
University of Florida DSR Lab System for KBP Slot Filler Validation 2015

Miguel Rodriguez
CISE Department

University of Florida
Gainesville, FL 32611, USA
mer@cise.ufl.edu

Sean Goldberg
CISE Department

University of Florida
Gainesville, FL 32611, USA
sean@cise.ufl.edu

Daisy Zhe Wang
CISE Department

University of Florida
Gainesville, FL 32611, USA
daisyw@cise.ufl.edu

Abstract
In this paper we present a Slot filler Valida-
tion (SFV) system that uses a semi-supervised
ensemble learning approach to aggregate the
results from multiple slot fillers from the Cold
Start track. We apply Bipartite Graph-based
Consensus Maximization (BGCM) to com-
bine the output of supervised stacked ensem-
ble methods with the output of slot filling runs
that can’t be trained. By using BGCM we are
also able to leverage a small set of assessed
fillers to increase the performance of the sys-
tem. The ensemble results outperformed the
best cold start run, the best filtered runs, and
other ensemble systems.

1 Introduction

In the 2015 Cold Start Slot Filler (CSSF) task, teams
were required to construct a knowledge base (KB)
by extracting missing attributes of real world entities
from a large text corpora. Formally, a CSSF system
takes a list of entity-relation tuples or queries, and
a large text corpus as inputs with the goal being to
populate the relations or slots with their correct val-
ues. CSSF defines two types of queries (0-hop and
1-hop) depending on the number of required inter-
mediate hops in the knowledge graph to answer the
such query. Each participating system should out-
put a correct response (slot filler) for every query
that their system can find in the corpora. The task
requires every slot filler to be accompanied by an
extraction probability denoting confidence and its
provenance in the original corpus. Table 1 shows
various slot fillers for a sample query and the num-
ber of runs that agree on the same extraction.

The results of participating CSSF systems mo-
tivates the Slot Filler Validation track. This track
aims to automatically validate the result of multi-
ple CSSF systems. As shown in Table 1, slot fillers
from different systems may conflict, thus providing
multiple answers for the same query. Even when
they agree, their confidence and sources may not be
the same. A SFV system take all inputs provided
for CSSF (queries and corpus) plus a collection of
CSSF. There are two outputs for the SFV track. Fil-
tering, where the SFV system judges every run in-
dividually discarding wrong fillers. And ensemble,
where the output of the SFV system is a new CSSF
run that aggregates correct results from the input
submissions.

In this paper, we provide an overview of our 2015
Slot Filler Validation system that aggregates the out-
put of multiple CSSF runs. The preliminary experi-
mental results obtained show a performance increase
in 0-hop queries compared to the original CSSF sub-
missions measured using F1 score, but deteriorates
the performance of 1-hop queries. Nevertheless,
the overall F1 score for the validation task was im-
proved.

2 Technical Approach

The SFV ensemble task can be casted as a bi-
nary classification problem. Given a query and a
slot filler, determine if the slot filler is correct or
not. Since the CSSF runs provided for this task
are themselves the output of such classifier, they
can be directly used by an ensemble learning sys-
tem. Ensemble classifiers have been used to en-
hance the prediction performance compared to us-



Slot Filler Run Count
Roger Stolle 10

Bennie Thompson 9
Marco W. McMillian 7

Morgan Freeman 6
McMillian 6

Bessie Smith 5
Marco McMillian 3
Robert Johnson 3
Lawrence Reed 3

Meredith 2
Sharon J. Lettman-Hicks 2

Eliza Shook 1

Table 1: Slot fillers extracted by multiple systems for
the query (Clarksdale, gpe:residents of city). The cor-
rect answers in the ground truth are Morgan Freeman and
Marco W. McMillian

ing a single model. The main idea behind ensem-
ble learning is to aggregate the output of multi-
ple weak classifiers to outperform the original ones.
An ensemble framework consists of two building
blocks, a basic inducer and combiner. Ensem-
ble frameworks can be divided into two classes
based on the basic inducer(Rokach, 2010): depen-
dent frameworks where the output of a classifier
is used to build the next classifier like AdaBoost
(Freund et al., 1996) and independent frameworks
where each classifier is built independently like
like bagging (Breiman, 1996) or Random Forests
(Breiman, 2001). Regardless of the inducer, the out-
puts are finally aggregated using weight-based com-
bination methods like performance weighting (Opitz
and Shavlik, 1996) and Bayesian combination (Bun-
tine, 1992) or meta-combinations methods such as
stacking (Wolpert, 1992). Ensemble classification
has been successfully applied in a wide variety of
applications including spoken language recognition
(Ma et al., 2007), sentiment analysis (Whitehead
and Yaeger, 2010) and mining concept-drifting from
data streams (Wang et al., 2003).

