
Stacked Ensembles of Information Extractors for Knowledge-Base
Population by Combining Supervised and Unsupervised Approaches

Nazneen Fatema Rajani Raymond J. Mooney
Dept. of Computer Science

University of Texas at Austin
{nrajani,mooney}@cs.utexas.edu

Abstract

The UTAustin team participated in two main
tasks this year - the Cold Start Slot Fill-
ing (CSSF) task and the Slot-Filler Valida-
tion/Ensembling task, which was divided into
the filtering and ensembling subtasks. Our
system uses stacking to ensemble multiple
systems for the KBP slot filling task, as de-
scribed in our ACL 2015 paper. We expand
the stacking approach by allowing the classi-
fier to also utilize additions features that are
relevant to making a final decision. Stack-
ing relies on supervised training and hence re-
quires common systems from the 2014 data to
be used as training. However, that approach
has limitations on performance and therefore
we propose a novel approach of combining
the supervised approach with an unsupervised
approach on the remaining systems. We be-
lieve this combination approach gives our best
run for the ensembling task. In this paper,
we also discuss strategies to handle Cold Start
data which comes from multiple hops.

1 Introduction

In 2015, UT Austin was a first time participant in the
Slot Filler Validation/Ensembling task of the Text
Analysis Conference (TAC) Knowledge Base Pop-
ulation (KBP) evaluation. Every year, many sys-
tems participate in the KBP evaluation, in particu-
lar, the slot filling task attracts many participants.
However, the best performing team has an approx-
imate F1 score of 32 and it remains more or less
the same each year. Some of these top systems are
high precision while others are high recall and thus

overall F1 remained low. In order to get the best
of both these type of systems, we were motivated
to ensemble them and expectedly obtained good re-
sults. The details of this approach is described in
our 2015 ACL paper (Viswanathan et al., 2015).
Normal stacking trains a classifier to combine the
output of multiple systems using as input features
the output and confidence of each individual sys-
tem. In particular, we use features capturing how
well the systems agree about the provenance of the
information they extract. Additionally, we also ex-
perimented with adding a feature that captures the
cosine similarity between the document from which
the query is extracted (i.e. the document given in the
<doc id>XML tag) and the provenance document
from which the slot fill was extracted. This feature
helps capture whether the correct query entity is the
one actually referenced in the provenance document.
This feature boosted our performance even further
when tested on the partially evaluated 2015 slot fills.

Our original approach relied on supervised train-
ing and hence required common systems from the
2014 data so that we could use their performance
data from the previous year’s evaluation to train
the stacker. However, only 38 of 70 systems from
2015 had also participated in 2014 Cold Start or
Slot filling task. Therefore, our initial stacking ap-
proach could not utilize about half the systems. To
overcome this problem, we use an unsupervised ap-
proach to ensemble the remaining 32 systems and
propose a novel stacking approach to combine the
supervised and unsupervised approaches. We create
an additional feature encoding the output of JHU’s
2013 unsupervised approach (Wang et al., 2013) to

ensembling, and also add it as an input features to
the stacker. We believe this approach gives our best
run for the ensembling task.

To handle the round-1 and round-2 hashing prob-
lems in our approach, we use either the conserva-
tive strategy of throwing away round-2 extractions
that do not have a matching round-1 result (used for
the filtering task to increase precision) or using a
more liberal strategy of including the corresponding
round-1 result along with the round-2 result (used
for ensembling task to increase recall). Our runs for
the filtering task are focused on improving precision
while those for ensembling are focused to improve
F1, and thus adopt different methodologies based on
the different evaluation metrics for the two tasks.

2 Ensembling Slot-Filling Systems

Given a set of query entities and a fixed set of slots,
the goal of ensembling is to effectively combine the
output of different slot-filling systems. As input, it
takes the output of individual systems (in the format
described in previous section) containing slot fillers
and additional information such as provenance and
confidence scores. The output of the ensembling
system is similar to the output of an individual sys-
tem, but it productively aggregates the slot fillers
from different systems.

2.1 Algorithm
This section describes our ensembling approach
which trains a final binary classifier using features
that help judge the reliability and thus correctness of
individual slot fills. In a final post-processing step,
the slot fills that get classified as “correct” by the
classifier are kept while the others are set to NIL.

2.1.1 Stacking
Stacking is a popular ensembling methodology in

machine learning (Wolpert, 1992) and has been very
successful in many applications including the top
performing systems in the Netflix competition (Sill
et al., 2009). The idea is to employ multiple learners
and combine their predictions by training a “meta-
classifier” to weight and combine multiple models
using their confidence scores as features. By train-
ing on a set of supervised data that is disjoint from
that used to train the individual models, it learns how
to combine their results into an improved ensemble

model. We employ a single classifier to train and test
on all slot types using an L1-regularized SVM with
a linear kernel (Fan et al., 2008).

