annotation guideline those can be matched
against any other event of the same main type). The
pairs were ordered, the event appearing first in the
document was put to the first position.

The classification of the pairs was done us-
ing Gradient Boosted Decision Trees (Breiman,
1997; Friedman, 2000; Friedman, 2002). Gradi-
ent Boosted Decision Trees are well known for their
fast speed and their accurate predictive power. The
model uses hundreds of decision trees in combina-
tion with a gradient boosting step. We hold out
25% of the training documents and tuned the hyper-
parameters on those documents. For the final model
we set the parameters to 250 decision trees with a
maximal depth of 3. In order to generate the fi-
nal coreference chain, we merged all events together
that were positively classified.

7.2 Feature Extraction

The features we extracted can be distinguished be-
tween features for each event and those that are com-
puted for the pair. The features we tested for the in-
dividual events are: token, lemma, POS, subject &
object (based on dependency links), semantic argu-
ments (A0-A4), event mention type, and realis val-

ues.
Besides features for individual event nuggets, we

also computed some features for the pair of two
events: binary decision if the token, lemma, or
POS are identical, cosine similarity of the two to-
kens/lemmas using the word embeddings by Levy
and Goldberg (2014), cosine similarity between sub-
jects / objects, number of tokens/sentences between
the events, binary decision if the two lemmas appear
in the same wordnet synset, and sentence similar-
ity based on a bag-of-words representation and the
Jaccard-index.

7.3 Evaluation

We hold out 25% of the training documents and
tuned the hyper-parameters and the features on those
documents. The accuracy for the binary pair classi-
fication task is depicted in Table 8. With all fea-
tures enabled, the system achieves an accuracy of
87.03% on our development set. Removing the sen-
tence similarity feature decreases the performance to
85.32%. The baseline, classifying all pairs with the
majority class, achieves an accuracy of 82.90%.

Feature Accuracy
Baseline: Majority Class 82.90%
Final System 87.03%

without distance features 86.78%
without token similarity 86.54%
without sentence similarity 85.32%

Table 8: Accuracy on our development set for the binary
pair classification task if two events corefer.



For our final system we used the following fea-
tures: lemma, binary decision if lemma or tokens
are identical, cosine similarity between the two to-
kens / lemmas, binary decision if the synsets over-
lap, distance measured in tokens and sentences be-
tween the two events, and the sentence similarity
based on the Jaccard-index (Lyon et al., 2001). The
official overall average CoNLL score is 70.02% for
this proposed system.

Type Avg CoNLL score
Rank 1 75.69%
Rank 2 74.28%
Rank 3 72.60%
Our system (rank 4) 70.02%

Table 9: Official score for the event coreference task.

We could observe that the discussion forum posts
contained a lot of quotes from previous posts. Event
nuggets in these quotes obviously refer to the same
event as in the original post and it was straight for-
ward to identify those. Detecting other coreferring
event nuggets is much more challenging.

8 Conclusion and Future Work

Using no other feature than the token and the neigh-
boring tokens, a fairly high F1 score of 61.73% for
event nugget detection can be achieved using a deep
feed forward network. Adding further local features
did not impact the classification result, while more
context aware features resulted in a small improve-
ment. Our proposed system is publicly available 8.

For event coreference resolution, we showed that
a simple pair-based classifier with a few features can
achieve an average CoNLL score of 70.02% using
gradient boosted decision trees. Especially measur-
ing the similarity of the two sentences led to a big
performance increase. Our current clustering strat-
egy is suboptimal. It merges two event clusters if
they have a positive link, i.e. the clusters are merged
if an event e1 in cluster 1 and an event e2 in cluster 2
refer to the same event (according to the classifier).
A single positive link will cause that two clusters
are merged, even if all other pair combinations are
in disfavor of merging the two clusters. A more ad-
vanced clustering algorithm, for example as used in

8https://github.com/UKPLab/
tac2015-event-detection

(Clark and Manning, 2015), could significantly im-
prove the results.

Acknowledgement

This work has been supported by the Volkswagen
Foundation as part of the Lichtenberg-Professorship
Program under grant No. I/82806 and by the
German Federal Ministry of Education and Re-
search (BMBF) under the promotional reference
01UG1110D (DARIAH-DE). Additional support
was provided by the German Federal Ministry of Ed-
ucation and Research (BMBF) as a part of the Soft-
ware Campus program under the promotional refer-
ence 01-S12054.

References
Eric Bengtson and Dan Roth. 2008. Understanding

the Value of Features for Coreference Resolution. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’08,
pages 294–303, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Leo Breiman. 1997. Arcing the edge. Technical report.
Kevin Clark and Chris Manning. 2015. Entity-centric

coreference resolution with model stacking. In Pro-
ceedings of the 53nd Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2015.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural Language Processing (almost) from
Scratch. Journal of Machine Learning Research,
12:2493–2537.

Richard Eckart de Castilho and Iryna Gurevych. 2014.
A broad-coverage collection of portable nlp compo-
nents for building shareable analysis pipelines. In Pro-
ceedings of the Workshop on Open Infrastructures and
Analysis Frameworks for HLT, pages 1–11, Dublin,
Ireland, August. Association for Computational Lin-
guistics and Dublin City University.

Jerome H. Friedman. 2000. Greedy function approxima-
tion: A gradient boosting machine. Annals of Statis-
tics, 29:1189–1232.

Jerome H. Friedman. 2002. Stochastic gradient boost-
ing. Comput. Stat. Data Anal., 38(4):367–378, Febru-
ary.

Omer Levy and Yoav Goldberg. 2014. Dependency-
Based Word Embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics, ACL 2014, June 22-27, 2014, Baltimore,
MD, USA, Volume 2: Short Papers, pages 302–308.



Caroline Lyon, James Malcolm, and Bob Dickerson.
2001. Detecting short passages of similar text in large
document collections. In Proceedings of the 2001
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 118–125.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems,
pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP 2014), pages 1532–1543.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000. In-
troduction to the CoNLL-2000 Shared Task: Chunk-
ing. In Proceedings of CoNLL-2000 and LLL-2000,
Lisbon, Portugal.

Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong
Lim. 2001. A Machine Learning Approach to Coref-
erence Resolution of Noun Phrases. Comput. Lin-
guist., 27(4):521–544, December.

Song Zhiyi, Ann Bies, Strassel, Tom Riese, Justin
Mott, Joe Ellis, Jonathan Wright, Seth Kulick, Neville
Ryant, and Xiaoyi Ma. 2015. From Light to Rich
ERE: Annotation of Entities, Relations, and Events.
In Proceedings of the 3rd Workshop on EVENTS at the
NAACL-HLT 2015, pages 89–98.