A stacked ensemble approach (Viswanathan et al.,
2015) to aggregate results from probabilistic extrac-
tions weights each system according to the system’s
performance on a training set. Since the training
set is obtained from the assessed queries of previ-
ous years, only systems that participated in more

Bipar&te)Graph,based)Consensus)
Maximiza&on))

Run)1) Run)2) Run)N).)
.)
.)Conf.)1) Conf.)2) Conf.)N)

Meta)
Classifier)

1)

Yes)

Meta)
Classifier)

M)
.).).)

Run)N+1) Run)N+2) Run)69)

No) Yes) No) Yes) No) Yes) No) Yes) No)

O1) O2) O3) Om)

.).).) .).).)

.).).)

Figure 1: BGCM module input construction from CSSF
outputs

than one edition of slot filling can be used by this
approach dismissing slot fillers by new, potentially
well ranked systems. Bipartite Graph-based Con-
sensus Maximization (Gao et al., 2009) has the abil-
ity to overcome this problem. BGCM is an en-
semble model that combines the output of super-
vised and unsupervised classifiers. BGCM is de-
fined as a constrained optimization problem with an
objective function that propagates conditional prob-
abilities over a bipartite graph penalizing deviations
from the initial labels assigned by supervised meth-
ods. Our SFV system uses multiple stacked en-
semble models learned independently as the super-
vised classifier and combines their output with runs
that can not be aggregated by stacked ensembles
with BGCM. Furthermore, our SFV system uses
BGCM’s capability of leveraging the small portion
of assessed slot fillers provided for the task. Figure
1 shows how our SFV system constructs a bipartite
graph for BGCM from the inputs for the task.

The pipeline used by our BGCM-Based SFV sys-
tem is shown in Figure 2. The first two steps are
completed by the ESF systems that explore the cor-
pus and extracting slot fillers for the given set of
queries. In the next step, the runs from teams that
participated in previous years are mapped together
and ranked using the corresponding assessments.
For 2015 runs, the small assessment file provided
for the task is used for ranking. The best run of each
mapped team is then passes to the feature extraction
module and all other runs are passed directly to the
BGCM module. The output of mapped runs are then
grouped together to extract features.

The features used by our system are the same as



the stacked ensemble system (Viswanathan et al.,
2015). The first feature vector contains the proba-
bilities given by each system for the slot filler. In
case a system did not provide a slot filler, its proba-
bility was set to zero. This feature vector has a total
of 10 features. The second feature vector adds a one-
hot encoding of the slot name as a nominal feature.
The third feature vector adds provenance-based fea-
tures to determine the level of provenance agreement
of extractions. Each response is assigned a docu-
ment agreement score determined by n/N , where n
represents the number of systems that agree on the
same document and N the total number of systems
that answered the query. The third feature vector,
adds an offset score by applying the Jaccard similar-
ity coefficient between the offset of extractions that
shared the same source.

Our system learns independent models for each
feature vector using a number of stacked ensem-
ble meta-classifiers trained using features from 2013
and 2014 extractions and their corresponding as-
sessments provided by NIST. The stacked ensemble
models only use the filler assessment for labeling
purposes and disregards the document assessment.
The final step of the stacked ensemble module is
to produce a set of predictions for each (query, slot
filler) tuple in the 2015 data set.

The BGCM module is then fed with the output of
the stacked ensemble meta-classifiers. Since BGCM
can take advantage of a small set of labeled data to
improve the performance of the system, assessed re-
sults for 164 queries were fed into BGCM. To the
best of our knowledge, no other team has used this
assessed data to build their systems since it consists
of a very reduced number of assessments. Neverthe-
less, BGCM can take advantage of it as extra evi-
dence to bias the search procedure.

Finally, the post processing module produces an-
swers for the two task specified by BGCM: filter and
ensemble. Filtering is obtained by revisiting each
original run and comparing each slot filler with the
results obtained by BGCM, there is a match, the
slot filler is marked correct, otherwise it is marked
as incorrect. For the ensemble output, the post-
processing module specifically enforces that all hop-
1 queries have a correct hop-0 answer, selects the
most probable answer for single value slots if mul-
tiple answers are found, and for each slot filler that

Feature'
Extrac+on'

Stacked'
Ensemble'Corpus' 2014'ESF'

2013'ESF'

Mapping'

Bipar+te'
GraphBBased'
Consensus'

Maximiza+on'

PostB
Processing'

Unmapped'Systems'

'Assessed'
Queries'

2015'ESF'

Figure 2: Slot Filler Validation System Pipeline

comes from multiple systems, select the provenance
from the extraction with highest probability.

