JHU/APL CONSENSE: The Confidence-Based System Ensembler

Michael D. Lieberman; Christine Piatko, I-Jeng Wang, Joseph Downs, Perry Wilson
The Johns Hopkins University Applied Physics Laboratory
11000 Johns Hopkins Road
Laurel, MD 20723 USA
Christine.Piatko@jhuapl.edu

Abstract

CONSENSE, JHU/APL’s submission for the TAC
KBP 2015 slot filling validation (SFV) and ensem-
bling track, is presented. CONSENSE’s design re-
volves around a constrained optimization framework
for validation and ensembling, based on confidence
values produced by slot filling systems. One advan-
tage of this design is that no prior knowledge is re-
quired of how the confidence values were estimated.
CONSENSE consists of three phases: feature-based
filtering of SFV queries, weighted confidence scal-
ing using constrained optimization, and confidence-
based validation and ensembling. Details of these
phases are provided, along with results of a prelim-
inary evaluation of CONSENSE indicating its suit-
ability for a variety of use cases.

1 Introduction

In this paper we present CONSENSE, JHU/APL’s sub-
mission for the TAC KBP 2015 slot filling validation
(SFV) and ensembling track!. CONSENSE’s design re-
volves around a constrained optimization framework for
validation and ensembling, based on confidence values
produced by slot filling (SF) systems. A key advan-
tage of this design is that no prior knowledge is required
of how the confidence values were estimated, or indeed
whether they are meaningful at all. Another useful as-
pect of our design is that it does not require access to
the original source documents, instead relying on char-
acteristics of fillers, confidences, and consensus among
SF systems. Aspects of our design were previously ex-
plored in JHU/APL’s submission to an earlier SFV eval-
uation (Wang et al., 2013), although CONSENSE repre-
sents several significant improvements over this earlier
work.

* Michael Lieberman moved to Google after this work was com-
pleted. E-mail: mlieb@google.com.

ttp://www.nist.gov/tac/2015/KBP/
SFValidation

Figure 1 shows CONSENSE’s overall design. The de-
sign consists of three phases, which we briefly describe
here: feature-based filtering, confidence scaling, and val-
idation and ensembling. First, in the filtering phase (de-
scribed in Section 2), we derive features from various
characteristics of SFV queries, and use these to train a
support vector machine (SVM) classifier used as a fil-
ter. We intended this filter to eliminate highly likely er-
rors and improve overall precision, since CONSENSE’s
later stages tend to emphasize recall. Next, in the con-
fidence scaling phase (Section 3), we scale the confi-
dences of each remaining SFV query by comparing the
outputs of several slot filling systems. For each output,
we assign a weight to its corresponding confidence value,
using one of several weighting schemes, and optimize
over weighted confidence values, resulting in probabil-
ities for each filler. For CONSENSE, we investigated
three weighting schemes, namely uniform, inverse pre-
cision, and logistic regression (LogReg) weighting. Fi-
nally, in the validation and ensembling phase, we retain
the queries whose fillers have the largest aggregated con-
fidence, with different strategies for single-valued and
list-valued slots. We describe these phases in more detail
in subsequent sections, along with results of preliminary
analyses of CONSENSE’s performance that demonstrate
its effectiveness.

To briefly clarify terminology, SFV builds on the SF
task (Surdeanu, 2013) which concerns the retrieval of
specific attributes, termed slots, of given entities from
collections of natural language text. For example, an
SF query gsr may be, “what is the age of the entity e
mentioned in document d?”, where “age” is the slot. A
SF system would provide an answer a to gsp consist-
ing of multiple parts: a value for the slot, termed a filler,
such as “23”; its confidence in the filler’s correctness; the
filler’s provenance (i.e., the documents used to determine
the filler); and other characteristics. Note that some slots
are single-valued (i.e., will have one correct filler, such
as “age”) while others are list-valued (can have multiple
correct fillers, such as “cities of residence”). Building on

Confidence Scaling

Feature-Based Uniform

) 4

Filtering

LogReg

Validation and

Ensembling

Inverse
Precision

Figure 1: CONSENSE’s architecture, consisting of three phases: feature-based filtering, confidence scaling, and validation and
ensembling. The confidence scaling phase covers multiple weighting schemes (Section 3.3).

this, the SFV task is concerned with validating all a pro-
duced by SF systems—i.e., determining whether each a
is correct or incorrect, essentially acting as a classifier of
each a’s correctness. Throughout the paper we will refer
to an SF query and its corresponding SFV queries. As
a final note, the SFV 2015 evaluation differs from previ-
ous years in that it introduces multi-hop queries, involv-
ing multiple levels of slots. For example, a multi-hop
query qsr might ask “what are the ages of the siblings
of the entity e mentioned in document d?”, and answer-
ing such a query would require finding e’s siblings (“hop
0”) and then the age of each sibling (“hop 1”). While
CONSENSE is usable for multi-hop queries, it does not
leverage multi-hop information.

We continue with descriptions and algorithms for
CONSENSE’s three processing stages, namely feature-
based filtering (Section 2), confidence scaling (Sec-
tion 3), and validation and ensembling (Section 4). We
then present results of preliminary experiments on CON-
SENSE’s effectiveness for SFV 2014 and SFV 2015 data
in Sections 5 and 6 respectively. Finally, we provide an
overview of related work in Section 7, and conclude with
thoughts for future work in Section 8.

