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Abstract

This paper describes the LODIE team (from
the OAK lab of the University of Sheffield)
participation at TAC-KBP 2015 for the Entity
Discovery task in the Cold Start KBP track.
We have taken a cross-document coreference
resolution approach that starts with Named
Entity Recognition to locate and classify men-
tions of named entities, followed by a clus-
tering procedure that groups mentions refer-
ring to the same entity. Our primary interest
was studying different features and their ef-
fect on the clustering process, as well as scal-
able methods to cope with very large data. We
experimented with several feature combina-
tions and conclude that the best results are ob-
tained using features based on entity surface
forms and distributed word embeddings. To
cope with large scale data, the clustering pro-
cess takes a two-step approach to break data
to smaller batches. Our method on the 2015
evaluation dataset obtains a best CEAF men-
tion F-measure of 63.21.

1 Introduction

The TAC Cold Start KBP track aims to build a
Knowledge Base (KB) from scratch using a given
document collection and a predefined schema for the
entities and relations that will compose the KB. This
year the Cold Start KBP consists of two tasks: En-
tity Discovery (ED) and Slot Filling (SF). The goal
of the ED task is to create a KB node for each person
(PER), organization (ORG) and geo-political entity
(GPE) mentions in the document collection, and to

1Ranked as #3 by the CEAF mention F-measure.

cluster all KB nodes that refer to the same entity.
The goal of the SF task is populate specific entities
with specific attributes that are to be extracted from
the same document collection.

The LODIE team2 from the OAK research lab of
the University of Sheffield participated in the ED
task in the Cold Start track. Compared to the pre-
vious year, the ED task is essentially the same as
the TAC KBP 2014 English Entity Discovery and
Linking task, except that (1) all entity mentions are
clustered rather than linked to an existing reference
KB, and (2) a much larger document collection is
to be processed (millions of mentions). Thus a key
challenge is to make the system scalable with large
dataset.

We have taken a cross-document coreference ap-
proach that consists of two stages: (1) Named Entity
Recognition (NER) to identify mentions of entities
in the document collection and classify them into
one of the three types; and (2) clustering named en-
tity mentions that refer to the same entity. Our study
focuses on the second stage, while for the first stage
we apply a number of state-of-the-art approaches
with limited adaptation.

It is known that clustering on very large datasets
suffers from two major problems. First, the classic
approach based on greedy agglomerative clustering
techniques that utilizes pairwise vector comparisons
typically requires Opk2q computations (Rao et al.,
2010; Singh et al., 2011). This can quickly become
intractable as the number of mentions (k) increases3.

2Representing the project team Linked Open Data for Infor-
mation Extraction (Zhang et al., 2014)

3Over 2 million mentions are extracted in this year’s dataset.



On the other hand, the problem worsens with high-
dimensional sparse feature vectors, which are com-
mon when the traditional ‘bag-of-words’ or ‘one-
hot’ feature model is applied on very large dataset.

Our work in this competition has focused on solv-
ing the above challenges. For the first problem,
we adopt a heuristic based approach that divides
the clustering process into two stages. First, we
run a light-weight, efficient string-similarity based
approach to group mentions into ‘macro-clusters’.
Next, agglomerative clustering is performed within
the coarse-grained clusters to create smaller clusters,
achieving the final result.

For the second problem, we exploit the idea on
learning ‘word embeddings’ (Mikolov et al., 2013)
to build a low-dimensional, distributed feature rep-
resentations of name mentions, which makes com-
putation more tractable.

In the remainder of this paper, we firstly present a
brief overview of related work (Section 2), then de-
scribe our proposed method in details (Sections 3,4,
5) followed by experiment (Section 6) and finally
conclusion (Section 7).