3 Experimental Evaluation

The SFV evaluation is carried out by a scorer pro-
vided for the task that uses a key file which pools all
system responses and a manual assessment by hu-
man judges. The scorer then uses the assessment
as ground truth to calculate precision, recall, and F1
score. These metrics are computed based on the sys-
tems correct answers, the total number of system re-
sponses, and the total number of correct responses
in the ground truth. Formally, the metrics are calcu-
lated as follows:

Recall(R) = Correct/Reference (1)

Precision(P ) = Correct/System (2)

F1 = 2
PR

P +R
(3)

The scorer reports results for 0-Hop and 1-Hop
queries individually, and a general score for the
complete submission. Since entities in the proposed
query set may have multiple entry points or men-
tions in the corpora, the reported results are also di-
vided into two types. LDC queries that don’t take
into account the query entry point and CSSF queries
that treats each entry point as as separate query. Fil-
tering and ensemble task are scored separately. For
the filtering task, each filtered output is re-scored
and the best score obtained among all filtered out-
puts is kept. The ensemble output is scored as a
CSSF output.

To participate in the 2015 SFV task, we submitted
three runs. All runs use the pipeline described be-
fore with 2 types of meta-classifiers, logistic regres-
sion and SVM. In the first run, each type of meta-



Method P R F1
LR 0.648 0.335 0.441

LR + REL 0.662 0.343 0.452
LR + PROV + REL 0.634 0.374 0.470

SVM 0.639 0.319 0.425
SVM + REL 0.720 0.299 0.422

SVM + PROV + REL 0.729 0.298 0.423
Best SF 2014 0.585 0.298 0.395

BGCM 0.549 0.538 0.544

Table 2: Results of running our SFV system on the 2014
SFV dataset

classifier is independently trained with the three fea-
ture vectors as described in the previous section,
stacked, relation and provenance. The supervised
part of our first run uses training data extracted from
the SF outputs of 2013 and 2014 for a total of 7
runs. The output of the other 62 runs were combined
with the supervised outputs in the BGMC module.
The second run, trains the same amount of meta-
classifiers with extractions from 2014 run only, for a
total of 12 runs, and combines them with the other
57 run in the BGMC module. The third run com-
bines the outputs of the meta-classifiers trained for
both previous runs, a set of 12 supervised outputs in
total, combined with the 57 unused runs in the BMC
module.

4 Experimental Results

The system system presented in this paper was de-
veloped using 2013 and 2014 data where the SFV
task was less complex. Only 0-Hop queries were
used, and less queries were asked. The results of
running our SFV system trained on 2013 slot fillers
and tested on 2014 slot fillers are shown in Table
2. The results show a 7.4% F1 improvement over
the best stacked ensemble model, and a 14% F1 im-
provement over the best SF system for the prediction
year. This promising results showed that including
unsupervised evidence on top of the meta-classifiers
of stacked ensemble is an interesting approach to the
SFV problem.

The official SFV scoring metrics for each of the
runs submitted are summarized in Table 3. The best
performance of individual runs for each category is
also included for comparison. For the complete sub-

P R F1 Queries
Run 1 0.5434 0.4602 0.4984 0-Hop
Run 2 0.5047 0.5157 0.5101 LDC
Run 3 0.4759 0.5361 0.5042

KB 12 1 0.5048 0.3795 0.4333
Run 1 0.4375 0.0882 0.1469 1-Hop
Run 2 0.4198 0.1155 0.1812 LDC
Run 3 0.3974 0.1303 0.1962

SF 03 3 0.2381 0.2941 0.2632
Run 1 0.5307 0.3247 0.4029 ALL
Run 2 0.4934 0.3698 0.4228 LDC
Run 3 0.4647 0.3882 0.4230

KB 12 2 0.4373 0.2749 0.3376
Run 1 0.4857 0.3750 0.4232 0-Hop
Run 2 0.4450 0.4360 0.4405 CSSF
Run 3 0.4130 0.4550 0.4330

KB 12 1 0.4818 0.3090 0.3765
Run 1 0.4172 0.0621 0.1081 1-Hop
Run 2 0.3135 0.0773 0.1240 CSSF
Run 3 0.3042 0.0858 0.1339

SF 03 3 0.2325 0.2537 0.2426
Run 1 0.4781 0.2520 0.3301 ALL
Run 2 0.4266 0.2951 0.3489 CSSF
Run 3 0.3975 0.3100 0.3483