2 Feature-Based Filtering

In the first stage of CONSENSE’s processing, we derive
features from various characteristics of SFV queries, and
use these to train an SVM classifier used as a filter. This
filter eliminates highly likely errors to improve precision,
since CONSENSE'’s later stages emphasize recall. We
also use these features later in CONSENSE’s LogReg
weighting scheme (Section 3.3). For the SFV 2015 evalu-
ation, we used the 2013 and 2014 SFV datasets for train-
ing, and the preliminary 2015 data for parameter tuning
and system precision estimates.

2.1 Featurization

Table 1 contains the list of features used in CONSENSE’s
processing, organized into several groups. Filler features
were based on string properties of slot fillers, such as the

number of words or the filler’s capitalization. Provenance
features were based on the filler’s provenance, such as
the type of document (e.g., news article) or the length
of the provenance region within the document. Data
type features were based on the type of slot agreeing
with the type of filler (e.g., having a city name in a city
slot). These features were based on preconstructed lists
of names from various sources. Finally, ensembling fea-
tures were based on multiple query outputs from the same
system, or agreement between multiple systems. Note
that none of our features examine provenance documents
in detail, instead relying solely on system outputs. Also,
though they are not included in the table, for each data
type feature we added an inverse feature that was also
used by the classifiers. For example, is-int-in-numeric-
slot would have a partner feature, is-int-in-non-numeric-
slot, capturing fillers of the same form in all the non-
numeric slots. Including all these variants, we used 47
features in total. Later, we assess these features’ effec-
tiveness in our experiments (Section 5.5).

2.2 Filtering

Our approach for filtering was to train a classifier to clas-
sify queries as correct (retain) or incorrect (filter). For
this purpose, we trained a support vector machine (SVM)
classifier with radial basis function (RBF) kernel on the
subset of features marked with * from Table 1. These in-
clude the features we deemed most likely to qualify for
hard filtering, mostly because they had large coefficients
for logistic regression weighting. In particular, most of
the negations of the data type features represent incorrect
formatting, which should result in incorrect answers.

2.3 Filler Normalization

After featurizing the SFV queries, we perform an addi-
tional step of preprocessing prior to entering the confi-
dence scaling phase (Section 3). In particular, multiple
SFV queries that address the same SF query may have
the same filler, but with slight differences. For example,
a SF query gsr may ask for the cities of residence of a
given entity e. The corresponding SFV queries may in-

Table 1: Features used in CONSENSE’s filtering and weighting schemes. * indicates features used to train the SVM filter when
both SVM filtering and LogReg weighting were used. t indicates features based on multiple queries. Feature types include boolean

(B), numeric (N), and categorical (C).

Feature Type Description Example

Filler features

is-empty-date* B is an empty date XXXX-XX-XX
has-initial-capitalization B has first letters capitalized Orange County Register
num-words-normalized N number of words in filler Orange County Register = 3
has-multiple-names B is a name with multiple words Martin Landtman
string-length-normalized N string length of filler Martin Landtman = 15
has-stop-words B contains common English words a heart attack
last-word-lower B ends in lowercase word News executive
last-word-possessive* B ends in’s Moody’s
filler-is-query-name-suffix* B is a suffix of the query name Martin Landtman, Landtman
Provenance features

provenance-region-size N difference of provenance offsets 299-311 =12
document-source-category C type of provenance document NYT-ENG-2010...= NYT-ENG
Data type features

is-int-in-numeric-slot* B integer in a number slot 9986000, 9,986,000
is-date-in-date-slot* B well-formed date in a date slot 1938-06-19, XXXX-06-19
is-city-in-city-slot* B city in a city slot Cairo

is-state-in-state-slot* B US state in a state slot Maine
is-country-in-country-slot* B country in a country slot Pakistan
is-demonym-in-origin-slot* B demonym in an origin slot Canadian

is-job-in-title-slot* B job title in title slot Wood Crafter
human-name-in-human-slot* B human name in a person slot Martin Landtman
is-url-in-url-slot* B URL in the website slot www.cml.org.uk
has-org-suffix-in-org-slot* B org suffix in an org slot Hudson Institute

Ensembling features

rank-provenance-doc-idt N fraction of queries that agree on the filler’s provenance document
per-system-confidence-normedi N system confidence of this query, relative to all its other queries
per-system-slot-fractiont N fraction of this system’s queries that address this slot
per-slot-system-rank N rank based on fraction of this system’s queries for this slot
dates-inconsistent*f B contradicts another date filler, e.g., date-founded after date-dissolved
per-query-string-length N string length relative to other queries for the same entity and filler

clude fillers such as “Washington DC” and “washington
dc”, which should all be considered equivalent when scal-
ing confidences. Thus, we perform filler normalization to
group these fillers into equivalence classes, based on case
insensitivity and ignoring whitespace differences. We did
experiment with other techniques such as string distance,
but found them to have little effect for our approach. Af-
ter filler normalization, weighter implementations assign
weights and confidences to each class of fillers, rather
than each individually.

3 Confidence Scaling

After filtering, we scale the confidences of each remain-
ing SFV query by comparing the outputs of several slot
filling systems. For each output, we assign a weight to
its corresponding confidence value using one of several
weighting schemes. We then aggregate this weighted
probabilistic evidence by optimizing over weighted confi-
dence values, resulting in probabilities for each filler. The
optimization is performed for each entity/slot combina-
tion to produce a normalized confidence for each unique
slot filler. We apply a constrained optimization based ap-
proach originally developed by Predd et al. (2008) for ag-
gregation of forecasts, and first applied to slot filler val-
idation by Wang et al. (2013). For validation of single-
valued slots, we simply take the top-ranked filler, while
for list-valued slots we search for a “gap” between top-
ranked and lower-ranked fillers, and select those above
the gap. This gap is enhanced by our use of an alternate
cost function for list-valued slots. Here we provide a brief
overview of the approach.