2 Related work

Although the ED task is related to many areas of
Natural Language Processing (NLP) and Informa-
tion Extraction (IE) research, here we focus on the
area of coreference resolution. Given a collection
of documents and the collection of entity mentions
from them, the goal of coreference resolution is to
cluster the mentions such that all mentions in the
same cluster refer to the same entity. It is an im-
portant task in NLP and IE to overcome synonymy
and polysemy issues in natural language; i.e. the
same entity can have different surface forms or the
same surface form can refer to different entities in
different context.

Coreference resolution is required for both
within- and across-document context. While signif-
icant progress has been made in within-document
coreference (Haghighi and Klein, 2007; Bengt-
son and Roth, 2008; Haghighi and Klein, 2009;
Haghighi and Klein, 2010), much less has been
done for the larger problem of cross-document
coreference (Singh et al., 2011). Cross-document
coreference poses additional challenges. First, the

‘one-sense-per-name’ assumption adopted in many
within-document coreference methods is unlikely to
work in the cross-document setting, as it is highly
likely to encouter different entities referenced by
the same name in a reasonably large corpus (Rao
et al., 2010). Further, the most commonly used
approach based on agglomerative clustering often
fails to scale up to cross-document context. This is
because such methods (Bagga and Baldwin, 1998;
Mann and Yarowsky, 2003; Gooi and Allan, 2004;
Baron and Freedman, 2008) rely on pairwise simi-
larity comparisons between name mentions and eas-
ily become intractable as the number of mentions
increases. Also, the widely used ‘bag-of-words’
model for feature representation results in very high-
dimensional and sparse feature vectors that increase
computation.

To address these issues, Mayfield et al. (2009)
applied pre-processing including solving within-
document coreference, and using heuristics to filter
out unlikely coreferent pair of mentions. Such mea-
sures help reduce the number of computations. Rao
et al. (2010) proposed an online algorithm that op-
erates in a streaming setting, where input mentions
are passed in stream and assigned greedily to enti-
ties. Singh et al. (2011) used a distributed inference
technique and a hierarchical model of coreference to
exploit parallelization.

3 Method overview

The workflow of the proposed method consists of
two stages. The document collection firstly passes
through an NER component (Section 4) that extracts
and classifies mentions of named entities from the
documents. This process has the time complexity
of Opdq where d is the number of documents in the
collection.

The mentions are then passed to a coreference
component (Section 5) that consists of two sub-
steps. The first step is a light-weight clustering pro-
cess that groups mentions based on string similar-
ity (Section 5.1). We call the clusters created in
this step ‘macro-clusters’. The complexity of this
process is Opklogpkqq where k is the number of
mentions belonging to the same entity type. In the
second step, each macro-cluster that contains men-
tions from more than one documents is passed to



a further agglomerative clustering process (Section
5.2) whose goal is to further cluster mentions within
the macro-cluster to n (automatically determined)
optimal clusters. We tried different feature repre-
sentation models for this process, including bag-of-
words, distributed continuous representations based
on word embeddings, and the combination of both.
Macro-clusters containing mentions only from one
document are left as-is, since we hypothesize ‘one-
sense-per-name’ within each document.

Within each macro-cluster, the complexity is
Opk12q, where k1 is the number of mentions within
that macro-cluster. Since k1 is much smaller than the
total number of mentions k of the same type in the
entire collection, and that only a fraction of macro-
clusters needs to be re-computed, this is much more
tractable.

One limitation of this approach is its limited abil-
ity to group different name mentions referring to the
same entity, which we will discuss later.

4 Named Entity Recognition

The NER component has the goal to identify and
classify named entity mentions in the documents.
Named Entities (Grishman and Sundheim, 1996)
are those expressions that refer to people, organi-
zations, and geographic locations, although fine-
grained classification are also used. For the purpose
of this work we use the Stanford NER (Finkel et al.,
2005), complemented with two additional modules
to improve the extraction of GPE and PER.