KB 12 2 0.4260 0.2170 0.2875

Table 3: Results obtained by the BGCM-Based SFV sys-
tem for LDC and CSSF queries and the best CSSF run for
each category.

mission, all three submitted runs achieve higher re-
calls than individual runs while also increasing pre-
cision. The overall F-scores also improves from in-
dividual runs. The first two boxes in Table 3 sum-
marize the results of 0-Hop runs, where our systems
clearly outperforms the best individual run by in-
creasing recall while keeping a high precision. The
results for 1-Hop queries summarized in the mid-
dle two boxes in Table 3 show a decrease in per-
formance measured by F1. Our system failed to in-
crease recall, although it significantly increased the
precision of 1-Hop queries.

The main idea behind our SFV systems is to
take into account the answers from potentially well-
ranked runs that traditional stacked ensemble-based
systems do not consider. For instance, from the 12



systems from 2015 that our stack ensemble models
use, only one is ranked among the top 10 runs. Fur-
thermore, the output of our system is composed only
by 6% of fillers coming from the output of super-
vised learning.

Another interesting trend observed in our 2014
and 205 experiments is the balance achieved be-
tween precision and recall. All 2014 baselines are
disproportionate (2014 stacked ensembles and 2015
SF). They have high precision, meaning a small
number of false positives within the responses. At
the same time, they have low recall, meaning a small
number of correct facts with respect to the answer
key. BGCM maintains or increases the precision of
the baseline systems and also significantly increases
the recall in order to achieve better F1 results.

5 Conclusions

This paper presented BGCM-based SFV system, a
hybrid approach that combines supervised stacked
ensembles with unsupervised ESF outputs, and a
small number of observed labels to enhance the re-
sults of 2015 CSSF results. Our system, was able
to improve upon individual extractors in the aggre-
gate in general and specifically 0-Hop queries. Ac-
cording to the literature, the proposed approach is
the first one to incorporate a small amount of as-
sessed data to improve system performance in SFV.
In general, many automatic knowledge base extrac-
tors such as the Never-Ending Language Learner
(NELL) (Mitchell et al., 2015) use human guid-
ance in the extraction process. Therefore, the use of
Consensus Maximization is also relevant beyond the
SFV framework to general knowledge base systems
extractions.

References
Leo Breiman. 1996. Bagging predictors. Machine learn-

ing, 24(2):123–140.
Leo Breiman. 2001. Random forests. Machine learning,

45(1):5–32.
Wray Lindsay Buntine. 1992. A theory of learning clas-

sification rules. Ph.D. thesis, Citeseer.
Yoav Freund, Robert E Schapire, et al. 1996. Experi-

ments with a new boosting algorithm. In ICML, vol-
ume 96, pages 148–156.

Jing Gao, Feng Liang, Wei Fan, Yizhou Sun, and Jiawei
Han. 2009. Graph-based consensus maximization

among multiple supervised and unsupervised models.
In Advances in Neural Information Processing Sys-
tems, pages 585–593.

Bin Ma, Haizhou Li, and Rong Tong. 2007. Spoken lan-
guage recognition using ensemble classifiers. Audio,
Speech, and Language Processing, IEEE Transactions
on, 15(7):2053–2062.

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Bet-
teridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel,
J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed,
N. Nakashole, E. Platanios, A. Ritter, M. Samadi,
B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. 2015. Never-
ending learning. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence (AAAI-15).

David W Opitz and Jude W Shavlik. 1996. Actively
searching for an effective neural network ensemble.
Connection Science, 8(3-4):337–354.

Lior Rokach. 2010. Ensemble-based classifiers. Artifi-
cial Intelligence Review, 33(1-2):1–39.

Vidhoon Viswanathan, Nazneen Fatema Rajani, and Yi-
non Bentor Raymond J Mooney. 2015. Stacked en-
sembles of information extractors for knowledge-base
population. In Proceedings of the 53rd annual meeting
on association for computational linguistics. Associa-
tion for Computational Linguistics.

Haixun Wang, Wei Fan, Philip S Yu, and Jiawei Han.
2003. Mining concept-drifting data streams using en-
semble classifiers. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 226–235. ACM.

Matthew Whitehead and Larry Yaeger. 2010. Sentiment
mining using ensemble classification models. In Inno-
vations and advances in computer sciences and engi-
neering, pages 509–514. Springer.

David H Wolpert. 1992. Stacked generalization. Neural
networks, 5(2):241–259.