3.1 Single-Valued Slots

Given an entity/slot pair, let F' denote the set of dis-
tinct slot fillers from the collection of systems under
consideration. For each filler f € F, we assume that
{(cs(j),wy(4))}; represents the set of confidences pro-
duced by slot filling systems with associated weights (dis-
cussed later). For single-valued slots, we scale the confi-
dence values from slot filling systems by solving the fol-
lowing quadratic program:

m)gnZWf (z; —77)2, (1)
fEF

subject to the constraints

D wp <120, @
fer

where

Wy =Y wy(j) (3)
J

denotes the total weight assigned to f, and
1
e = = 2 wr(i)er(d) 4)
5E

is the weighted average of confidences produced by the
systems. The optimization produces a scaled confidence
for each unique filler that will be used for validation of the
slot. When the confidences generated by the systems do
not violate the constraints, the quadratic program defined
above reduces to weighted averaging. As the constraints
(2) become more active, i.e., ZfeFFf > 1, the filler f
with the largest resulting x y will approach the result of a
weighted majority vote.

3.2 List-Valued Slots

In contrast to the total probability constraint (2) used for
single value slots, we instead added an L; regularization
term to our original quadratic cost function (1) for list-
valued slots:

min|[x|[1 + As Y Wy (2 —77)° (5)
feF

The regularization term |x||; results in a sparse confi-
dence vector from which a subset of answers can be iden-
tified for validation. We also introduced a single param-
eter A\ to trade-off the original quadratic cost and the L
term; the parameter is selected based on training data for
each list-valued slot.

This sparse optimization approach enhances the “gap”
in confidences—i.e., the difference between higher-
ranked and lower-ranked fillers—which we leverage in
validation for list-valued slots. We assume a bimodal dis-
tribution of scaled confidences. After sorting fillers by
decreasing confidence, we find the position ¢ in the list of
confidences where, if we were to partition the fillers at 4,
would minimize an error function of the two partitions—
in particular, for each partition, the sum of absolute differ-
ences of each confidence value with the partition mean.
That is, we select the gap location ¢ that minimizes the
error function

Yoodek—prl (©)

mzinz lej — pm| +
j=1 k=it1

where n is the number of fillers, and p;;r and @y, are the
means of higher and lower ranked confidence partitions,
respectively. For example, for a list of scaled confidences
[0.7, 0.6, 0.6, 0.3, 0.2, 0.2], the optimal gap would parti-
tion the list into two lists [0.7, 0.6, 0.6] and [0.3, 0.2, 0.2],
with an error of 0.267.

3.3 Weighting Schemes

The choice of weights determines how much influence a
particular SFV query will have on the final scaled con-
fidences. Each weighting scheme assigns a weight w;

to each unique filler (f, c¢;) produced by a system (here
we dropped the indexing for instances of the same filler
f from different systems for the ease of presentation).
The overall weight Wy and associated weighted average
confidence ¢y are then computed based on (3) and (4),
respectively, as inputs to the optimization-based scaling
presented in previous sections.

For CONSENSE, we tested three weighting schemes,
in combination with per-team normalization, described
below.

Uniform weighting. This scheme gives equal weight
to all slot fillers from any system and is used in the ab-
sence of additional information. The approach was pre-
viously explored by Wang et al. (2013) and is used as our
baseline. Under the uniform weighting scheme, we as-
sign unit weight to each slot filler. W} is the number of
queries with the filler from any system, and ¢y is simply
the mean of the associated query confidences.

Inverse precision rank (InvRank) weighting. Under
this scheme, we give more weight to systems with higher
precision as measured from training data. In other words,
the weight assigned to each instance of a slot filler is de-
termined solely by the system and its associated relative
precision for the training data. Specifically, we consider a
ranking-based weighting that gives successively decreas-
ing weight to systems in decreasing order of precision. In
cases where where ground truth is not available for the
training data, the same scheme can be implemented us-
ing bootstrapping. For example, surrogate ground truth
may be obtained to determine the precision-based rank-
ing using top-ranked answers with uniform weighting, as
explored in previous work (Wang et al., 2013). However,
for our submissions, we used the preliminary assessed
2015 data for training to set the weights.

Logistic regression (LogReg) weighting. This scheme
assigns weights based on the classifier’s probability of
correctness for the SFV query. Under this scheme, W; is
the sum of probabilities for filler f, and ¢y is the mean of
the associated query confidences. The LogReg weighter
was trained using the same features as the SVM filter
(Section 2.1), although when both the filter and weighter
were used, we split the features between the two.

Per-team normalization. Finally, in concert with our
choice of weighting scheme above, we apply additional
per-team weighting. Under the slot filling evaluation,
teams may make multiple system submissions. We ob-
served that systems submitted by the same team often
produce the same fillers. As a result, fillers submitted
by a team with multiple systems would get higher weight
simply due to the number of submissions rather than by
consensus with other teams’ systems. To address this, we
normalize the filler weights so that each team gets equal

weight. For example, assume team 1 submitted three sys-
tems and team 2 submitted one, and all of team 1’s sys-
tems produced filler f;, while team 2’s system produced
f2. Under uniform weighting, f; would have weight 3
and f, would have weight 1, but after per-team normal-
ization, both f; and fo would have weight 1.