2.1.2 Using Provenance
As discussed above, each system provides prove-

nance information for every non- NIL slot filler.
There are two kinds of provenance provided, the re-
lation provenance and the filler provenance. In our
algorithm we only use the filler provenance for a
given slot fill. This is because of the changes in the
output formats for the tasks over the years. Specif-
ically, the 2013 format is comprised of three prove-
nances namely filler, entity and justification while
2014 format has only two provenances namely filler
and relation provenance. There was no English Slot
filling task in 2015 but instead only the Cold Start
task which had a very output format. However, sys-
tems were still ask to provide the filler provenance
in their outputs. Hence, we use the filler prove-
nance that is common between 2014 and 2015 for-
mats. As described earlier, every provenance has
a docid and startoffset-endoffset that gives informa-
tion about the document and offset in the document
from where the slot fill has been extracted. In their
SFV system, Sammons et al. (2014) effectively use
this provenance information to help validate and fil-
ter slot fillers. This motivated us to use provenance
in our stacking approach as additional features as in-
put to the meta-classifier.

We use provenance in two ways, first using the
docid information, and second using the offset in-
formation. We use the docids to define a document-
based provenance score in the following way: for a
given query and slot, if N systems provide answers
and a maximum of n of those systems give the same
docid in their filler provenance, then the document
provenance score for those n slot fills is n/N . Sim-
ilarly, other slot fills are given lower scores based
on the fraction of systems whose provenance docu-
ment agrees with theirs. Since this provenance score
is weighted by the number of systems that refer to
the same provenance, it measures the reliability of
a slot fill based on the document from where it was
extracted.

Our second provenance measure uses offsets. The
degree of overlap among the various system’s offsets
can also be a good indicator of the reliability of the

slot fill. The Jaccard similarity coefficient is a statis-
tical measure of similarity between sets and is thus
useful in measuring the degree of overlap among the
offsets of systems. Slot fills have variable lengths
and thus the provenance offset ranges are variable
too. A metric such as the Jaccard coefficient cap-
tures the overlapping offsets along with normalizing
based on the union and thus resolving the problem
with variable offset ranges. For a given query and
slot, if N systems that attempt to answer have the
same docid for their document provenance, then the
offset provenance (OP) score for a slot fill by a sys-
tem x is calculated as follows:

OP (x) =
1

N
×

∑
i∈N,i6=x

|offsets(i) ∩ offsets(x)|
|offsets(i) ∪ offsets(x)|

Per our definition, systems that extract slot fills
from different documents for the same query slot
have zero overlap among offsets. We note that the
offset provenance is always used along with the doc-
ument provenance and thus useful in discriminat-
ing slot fills extracted from a different document for
the same query slot. Like the document provenance
score, the offset provenance score is also a weighted
feature and is a measure of reliability of a slot fill
based on the offsets in the document from where it is
extracted. Unlike past SFV systems that use prove-
nance for validation, our approach does not need ac-
cess to the large corpus of documents from where
the slot fills are extracted and is thus very computa-
tionally inexpensive.

This year, we also experimented with features that
use the query’s provenance. The CSSF queries are
provided to participants in XML format and has the
query entity’s ID, name, entity type, i.e., person
or organization, the document where the entity ap-
pears and beginning and end offsets in the document
where that entity appears. This is to help the partic-
ipants disambiguate query entities that could poten-
tially have same names but are different entities in
reality. Following is an example of a query from the
CSSF 2015 task:

<query id=”CSSF15 ENG 0006e06ebf”>
<name>Walmart</name>
<docid>ad4358e0c4c18e472c13bbc27a6b7ca5</docid>
<beg>232</beg>
<end>238</end>

<enttype>org</enttype>
<slot0>org:date dissolved</slot0>

</query>

The document in the <doc id>tag can be thought
of as the document that is most relevant to the query
entity. We call it the query document for further ref-
erences. Our feature involves measuring the similar-
ity between this query document and the provenance
document that is provided by the systems. The doc-
uments in the provenance as well as the query doc-
ument are represented as TF-IDF vectors of fixed
length given by the vocabulary size. Thereafter we
use cosine similarity between the query document
vector and the provenance document vectors. Thus
every system that provides a slot fill, provides the
provenance for the fill and thus has a similarity score
with the query document. If the system does not pro-
vide a slot fill then its document similarity score is
simply zero.