Stanford NER Standard Standford NER is a
CRF-based (Lafferty et al., 2001) statistical NER
system, which incorporates constraints to capture
non-local structure of entities, by using Gibbs sam-
pling (Finkel et al., 2005). Its implementation4

comes with recognition models trained using the
CoNLL 2003 English training data5, that annotate
entities of PER, ORG and Location (which we con-
sider equivalent to GPE). This standard model is
well suited to extract entities from news articles, but
fails to recognize some entities in colloquial texts,
such as forum posts.

4http://nlp.stanford.edu/software/
CRF-NER.shtml

5http://www.cnts.ua.ac.be/conll2003/ner/

Stanford NER Re-trained To cope with collo-
quial texts that represent a large proportion of the
TAC KBP data, we re-train Stanford NER using only
the discussion forum data from the training dataset
of the TAC2014 English Entity Discovery and Link-
ing task (EDL).

Gazetteer based GPE annotation To improve the
performance of GPE extraction, we implement a
simple gazetteer based extractor. We obtained loca-
tion gazetteers from GATE6 listing names such as
cities, constituencies, countries, country abbrevia-
tions, country adjectives, regions, states. The extrac-
tor then performs lookup by exact string matching.

Ad-hoc rules Our further analysis of the TAC2014
EDL task shows that a fair amount of usernames are
considered as PER entities and are present in struc-
tured elements of the discussion forum documents.
For example, A poster’s username can be embedded
as an attribute in an XML element. These can be eas-
ily extracted by rules but pose additional challenges
to the statistical NER methods. Therefore we imple-
ment several rules to capture frequently found struc-
tured templates in such documents to extract these
usernames to complement the extraction of PER en-
tities.

We then follow some heuristics to combine these
different NER modules. The Stanford NER Stan-
dard and gazetteers are applied to any documents;
the Stanford NER Re-trained and ad-hoc rules are
only applied to discussion forum data (which are
identifiable by file names in the dataset). The out-
put from all modules are merged. In case of con-
flicts of types, we retain only the most ‘preferrable’
module with the order of preference as: ad-hoc
rules, Stanford NER Re-trained for forum discussion
data and Stanford NER Standard for other data, and
gazetteers. In case of conflicting boundaries within
the same type, we retain only the longest extraction.

5 Cross-document Coreference

All name mentions extracted and classified be-
fore are then passed to cross-document coreference,
which starts with a lightweight clustering process
based on string similarity matching to create macro-
clusters. This is then followed by an agglomera-

6https://gate.ac.uk



tive clustering process that effectively splits macro-
clusters containing mentions from different docu-
ments into final, smaller and more fine-grained clus-
ters.

5.1 String similarity clustering

The goal of string similarity clustering is two-fold.
The first is to cluster name mentions using a light
process, focusing on the detection and conflation of
entity names (e.g., due to lexical and orthograph-
ical differences, abbreviations, acronyms). Intu-
itively, similar names are likely to refer to the same
named entity. The second is to ‘scale down’ the data
such that they are manageable by subsequent pro-
cesses. In our case, we hypothesize that string sim-
ilarity clustering can ‘over-cluster’ and the subse-
quent agglomerative clustering step is applied to fur-
ther break down the macro-clusters. Alternatively,
one may also consider each macro-cluster as a sin-
gle data point, which is to be further grouped.

Our string similarity clustering is an iterative pro-
cess shown in Algorithm 1. In each iteration, M de-
note the pool of remaining name mentions belong-
ing to the same type. We start with taking a random
mention m P M to form a new cluster Cm (line 4
and 5), with the mention being the cluster ‘centroid’.
Then for every other mention m1 P M,m1 ‰ m,
we compute a string similarity score spm,m1q. If
the score passes a threshold T , we add m1 to Cm
and remove m1 from M . By the end of an itera-
tion, Cm is added to the list of clusters to output
(C) and the pool of remaining name mentions would
have a size of |M | ´ |Cm|. This is repeated until
the pool is empty. The algorithm avoids pair-wise
computation of all pairs candidates since the pool
of name mentions can be reduced gradually during
the iterations, leading to an overall runtime com-
plexity of approximately Opklogpkqq where k is the
total number of name mentions of a given type at
the beginning. Although the algorithm is essentially
non-deterministic, it is not necessarily an issue as
we expect string similarity clustering to over-cluster
and the subsequent agglomerative clustering process
may partially recover this.