3.4 Team Mappings

As a final note, this year’s SFV evaluation included
additional information about each SF answer’s team
identity—i.e., the system that produced each SF query
answer. Since many of this year’s SF teams participated
in previous TAC KBP evaluations, these identities could
be mapped to the same teams in previous years. These
mappings are useful in a variety of ways, in particular
for predicting known teams’ relative performances in the
2015 evaluation. We could leverage this for some of our
weighting techniques, in particular inverse precision rank
weighting, where we could garner more accurate weight
estimates based on each known team’s previous perfor-
mance. However, JHU/APL did not have access to these
mappings prior to the evaluation, and thus we used a fully
boostrapped approach. Of course, such information is
only useful for teams that participated previously, and
there were many new teams in 2015, so it is unclear how
much using known team mappings would affect the per-
formance of our approach.

4 Validation and Ensembling

In this section, we present our algorithms for validation
and ensembling, as well as for training the A parameters
used in list-valued confidence scaling.

4.1 Validation

Recall that our general strategy for validation is to min-
imize one of our two objective functions, Equations (1)
and (5), to first perform confidence scaling, and then
to retain those fillers with high scaled confidence. For
single-valued slots, we select the single highest confi-
dence filler, while for list-valued slots we search for a
gap using the strategy described in Section 3.2 and retain
fillers above the gap.

First, we present VALIDATE, our algorithm for vali-
dation, as Algorithm 1. As input, it requires the sets of
SF and SFV queries Qsr and Qsry, the set of training
SFV queries T, the weighter implementation W, and the
A values for each slot. Later, we introduce the algorithm
for training A (Algorithm 2). VALIDATE produces R, the
subset of Qsry to be retained, while the remainder are
filtered. After initialization (line 2), we iterate over each
SF query qsr (3) and gather the SFV queries addressing
qsr, as well as their distinct fillers (4—6). Then, for each
distinct filler f, we populate weights w and confidences ©

Algorithm 1 Validate SFV queries.
1: procedure VALIDATE(Qsr, Qsprv, T, W,)

input: Qsr, Slot-filling queries
input: Q sy, Slot-filling validation queries
input: 7', Training SFV queries
input: W, Weighter implementation
input:)\, Per-slot lambda terms
output: R, Subset of Q gy to be retained

2: R + {}

3: for gsr € Qs do

4: subs < subset of Q gy responding to gsp
5: slot < SLOT(gsF)

6: Foups < {FILLER(S) : s € subs}

7: for f € Fups do

8: subsy < FILLERSET(subs, {f})
9: wy, Ty < W(subsy)

10: if slot is single-valued then

11 x < OPTSINGLE(W,C)

12: fi1 < f € Foups with largest x¢
13: R < RUFILLERSET(subs, {f1})
14: else

15: prec < PRECISION(slot, T')

16: nf < |Fsups| - prec

17: x < OPTLIST(W,C, nf, As)

18: gap < FINDGAP(x)

19: Fo + {f € Foups : x5 > gap}
20: R + RUFILLERSET(subs, F¢)
21: return R

function FILLERSET(Q, F))
return {q € Q : FILLER(q) € F'}

for use in confidence scaling, using the Weighter imple-
mentation W (7-9). Note that the FILLERSET function
returns the set of queries g such that ¢’s filler is one of the
given fillers F'.

We then proceed with confidence scaling, which will
minimize our scaling objective function to produce scaled
confidences x. For single-valued slots, we execute
OPTSINGLE, which returns the x that minimizes Equa-
tion (1), our single-valued objective function (line 11).
We take the top-ranked filler f; as measured by the
largest corresponding s, and add to R all the SFV
queries with f; as their fillers (12-13). For list-valued
slots, we first compute n f, the expected number of cor-
rect fillers for ggr, as the product of | Fy,s|, the number
of distinct fillers for ggp, and the precision of slot as
measured from training data 7" (15-16). We then execute
OPTLIST to minimize Equation (5), our list-valued ob-
jective function (17). Recall that OPTLIST requires n f
to set optimization constraints, as well as the A\ term for
slot for use in the objective function. After retrieving x,
we search for a gap in the scaled confidences to establish

a minimum confidence threshold. We then select the set
of fillers Fiz whose corresponding ¢ is above the gap,
and add to R all the SFV queries whose filler is in Fgg
(18-20). At the end of VALIDATE, R contains our re-
tained SFV queries, and we discard the remainder.

Note that VALIDATE always retains at least one SFV
query for each SF query—those with the top-ranked filler
for single-valued slots, and one or more above the gap for
list-valued slots. As a result, in general, CONSENSE as
a whole tended to emphasize recall over precision, as our
findings in Sections 5 and 6 confirm.

4.2 Ensembling

To generate ensembled output, we select a subset of the
SFV queries validated by VALIDATE. Our ensembled
output consists of a subset of the validated output. Re-
call that VALIDATE produces for each SF query gsr a
set of SFV queries QQgpy deemed to be valid. For en-
sembling, we group the Qgpy into equivalence classes
based on their fillers, and select only one ggpy from
each class for our ensembled output—in particular, the
qsry Wwith largest system-determined confidence. In
other words, rather than retaining all Qgry, we select
one gspy for each unique filler in Q gy . This avoids re-
dundant fillers. For example, a SF query gsr may ask for
the per:cities_of_residence for an entity e, and the
corresponding validated) sy may contain ¢; = “Wash-
ington DC” filler, and ¢, q3, g4 = “Baltimore MD” filler.
In this case, we would select ¢; and the one of go, g3, q4
with highest confidence for our ensembled output.