The idea behind this feature is that if a slot fill is
extracted from a document that is very similar to the
query document then it would have a high similar-
ity measure. This means that those documents share
many words that are relevant to the query and thus
there is a high probability that the slot fill extracted
is correct. Notice that the document similarity score
is 1.0 if the slot fill is extracted from the same doc-
ument as the query and thus is highly likely to be
relevant to the query and thus also be correct.

2.2 Aggregating Confidence Scores for
Remaining Systems

Our stacking approach described in Section 2.1.1 re-
lies on shared systems between the years so that it
can be trained on one year and tested on the next.
Thus it restricts us to only use common systems over
the years which would potentially affect our perfor-
mance. In 2015, only 38 of the 70 systems were
shared with 2014 and thus almost half of the systems
could not be used by our stacking approach. To over-
come this shortcoming, we propose a novel method
of combining our stacking approach with an unsu-
pervised approach for the remaining systems. For
the systems that are not shared between the years,
we use the constrained optimization approach for
aggregating the confidence scores given in (Wang et
al., 2013). They use an unsupervised technique to
aggregate the “raw” confidence scores provided by

systems for each query and slot fill. The algorithm
differs slightly for single-valued and list-valued slot
fills and is described in detail in their paper. In
their algorithm the authors use weights that relies on
the performance of the system in the previous year.
Since we use their technique on systems that are new
and have not participated in previous years, we use
uniform weights for all systems.

2.3 Stacking over the Unsupervised Approach

The output from the unsupervised approach is a list
of slot fills and a single calibrated confidence score.
In their paper the authors directly use the aggregated
confidence scores to judge the slot fill. However we
propose a unique way of using stacking over the un-
supervised approach. We consider the output from
the unsupervised approach as one system and add it
to the stacker. The stacker is trained on remaining
systems from 2014 that weren’t shared with 2015.
Along with the confidence scores, we also give the
slot type as a feature. Additionally, we also tried us-
ing the average of provenance scores for unshared
systems as a feature to the stacker. However that
was not a part of our submitted runs and was exper-
imented with later on.

We combine our original stacking approach with
the stacking over unsupervised approach in the fol-
lowing manner. If the slot type is single valued then
we simply take the one which has the highest con-
fidence based on the stacker’s prediction and if the
slot type is list valued then we accept slot fills that
cross a certain threshold. This threshold is learnt on
2014 data for each list valued slot type separately
and is averaged for all queries. Thus we obtain a
threshold for each list value slot type and accept all
slot fills belonging to that slot type if it crosses this
threshold.

2.4 Eliminating Slot-Filler Aliases

When combining the output of different SF systems,
it is possible that some slot-filler entities might over-
lap with each other. An SF system A could extract
a filler F1 for a slot S while another SF system B
extracts another filler F2 for the same slot S. If the
extracted fillers F1 and F2 are aliases (i.e. different
names for the same entity), the scoring system for
the TAC KBP SF task considers them redundant and
penalizes the precision of the system.

In order to eliminate aliases from the output of
ensembled system, we employ a technique derived
by inverting the scheme used by the LSV SF sys-
tem (Roth et al., 2013) for query expansion. LSV
SF uses a Wikipedia anchor-text model (Roth and
Klakow, 2010) to generate aliases for given query
entities. By including aliases for query names, the
SF systems increase the number of candidate sen-
tences fetched for the query.

To eliminate filler aliases, we apply the same tech-
nique to generate aliases for all slot fillers of a given
query and slot type. Given a slot filler, we obtain the
Wikipedia page that is most likely linked to the filler
text. Then, we obtain the anchor texts and their re-
spective counts from all other Wikipedia pages that
link to this page. Using these counts, we choose top
N (we use N=10 as in LSV) and pick the corre-
sponding anchor texts as aliases for the given slot
filler. Using the generated aliases, we then verify
if any of the slot fillers are redundant with respect
to these aliases. This scheme is not applicable to
slot types whose fillers are not entities (like date or
age). Therefore, simpler matching schemes are used
to eliminate redundancies for these slot types.

3 Experimental Evaluation

This section describes a comprehensive set of ex-
periments evaluating ensembling for the KBP ESF
task. Our experiments are divided into two subsets
based on the datasets they employ. Since our stack-
ing approach relies on 2014 SFV data for training,
we build a dataset of one run for every team that
participated in both the 2014 and 2015 competitions
and call it the common systems dataset. There are 38
common systems from 10 common teams that par-
ticipated in both 2014 and 2015. There are a total
of 70 systems from 17 teams for the Cold Start task
in 2015. The other dataset comprises of all 2014
SFV systems (including all runs of all 17 teams that
participated in 2014). There are 10 systems in the
common systems dataset, while there are 65 systems
in the all 2014 SFV dataset. Table 1 gives a list of
the common systems for 2014 and 2015 tasks. The
value in the parenthesis is the number of systems
that came from that team.