To compute string similarity, we use different
measures for different named entity types: the Lev-
enshtein distance (LD) (normalized by maximum
length) for ORG and GPE; and the Jaro-Winkler

Algorithm 1 String similarity clustering
1: Input: M , T
2: Output: macro-clusters C
3: while M ‰ H do
4: mÐ drawpMq
5: Cm Ð createClusterpmq
6: for all m1 PM,m1 ‰ m do
7: if spm,m1q ě T then
8: Cm Ð Cm Y tm

1u

9: M ÐMztm1u
10: end if
11: C Ð C Y Cm
12: end for
13: end while

Name mention 1 Name mention 2 Score
Flair, Rick “The Natureboy” Flair, Natureboy 0.852
Obama, Barak Hussein Obama, Barak 0.947
Erving, Dr. J. Erving, J. 0.949
David Milliband Ed Milliband 0.792

Table 1: Examples of JW Similarity scores for PER NE
names input

Name mention 1 Name mention 2 Score
Dept of the Treasury Department of the Treasury 0.769
AB Elektronik GmbH AB ELECTRONIK GMBH 0.944
Ting Tsi River Tingtze River 0.714
Norwich Norway 0.571

Table 2: Examples of LD Similarity scores for ORG and
GPE names input

(JW) distance (normalized by the longest common
prefix) for PER. These are chosen as empirically it
has been shown that different measures perform dif-
ferently for different types of named entities (Cohen
et al., 2003; Magnani and Montesi, 2007; Medvedev
and Ulanov, 2011).

Tables 1 and Table 2 show examples of similarity
scores given by the two different measures. Indeed,
even with very high threshold, string similarity clus-
tering can still over-cluster.

5.2 Agglomerative clustering

Next, we identify macro-clusters containing name
mentions from different documents, and run ag-
glomerative clustering within these macro-clusters
to create more fine-grained clusters.

We hypothesize ‘one-sense-per-name’ within in-
dividual document but not across documents (i.e.,



‘Mr Blair’ are very likely to refer to the same person
in the same document but this is much less likely
when they are found in different documents). Thus,
the macro-clusters should be further divided. In
the following we describe the features used (Section
5.2.1) and the clustering algorithm (Section 5.2.2).

5.2.1 Feature extraction
We propose four different feature types and ex-

periment with different combinations of them.
Contextual tokens are the set of n previous and

following tokens of an entity mention. Each token
is normalized by case folding and lemmatization7.
Stop words are removed.

Contextual named entities are the set of n pre-
vious and following entity mentions that are con-
sidered to co-occur with the target entity mention
within reasonable proximity.

Both contextual tokens and named entities are ex-
pected to capture the local context (i.e. document)
of a name mention.

Surface tokens are the set of normalized compos-
ing tokens of an entity mention. As an example, ‘Mr
Blair’ has two tokens ‘mr’ and ‘blair’. Note that us-
ing surface tokens as features is essentially different
from string similarity matching on surface forms.
Empirically, the agglomerative clustering step may
recover errors made by string similarity clustering
when a low threshold is used (e.g., ‘Ed Milliband’
and ‘David Milliband’ in Table 1).

All these three features are encoded as traditional
‘one-hot’ vectors. On large datasets, they (partic-
ularly contextual tokens and named entities) gen-
erate very high-dimensional sparse feature vectors
that are expensive to compute. Therefore, we also
use a distributed continuous feature representation.
This has proven to be both efficient and effective in
many NLP tasks (Collobert and Weston, 2008; Col-
lobert et al., 2011; Kim, 2014) as it encodes latent,
abstract features of data objects into a much lower
and denser dimension that is lighter for computation.
Here we use the approach proposed by Mikolov et
al. (Mikolov et al., 2013).