4.3 Training A

Recall from Section 3.2 that A controls the sparsity of our
optimization solution for list-valued slots. A smaller A
will create a larger gap between scaled confidences, and
hence will reduce the number of validated SFV queries.
The challenge is to select a A, for each slot s that provides
an appropriate level of sparsity for s. A A that is too
small will filter out too many SFV queries, and vice versa.

Hence, to choose a good A for a slot s, we must de-
termine an appropriate number of fillers for s. To address
this challenge, we first posit that different SF systems will
have different accuracies for different slot types, which
we also observed in our experiments (Section 5.1). We
seek to estimate the precision of SF systems for fillers of
s, based on SF systems’ overall precision for s as mea-
sured from training data. The precision will tell us how
many correct fillers we expect to see for s, and we select
a \s that produces a similar number of validated fillers.
In other words, for slots with higher precision, we will
accept more fillers, and vice versa. We performed a lin-
ear search over)\ values based on empirical evidence; see
Section 5.4 for more details.

Algorithm 2 presents TRAINLAMBDA, our algorithm

Algorithm 2 Train lambdas for list-valued slots.
1: procedure TRAINLAMBDA(Qsr, Qsrv,T, W, L)

input: Qgsp, Slot-filling queries
input: Q) sy, Slot-filling validation queries
input: 7', Training SFV queries
input: W, Weighter implementation
input: L, List of lambda values to check
output: A\, Lambda values for list-valued slots

2: Spist < set of list-valued slots

3: for s € Sj;5¢ do

4: prec < PRECISION(s, T')

5: exps < prec- |SLOTSET(T, s)|

6: nfs <0, s <0

7: for ! € L do

8: AL« lforall s € Sy

9: ret < VALIDATE(Qsr, Qsrv, T, W, \)
10: for s € Sj;4; do

11: d + exps — |SLOTSET(ret, s)]
12: if |d| < nf then

13: nfs « |d, As 1

14: return \

function SLOTSET(Q, s)
return {q € Q : SLOT(q) = s}

for training the per-slot A parameters used in Equa-
tion (5). Inputs to TRAINLAMBDA are the same as for
VALIDATE (Algorithm 1), except that in place of Ais L, a
list of A-values over which to search, and it outputs A\. We
begin by initializing several values for each list-valued
slot s (lines 3—6): exps, which holds the expected num-
ber of correct fillers for s, computed as the total number
of fillers for s multiplied by the precision of slot s; and
nfs and Ag, the current closest number of fillers to exp;
and the corresponding A value that generated the fillers.
Note that SLOTSET returns the set of queries in () whose
slot matches s. Then, we begin the search over A values
in L. For each | € L, we call VALIDATE using [as A
for all slots (8-9). Then, for each slot s, we compute the
difference between the number of fillers produced for s
in total, and the expected number of fillers for the slot
exps (11). If the difference is smaller than our previous
best for s, we save the new best difference and its corre-
sponding lambda value [(12-13). After iterating through
all lambdas value L, we have the final)\ values for each
list-valued slot.

5 Preliminary Experiments

We performed experiments to assess CONSENSE’s over-
all accuracy in terms of our five submissions to the 2015
SFV evaluation. These submissions consisted of differ-
ent combinations of CONSENSE’s filtering and weight-

Table 2: Statistics by slot and filler type for the combined 2013
and 2014 SFV evaluation datasets.

Count Precision
Query type
All 94340 0.2625
Single 18381 0.3541
List 75959 0.2404
Person 65660 0.2628
Org 28680 0.2619
Filler type
Person name 25346 0.2446
Org name 18480 0.2045
Location 18026 0.2293
Date 4253 0.3158
Number 2737 0.5963

ing schemes (Section 3.3). Our five submissions are:

1. “Uniform”: No filter, uniform weighting
“InvRank”: No filter, InvRank weighting
“LogReg”: No filter, LogReg weighting
“SVM+LogReg”: SVM filter, LogReg weighting
“SVM+Uniform”: SVM filter, uniform weighting

S

Due to a lack of final SFV 2015 assessment data at
the time of publication, we performed two sets of pre-
liminary experiments to measure CONSENSE’s perfor-
mance. For our first set of experiments, described in this
section, we measured CONSENSE’s performance as if
had it been entered into the 2014 SFV evaluation. Thus,
for training in this evaluation, we used only the SFV
2013 and SFV 2014 preliminary assessments, the latter
of which constituted 10% of the assessments. We used
the remaining 90% of 2014 assessments as performance
test data. Later, in Section 6, we present CONSENSE’s
performance characteristics on a small subset of assessed
2015 data provided by the TAC KBP 2015 organizers.

For our experiments, we used the standard precision,
recall, and f-score measures, as well as accuracy (i.e., the
Rand index (Rand, 1971)), which provides a view of per-
formance on incorrect SFV queries. For assessing cor-
rectness, we considered both correct and redundant SFV
queries (as judged by human annotators) as positive ex-
amples, and the remainder as negative.

5.1 Datasets

First, we collected statistics related to our evaluation
dataset, i.e., the combined 2013 and 2014 SFV data. Ta-
ble 2 contains the results. We counted the numbers of
SFV queries in various groups of slots broken down by
category, as well as the assessed precisions for each cate-
gory. Query type categories included single-valued, list-
valued, person-specific (i.e., slots for person queries such

Table 3: Validation performance of CONSENSE’s different fil-
tering and weighting schemes. Best results are in bold.