Common Systems
Stanford (1)
UMass (4)

UW (3)
CMUML (3)

BUPT PRIS (5)
CIS (5)

ICTCAS (4)
NYU (4)

STARAI (5)
Ugent (4)

Table 1: Common teams for 2013 and 2014 ESF

4 Filtering and Ensembling Tasks

Although the 2015 CSSF task has two hop queries,
we do not give special treatment to the hops and all
our approaches treats the slot fills from both hops
equally. Because of the way the validation script
is designed for each hops, we faced round-1 and
round-2 hashing problems. To overcome this prob-
lem, we designed the following two approaches - the
conservative approach and the liberal approach.

If the stacker predicts that a round-2 slot fill is
correct but its equivalent round-1 slot fill is not cor-
rect, then in the conservative approach we ignore the
round-2 extraction do not include it in our submis-
sion. This potentially hurts recall but may improve
precision of the slot fills. The filtering subtask fo-
cusses on maximizing precision of the SFV slot fills
and thus we use the conservative approach for the
this subtask.

On the other hand, if the stacker predicts that a
round-2 slot fill is correct but its equivalent round-1
slot fill is not correct, then in the liberal approach we
include the round-2 extraction along with it’s equiv-
alent round-1 extraction in our submission. This ap-
proach potentially hurts precision but hopefully im-
proves recall of the slot fills. The ensembling sub-
task focusses on maximizing F1 of the SFV slot fills
and thus we use the liberal approach for the this sub-
task.

5 Future Work

In our approach for ensembling or filtering the slot
fills, we treat both round-1 and round-2 slot fills
equally. Thus our stacker is trained on all the slot

fills irrespective of which round it belongs to and is
also tested on the entire SFV evaluation set. We be-
lieve this hurts our performance and thus we plan
on looking into ensembling the round-1 and round-
2 slot fills separately. Our plans include design-
ing features that would allow us to have a more so-
phisticated approach for combining the round-1 and
round-2 slot fills rather than the naive conservative
and liberal approaches discussed earlier.

We also plan on utilizing the enttype information
that is provided by systems in their slot fills to aid us
in judging their correctness. Since our stacker trains
on 2014 dataset which comes from the English Slot
Filling task as opposed to the CSSF task, we believe
our performance is affected because of that and we
plan on finding ways to bridge this gap.

Acknowledgments
This research was supported by the DARPA DEFT
program under AFRL grant FA8750-13-2-0026.

References
Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui

Wang, and Chih-Jen Lin. 2008. LIBLINEAR: A li-
brary for large linear classification. Journal of Ma-
chine Learning Research, 9:1871–1874.

Benjamin Roth and Dietrich Klakow. 2010. Cross-
language retrieval using link-based language models.
In Proceedings of the 33rd international ACM SIGIR
conference on Research and development in informa-
tion retrieval, pages 773–774. ACM.

Benjamin Roth, Tassilo Barth, Michael Wiegand, et al.
2013. Effective slot filling based on shallow distant
supervision methods. Proceedings of the Seventh Text
Analysis Conference (TAC2013).

Mark Sammons, Yangqiu Song, Ruichen Wang, Gourab
Kundu, et al. 2014. Overview of UI-CCG systems for
event argument extraction, entity discovery and link-
ing, and slot filler validation. Proceedings of the Sev-
enth Text Analysis Conference (TAC2014).

Joseph Sill, Gábor Takács, Lester Mackey, and David
Lin. 2009. Feature-weighted linear stacking. arXiv
preprint arXiv:0911.0460.

Vidhoon Viswanathan, Nazneen Fatema Rajani, Yinon
Bentor, and Raymond Mooney. 2015. Stacked en-
sembles of information extractors for knowledge-base
population. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages

177–187, Beijing, China, July. Association for Com-
putational Linguistics.

I-Jeng Wang, Edwina Liu, Cash Costello, and Christine
Piatko. 2013. JHUAPL TAC-KBP2013 slot filler val-
idation system. In Proceedings of the Sixth Text Anal-
ysis Conference (TAC2013).

David H. Wolpert. 1992. Stacked generalization. Neural
Networks, 5:241–259.