The method uses a very large unlabeled corpus to
train word and/or phrase embeddings. Each word or
phrase is then represented as an p-dimensional con-
tinuous vector, where each dimension corresponds

7http://dragon.ischool.drexel.edu/

to a latent or abstract feature of the word or phrase.
Further, it has been shown (Mikolov et al., 2013) that
the representations learned in this way demonstrate
additive compositionality, such that simple vector
addition often produces meaningful results (e.g., the
element-wise addition of the vectors of ‘Germany’
and ‘capital’ produces a vector that is close to that of
‘Berlin’). This is a desirable property which we ex-
ploit to create distributed continuous feature vectors
for out-of-vocabulary entity mentions. Specifically,
we apply the method to a very large corpus to learn
embeddings for the vocabulary extracted from the
corpus. This vocabulary can contain both words and
phrases. Then if an entity mention is found in the
vocabulary, we use the corresponding feature vector
as-is. Otherwise, we compute a vector by applying
element-wise addition of the vectors of its compos-
ing words.

Both surface tokens and word embedding based
features capture the global context of entity men-
tions.

We also experiment with combinations of differ-
ent features using vector concatenation. We use fea-
ture weighting to combine features of different types
with different levels of importance. Let wt be the
weight given to a feature type t and V m

t be the values
of the feature type t for the entity mention m, then
each value of the feature type t receives a weight as:

wt
|V m
t |

(1)

As an example, if both surface tokens and contex-
tual tokens are given the weight of 1.0, given a men-
tion ‘Mr Blair’ that has 2 previous and following to-
kens, each surface token receives a weight of 0.5 and
each contextual token receives a weight of 0.25. For
the word embedding based feature, given a vector of
500 dimensions and a weight of 5.0, each element
in the vector receives a weight of 0.01 and hence the
corresponding value is reset to be the product of the
original value and the weight.

5.2.2 Clustering algorithm
In this step, name mentions from the each macro-

cluster are to be further clustered. To compute pair-
wise distance (or similarity) we use the L1 norm
(i.e. ‘Manhattan’ distance (Krause, 1987)). Then
we run the standard group-average agglomerative



clustering (Murtagh, 1985) with the Silhouette co-
efficient (Rousseeuw, 1987) to determine a natural
number of clusters based on data. This requires re-
peatedly clustering the data into n groups then com-
pute the Silhouette coefficient on the resulting clus-
ters. The optimal clustering is obtained when the
Silhouette is maximized. Given D a dataset with
|D| elements, a greedy approach could require up
to |D| runs of clustering by varying n from 1 to
|D|, which can be a very computationally expensive
process on large dataset. Here we propose a non-
greedy iterative algorithm that searches for a local
optimum as an approximation. Starting in the first
iteration with D to be clustered, let n_ be the mini-
mum possible number of clusters (usually n_ “ 1),
and n^ be the maximum possible number of clus-
ters (usually n^ “ m1). N denotes a sequence of
integers indexed by k: tn1, n2, ..., nku such that (1)
nk “ n_ for k “ 1 and n^ for k “ |N |, and (2)
each two adjacent elements satisfy nk ´ nk´1 “ θ
for 1 ă k ă |N |, i.e., they are equally spaced out by
a distance of θ, except for the last element and the
one before. We then repeat clustering for |N | times,
each time setting the cluster number to be nk, and
compute the Silhouette coefficient on the clustering
results (Line 4 and 5 in Algorithm 2). Thus we call
N the cluster trials. We record the maximum Sil-
houette coefficient sh^ and the number of clusters ñ
where sh^ is obtained (Line 6 9). In the end of the
iteration we reset the minium and maximum possi-
ble cluster numbers to n_ “ nk´1 and n^ “ nk`1
(or nk if k “ |N |), then reset the cluster trials to
be within the new range and populate its elements
to ensure each adjacent elements (except for the last
and the one before) are spaced out by a difference of
θ “ θ

2 (Line 11 to 14). The computation continues
in the next iteration with the new list of cluster trials,
which then get updated in the end for the following
iteration. This repeats until θ “ 1, by which point
the value ñ associated with the maximum Silhouette
value sh^ is considered the natural number of clus-
ters for the data, and the data are clustered into ñ
groups.