Method Precision Recall F-score Accuracy
Uniform 0.4789 0.8468 0.6118 0.7378
InvRank 0.5902 0.6626 0.6243 0.8054
LogReg 0.5310 0.7568 0.6241 0.7775
SVM+Uniform 0.5159 0.8005 0.6274 0.7680
SVM+LogReg 0.5416 0.7411 0.6258 0.7837

Table 4: Ensembling task performance of CONSENSE’s differ-
ent filtering and weighting schemes. Best results are in bold.

Method Precision Recall F-score
Baseline systems

Mean 0.3144 0.1631 0.1979
Median 0.3232 0.1698 0.2146
Max 0.7711 0.3177 0.3960
CONSENSE

Uniform 0.2627 0.5385 0.3531
InvRank 0.3799 0.3936 0.3867
LogReg 0.3121 0.5095 0.3871
SVM+Uniform 0.2891 0.4945 0.3649
SVM-+LogReg 0.3256 0.4655 0.3832

as per:age) and organization-specific (slots for organi-
zation queries such as org:parents). We also provide
statistics for the types of fillers of each slot, including
person names, organization names, locations, dates, and
numbers. Precision over all queries was around 0.25, in-
dicating the difficulty of the SF and SFV tasks. Also, note
that single-valued slot queries had much higher precision
than list-valued queries, perhaps to be expected due to a
larger number of fillers. Finally, number and date slots
had higher than average precision. This may be due to
easier formatting.

5.2 Validation

Next, we measured CONSENSE’s performance for the
validation task, listed in Table 3. Note that despite all
submissions having f-scores between 0.61-0.63, the pre-
cision and recall vary greatly, between 0.48—0.59 and be-
tween 0.66-0.85 respectively. These ranges indicate suit-
ability for different use cases. Comparing Uniform and
InvRank to their SVM variants, we see small increases in
f-score, indicating some utility in filtering. Interestingly,
InvRank weighting produced highest precision, even over
the SVM filtering variants.

F-score ratio
o o —_
> » o

=
N
T

<
o
:

0.0

“System

Figure 2: Ratio of slot filling system F-scores to CONSENSE
submission 4, SVM + LogReg approach. Only one team out-
performs the ensemble.

5.3 Ensembling

Next, we measured CONSENSE’s performance on the
ensembling task and compared it to the original slot fill-
ing system submissions. We evaluated CONSENSE’s en-
sembled output using the same SF scoring program used
for the original systems. Table 4 presents performance
results for CONSENSE’s variants, with summary statis-
tics for baseline system performance. CONSENSE ap-
proaches or outperforms all the baseline systems for all
evaluation metrics by a wide margin in terms of mean and
median. In particular, the CONSENSE variants greatly
improve on recall over all baseline systems, while main-
taining a comparable precision. While not unexpected
given the ensembling task’s purpose, it does corroborate
CONSENSE’s focus on recall. Comparing ensembling
with CONSENSE’s validation performance (Table 3), we
see similar balances between precision and recall for the
same filtering and weighting strategies. Again, this indi-
cates CONSENSE’s applicability to a range of use cases.
Continuing the analysis, Figure 2 compares CON-
SENSE to all the slot filling systems in terms of f-score
performance. For this analysis we focused on submission
4, with SVM filtering and LogReg weighting. Each point
represents a slot filling system and its value is the ratio of
CONSENSE’s f-score and the system’s f-score. Systems
are divided into groups based on the team that submitted
them. CONSENSE outperforms all baseline systems in
terms of f-score, except for one variant. This variant had
higher precision, while CONSENSE had higher recall.

5.4 Lambdas

We investigated the A values produced by CONSENSE’s
pipeline, trained using a combination of 2013, 2014 and
preliminary 2015 data, and using submission 4 (SVM
filtering and LogReg weighting). For each slot, we
searched a range of A\ values between 0.1 and 3.0, de-

2.5 s .
2.0+ .
< 1.5p%% =
[] []
1.0 ® . ve®) Y
.. {]
0.5} e .
[]
[]
O[S) i 1 i 1 1
.00 0.05 0.10 0.15 0.20 0.25 0.30
Precision

Figure 3: Precision and lambda values for list-valued slots, mea-
sured from training data.

termined empirically by examining the precision values
and number of fillers. Figure 3 shows precision plot-
ted versus)\, where each data point represents a differ-
ent list-valued slot. We only plot slots with at least 100
assessed answers—in total, 27 out of 61 slots. In the
figure, the precision ranges from 0.024 (org:parents)
to 0.247 (gpe:residents_of_country), and A\ val-
ues range from 0.2 (gpe:births_in_city) to 2.4
(org:subsidiaries). The precisions for each slot are
relatively low, indicating the difficulty of slot filling in
general. The precision values and their corresponding
A are slightly negatively correlated, although not signifi-
cantly. Also, the mean and median A were approximately
1.0, indicating a balance between the sparsity term and
the scaling term.

5.5 Feature Importance

We analyzed which features presented in Table 1 were
most useful in CONSENSE’s filtering and scaling. To
do so, we used each feature’s logistic regression coeffi-
cient as a measure of importance. We ranked features by
decreasing coefficient absolute value, and computed the
median ranks of each feature group (filler, provenance,
data type, ensembling). Table 5 presents our results. We
see a clear progression of importance, with ensembling
features being most useful by a wide margin. This con-
firms that ensembling across queries and systems serves
as CONSENSE’s most useful tool for SFV. Interestingly,
filler features were ranked least important, essentially
negating the most visible aspect of SFV queries.

6 SFV 2015 Experiments

In the previous section, we presented results of experi-
ments performed as if CONSENSE had been submitted
to the TAC SFV 2014 evaluation. Here, we show analy-
sis results based on CONSENSE’s performance on as-
sessed SFV 2015 data. Note that at the time of writ-

Table 5: Importance of CONSENSE’s features, measured by

ranks of classifier coefficients.

Feature type

Median rank

Ensembling 10
Data type 19
Provenance 28
Filler 32

Table 6: 2015 validation and ensembling performance for CON-
SENSE’s different filtering and weighting schemes. Best results
are in bold. Ensembling precision and recall information were

not available.

Precision Recall F-score
Validation
Uniform 0.2504 0.4042 0.3092
InvRank 0.2443 0.2452 0.2448
LogReg 0.2691 03372 0.2993
SVM-+LogReg 0.2648 03036 0.2828
SVM+Uniform 0.2542 0.3811 0.3050
Ensembling
Uniform - - 0.4468
InvRank - - 0.3493
LogReg - - 0.4320
SVM+LogReg - - 0.3924
SVM+Uniform - - 0.4138

ing, only a small subset of the data from TAC SFV 2015
has been assessed by evaluators, so these results should
be considered preliminary. Also, we excluded multi-hop
queries (see the terminology overview in Section 1) from
the evaluation since they were not our primary focus in
designing CONSENSE. Finally, recall from Section 3.4
that additional per-team mapping information was avail-
able. However, since JHU/APL did not have access to
this information prior to the evaluation, we have not re-
run our system to exploit this information. Were we to
make use of these mappings, our results may significantly
improve.

6.1 Validation and Ensembling

We measured 2015 validation and ensembling perfor-
mance; results are in Table 6, with best performance in
bold. Note that at the time of writing, ensembling preci-
sion and recall information were not available in the pre-
liminary 2015 evaluation results. First, we see that the
uniform weighting scheme had the best overall perfor-
mance for both validation and ensembling, in particular
for validation recall, over the other schemes which were
based on training data from previous years. Comparing
with the previous evaluation, we see greatly reduced val-

Table 7: Validation performance for single- and list-valued
slots. Best results are in bold.

Precision Recall F-score
Single-valued
Uniform 0.4611 0.2869 0.3538
InvRank 0.4819 0.2999 0.3697
LogReg 0.4986 0.3103 0.3825
SVM+LogReg 0.4583 0.2757 0.3443
SVM+Uniform 0.4325 0.2602 0.3249
List-valued
Uniform 0.2251 0.4493 0.2999
InvRank 0.1949 0.2241 0.2085
LogReg 0.2324 0.3475 0.2785
SVM+LogReg 0.2317 0.3143 0.2668
SVM+Uniform 0.2318 0.4277 0.3006

idation performance, and approximately equal or slightly
better ensembling performance. Since the non-uniform
methods were trained on previous years’ data, and this
year’s data involved many new systems with different
characteristics, we attribute these results to the possible
overfitting of weighting parameters in the scaling pro-
cess, as well as aggressive filtering which reduced recall
in some cases. However, more analysis is needed to de-
termine the specific causes.

6.2 Single and List-Valued Slots

Next, we separated queries and results by slot, into
single-valued and list-valued groups, and measured per-
formance for each group. Table 7 presents our results.
Generally, we observe higher precision for single-valued
slots, and higher recall for list-valued slots. Also, all
weighting methods produced similar performance for
single-valued slots, with LogReg having best perfor-
mance across the board. In contrast, the performance
varied widely for list-valued slots, in particular for re-
call, with the Uniform and SVM+Uniform schemes hav-
ing much higher recall than the other methods. As before,
we attribute this to overfitting based on previous years’
data.

6.3 Slot Categories

We then performed a fine-grained slot category analysis
using different subsets of slots with shared characteris-
tics.

For this analysis, we used our best-performing 2015
submission (i.e., the Uniform method) and measured val-
idation performance in each category. Table 8 contains
our results. We analyzed categories based on slot type
(i.e., person (PER), organization (ORG), and geopoliti-
cal entity (GPE)) and based on filler type (i.e., location

Table 8: Per-category validation performance using uniform
weighting. Categories are listed by decreasing F-score.

Precision Recall F-score
Slot type
PER (single value) 0.5279 0.6910 0.5985
PER 0.4135 0.5794 0.4826
ORG 0.3208 0.2862 0.3026
ORG (single value) 0.4090 0.2273 0.2922
GPE 0.1798 0.4017 0.2484
GPE (single value) 0.4444 0.0661 0.1151
Filler type
CITY NAME 0.6476 0.6602 0.6538
NUMERIC 0.5556 0.7018 0.6202
LOC NAME 0.5073 0.5939 0.5472
COUNTRY NAME 0.4522 0.6842 0.5445
DATE 0.4507 0.6038 0.5161
STATE NAME 0.4390 0.4737 0.4557
ORG NAME 0.2737 0.4273 0.3337
HUMAN NAME 0.1986 0.3778 0.2604

name, human name, organization name, numeric, and
date fillers). For slot type categories, we also measured
single-valued slots separately. Categories are listed in de-
creasing order of F-score. For slot types, CONSENSE
performed best on PER slots, followed by ORG and GPE
slots. For filler types, location, numeric and date filler
slots had best performance. These numbers reflect the rel-
ative difficulties of slot filling for CONSENSE on these
categories. Note that many of the individual categories
have fairly high F-scores, which is promising. Future
work could include focused research on the more diffi-
cult slots, namely ORG and GPE types.