This step produces the final clusters for each
macro-cluster that requires further splitting. Then
combined with the other untouched macro-clusters
we obtain the final output.

Algorithm 2 Incremental clustering optimization
1: Input: D; n_, n^, N “ tn1, n2, ..., nku where
nk “ n_ for k “ 1, nk “ n^ for k “

|N |, nk´1 ` θ “ nk @1 ă i ă |N |; ñ“ 0,
shmax “ 0

2: Output: the optimal cluster number ñ
3: for all nk P N do
4: C Ð clusterpD,nkq
5: shÐ silhouettepCq
6: if sh ą shmax then
7: shmax “ sh
8: ni Ð ñ
9: end if

10: end for
11: if θ ą 1 then
12: resetpN,nk´1, nk`1,

θ
2q

13: go to 3
14: end if

6 Experiment

6.1 Datasets

We developed our method using both the training
and evaluation datasets for the TAC2014 KBP En-
glish EDL Track8. Training word embeddings re-
quires a very large unlabelled corpus. For this, we
used the TAC KBP comprehensive English source
corpora distributed from 2013 to 2014, with a total
of over 2 million documents. We used the word2vec
tool9 to learn vectors for both words and phrases, us-
ing the default pre-processing steps and parameters
setting, except from (1) setting the vector dimension
to 500, (2) using a negative sampling size of 10,
and (3) setting the minimum frequency for a word
or phrase to be kept in the vocabulary to 3.

Table 3 shows the statistics of the training and
evaluation dataset in the TAC2014 KBP English
EDL Track. The TAC2015 KBP Cold Start Track
has a much larger corpus, which has over 49,000
documents, from which our NER component ex-
tracts over 2 million entity mentions.

6.2 Computing resources

We ran all experiments (for 2014 Train, 2014 Eval,
2015 Cold Start ED datasets) using a maximum of

8http://www.nist.gov/tac/2014/KBP/data.html
9https://code.google.com/p/word2vec/



Docs NE mentions
Train 160 6,349
Eval 138 5,598

Table 3: Training and evaluation datasets of TAC KBP
2014 English EDL Track

Precision Recall F1
Train 63.6 73.1 68.0
Eval 65.5 72.0 68.6

Table 4: NER performance on the training and evaluation
datasets.

16 CPUs and 64G memory. Only the agglomerative
clustering component is parallelized as all the other
components can run at a reasonable speed in a sin-
gle thread. Implementation of clustering is based on
R and its high-performance and parallel computing
libraries10. For string similarity measures, we used
the SimMetrics toolkit (Chapman, 2009) which pro-
duces normalized similarity coefficients in the range
or r0, 1s.

6.3 Named Entity Recognition
We firstly assessed the performance of the NER
component, which the coreference component de-
pends on. Using the training and evaluation datasets
we compiled a list of mentions for each document
in the datasets, and evaluated the NER component
by the standard Precision, Recall, and F1 measures.
Table 4 shows the results based on the TAC2014
datasets.

6.4 Cross-document coreference
We evaluated cross-document coreference using the
official CEAF mention measures, i.e., CEAFmP,
CEAFmR, and CEAFmF. We created different set-
tings to study the contribution of each individual
features described in Section 5.2.1. For the string
similarity clustering component (Section 5.1), we
tried two thresholds T=0.7 and 0.9 (same thresholds
for both similarity measures), and we denote these
settings as ss0.7, ss0.9 respectively. Next, the out-
put from each setting is passed to the agglomerative
clustering component, where we tried each of the
four features individually, configured as below:

• Previous and following 5 tokens (tok5);
10https://cran.r-project.org/

P R F
ss0.7 44.1 50.7 47.2
ss0.7+tok5 44.1 50.7 47.2
ss0.7+ne3 44.1 50.7 47.2
ss0.7+sf 53.0 60.9 56.6
ss0.7+dvec 52.0 59.8 55.6
ss0.9 54.1 62.2 57.9
ss0.9+tok5 54.1 62.2 57.9
ss0.9+ne3 54.1 62.2 57.9
ss0.9+sf 54.6 62.7 58.4
ss0.9+dvec 54.6 62.7 58.4

Table 5: Results obtained on the training dataset

P R F
ss0.7 47.8 52.4 50.0
ss0.7+tok5 47.8 52.4 50.0
ss0.7+ne3 47.8 52.4 50.0
ss0.7+sf 55.5 61.0 58.1
ss0.7+dvec 54.8 60.1 57.3
ss0.9 56.2 61.8 58.9
ss0.9+tok5 56.2 61.8 58.9
ss0.9+ne3 56.2 61.8 58.9
ss0.9+sf 56.8 62.4 59.5
ss0.9+dvec 57.0 62.6 59.6

Table 6: Results obtained on the evaluation dataset

• Previous and following 3 entity mentions
(ne3);

• Surface tokens of the entity mention (sf );

• Distributed continuous feature vector of the en-
tity mention, trained using the tool and corpus
described above (dvec).

Hence combined with the two different settings
for the string similarity clustering component, we
obtained ten settings, each tested on both the train-
ing and evaluation (Tables 5 and 6) datasets.

Firstly, comparing ss0.7 and ss0.9, it shows that
stricter string match boosts accuracy by a signifi-
cant margin. This suggests that the datasets indeed
have a fair proportion of entity mentions that satisfy
‘one-sense-per-name’ even across documents. Sec-
ondly, contextual tokens (tok5) and entity mentions
(ne3) have unnoticeable benefit to string similarity
clustering when used as features for agglomerative
clustering11. This suggests that our modelling of lo-

11Different window sizes have also been tried but made little
difference.



P R F
ss0.7 62.9 62.9 62.9
ss0.7+tok5 62.9 62.9 62.9
ss0.7+ne3 62.9 62.9 62.9
ss0.7+sf 74.3 74.3 74.3
ss0.7+dvec 72.5 72.5 72.5
ss0.9 75.9 75.9 75.9
ss0.9+tok5 75.9 75.9 75.9
ss0.9+ne3 75.9 75.9 75.9
ss0.9+sf 76.3 76.3 76.3
ss0.9+dvec 76.3 76.3 76.3

Table 7: Ceiling performance obtained with ground truth
NER output on the training dataset

cal context is not useful. This could be attributed
to the extremely sparse feature vectors when using
such features. On the contrary, features capturing
global context (sf and dvec) can further improve
over string similarity clustering. This may be an-
other indication that a large proportion of entities in
the datasets have used (nearly) identical entity men-
tions both within and across-documents. For the sur-
face token features (sf ), this may also suggest that
the clustering algorithm is able to interpret surface
strings in a different way that complements string
similarity measures.

We also experimented with combinations of mul-
tiple feature types with different weights, such as
combining sf with tok5 or dvec and using the
weight factor to balance the contribution of each fea-
ture type. However, this led to only negligible im-
provement.

To isolate the performance of the NER component
on the overall task, we ran our coreference compo-
nent on the ground truth NER output by removing
NER and simply outputting the entity mentions from
the gold standard for each document. These results
(Tables 7 and 8) can be considered as the ceiling per-
formance obtainable with our cross-document coref-
erence method.

The large difference between the ceiling and ac-
tual performance on both datasets suggests that our
cross-document coreference method can be ham-
pered by the mediocre NER component. In terms
of the performance of the coreference component it-
self, the results have shown consistent patterns.