7 Related Work

Previous work in slot filling validation and ensembling
has explored a variety of approaches. Teams have used
rule-based validation for filtering, or as a classifier fea-
ture for slot fillers ((Tamang et al., 2012; Cheng et al.,
2013)). Such rule-based techniques have also used to
try to reduce SFV assessment errors, such as Angeli
et al. (2013) who employed more sophisticated rule-
based checking. Variants of majority voting have also
been explored (Sammons et al., 2014), including for base-
line comparisons (Viswanathan et al., 2015). Teams
have used rich textual entailment to confirm whether slot
fillers can be inferred from their provenance documents
(e.g., (Cheng et al., 2013; Sammons et al., 2014)). Yu
et al. (2014) have used a multi-dimensional truth-finding
model (MTM), validating based on multiple credibility
scores.

Results from Tamang et al. (2012) indicated that con-

fidence values are generally meaningful. The most sim-
ilar work to our approach is that of Viswanathan et al.
(2015), who used confidence-based ensembling based on
stacking features from system output, such as confidences
and provenance. However, they did not explore separate
strategies for single and list-valued slots. Our previous
work did not use filtering or classifier-based weighting
for confidence scaling, and used a simpler approach for
list slots (Wang et al., 2013).

Finally, two other teams participating in 2015 TAC
KBP SFV also used fusion approaches that relied pri-
marily on slot filling confidence outputs, rather than deep
source document analysis. Both teams used stacked en-
sembling, and one of these teams also used JHU/APL’s
2013 approach (Wang et al., 2013) to help normalize
any unknown team system confidences. However, both
systems had access to current and previous participating
team names, and thus the corresponding previous year’s
teams’ performances. JHU/APL did not have access to
these mappings before the evaluation.

8 Conclusion

CONSENSE demonstrates the effectiveness of confi-
dence scaling for validation and ensembling. Our opti-
mization formulation is scalable, and can be generalized
to streaming settings. We have some directions for fu-
ture work. CONSENSE’s current design has no facil-
ity for rejecting all fillers for a slot, regardless of how
many systems produced the fillers, or how low their con-
fidences are. This greatly benefits CONSENSE’s recall at
the cost of precision. We could improve this by threshold-
ing or other methods. Also, though we did use features
based on the provenance document, more detail could be
gleaned from the document’s content. Future work could
also include focused research on the more difficult slots
per Section 6.3, namely ORG and GPE types. Finally, as
mentioned in Section 3.4, leveraging per-team mappings
could greatly benefit the performance of our weighting
schemes, in particular the inverse precision rank scheme.

References

Angeli, Gabor, Arun Chaganty, Angel Chang, Kevin
Reschke, Julie Tibshirani, Jean Y. Wu, Osbert Bastani,
Keith Siilats, and Christopher D. Manning. 2013. Stan-
ford’s 2013 KBP system. In TAC’13: Proceedings of
the 6th Text Analysis Conference. Gaithersburg, MD.

Cheng, Xiao, Bingling Chen, Rajhans Samdani, Kai-
Wei Chang, Zhiye Fei, Mark Sammons, John Wieting,
Subhro Roy, Chizheng Wang, and Dan Roth. 2013.
Illinois Cognitive Computation Group UI-CCG TAC
2013 entity linking and slot filler validation systems.
In TAC’13: Proceedings of the 6th Text Analysis Con-
ference. Gaithersburg, MD.

Predd, Joel B., Daniel N. Osherson, Sanjeev R. Kulkarni,
and H. Vincent Poor. 2008. Aggregating probabilistic
forecasts from incoherent and abstaining experts. De-
cision Analysis 5(4):177-189.

Rand, William M. 1971. Objective criteria for the evalu-
ation of clustering methods. Journal of the American
Statistical Association 66(336):846—850.

Sammons, Mark, Yangqiu Song, Ruichen Wang, Gourab
Kundu, Chen-Tse Tsai, Shyam Upadhyay, Siddarth
Ancha, Stephen Mayhew, and Dan Roth. 2014.
Overview of UI-CCG systems for event argument ex-
traction, entity discovery and linking, and slot filler
validation. In TAC’14: Proceedings of the 7th Text
Analysis Conference. Gaithersburg, MD.

Surdeanu, Mihai. 2013. Overview of the TAC2013
knowledge base population evaluation: English slot
filling and temporal slot filling. In TAC’13: Proceed-
ings of the 6th Text Analysis Conference. Gaithersburg,
MD.

Tamang, Suzanne, Zheng Chen, and Heng Ji. 2012.
CUNY BLENDER TAC-KBP2012 entity linking sys-
tem and slot filling validation system. In TAC’I2:
Proceedings of the Text Analysis Conference. Gaithers-
burg, MD.

Viswanathan, Vidhoon, Nazneen Fatema Rajani, Yinon
Bentor, and Raymond Mooney. 2015. Stacked ensem-
bles of information extractors for knowledge-base pop-
ulation. In ACL’15: Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers).
Beijing, China, pages 177-187.

Wang, I-Jeng, Edwina Liu, Cash Costello, and Christine
Piatko. 2013. JHUAPL TAC-KBP2013 slot filler vali-
dation system. In TAC’13: Proceedings of the 6th Text
Analysis Conference. Gaithersburg, MD.

Yu, Dian, Hongzhao Huang, Taylor Cassidy, Heng Ji,
Chi Wang, Shi Zhi, Jiawei Han, Clare Voss, and Ma-
lik Magdon-Ismail. 2014. The wisdom of minority:
Unsupervised slot filling validation based on multi-
dimensional truth-finding. In COLING’14: Proceed-
ings of the 25th International Conference on Computa-
tional Linguistics: Technical Papers. Dublin, Ireland,
pages 1567-1578.