In the end, we chose the following five settings
to run on the 2015 TAC KBP Cold Start evaluation

P R F
ss0.7 64.9 64.8 64.8
ss0.7+tok5 64.9 64.8 64.8
ss0.7+ne3 64.9 64.8 64.8
ss0.7+sf 74.9 74.9 74.9
ss0.7+dvec 73.7 73.7 73.7
ss0.9 76.3 76.2 76.2
ss0.9+tok5 76.3 76.2 76.2
ss0.9+ne3 76.3 76.2 76.2
ss0.9+sf 76.9 76.8 76.8
ss0.9+dvec 76.8 76.8 76.8

Table 8: Ceiling performance obtained with ground truth
NER output on the evaluation dataset

P R F
run1 62.4 64.0 63.2
run2 62.1 63.7 62.9
run3 62.4 64.0 63.2
run4 62.4 64.0 63.2
run5 62.4 64.0 63.2

Table 9: Final performance (CEAFm) obtained on 2015
TAC KBP Cold Start ED task

dataset:

• run112: ss0.9+sf+dvec, where sf is given a
weight of 1.0 and dvec 250 (equivalent to 0.5
for each of the 500 elements in the vector);

• run2: ss0.9 only;

• run3: ss0.9+dvec;

• run413: ss0.7+sf+dvec, same as run1 but us-
ing a string similarity threshold of 0.7;

• run5: ss0.7+dvec;

We did not use local context based features as they
are very high-dimensional (expensive to compute)
and not effective. On the 2015 TAC KBP Cold Start
evaluation dataset, we obtained results shown in Ta-
ble 9. Our best result of 63.2 ranks as #3 by CAEF
mention F-measure.

It is interesting to note that on the final evalu-
ation dataset, the distributed feature representation
(dvec) brought the most improvement, regardless of

12On the 2014 training and evaluation datasets this setting
obtained identical results to ss0.9+sf and ss0.9+dvec respec-
tively.

13Same observation as run1



the threshold used by the string similarity clustering
component.

7 Conclusion

We described a method for cross-document coref-
erence and applied it to the bench-marking datasets
published under TAC KBP Tracks. The method em-
ploys NER to firstly identify and classify entity men-
tions in a document collection, then uses cluster-
ing techniques to resolve coreference across docu-
ment context. To cope with scalability, string sim-
ilarity based clustering process is firstly performed
to create macro-clusters by name matching, which
are subsequently broken down into smaller and fine-
grained clusters by running agglomerative clustering
within these macro-clusters. On the 2015 evaluation
dataset, we obtain a best CEAFmF score of 63.2.

An important lesson learnt on dealing with very
large scale cross-document coreference is that, some
light-weight pre-processing (e.g., name matching,
name pair filtering) may be necessary to re-structure
the data to more manageable scale and reduce
unnecessary computations. However, ultimately
a method that runs in a streaming fashion and
a distributed architecture utilizing the MapReduce
framework on a cluster may be necessary to cope
with even larger scale.

A number of questions remains to be answered
in the future. First, empirical experiments seem to
suggest the prevalance of one-sense-per-name both
within and across document context. However, no
systematic analysis have been done to quantify this
in the datasets. Better understanding this may help
making better choices of features for the task. Sec-
ond, we expect local context to capture context-
specific semantics of entity name mentions. How-
ever, our local context based features have been inef-
fective in our experiment. Further analysis is needed
to reveal the underlying reasons, which may lead to
better design of local context features. As examples,
we may extend the idea of distributed vector repre-
sentations to also incorporate contextual tokens and
entity mentions; or we may exploit large-scale topic
modelling techniques to assign best n latent topics
of a document to all its containing entity mentions.
Third, our current method that follows a ‘divide-
and-conquer’ principle may need to be fundamen-

tally changed, as it is limited in capturing differ-
ent lexicalizations of named entities. Last but not
least, our current NER component simply uses ex-
isting state-of-the-art tools with limited adaptation.
More work can be done to better adapt these tools
and methods to the domain.
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