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The KBP Cold Start Task
and Common Approaches

The KBP Cold Start task builds a knowledge base from
scratch using a given document collection and a
predefined schema for the entities and relations

Common approaches

 Hand-written rules (Grishman and Min, 2010)

e Supervised relation classifiers

* Weakly supervised classitiers: distant supervision
(Mintz et al., 2009; Surdeanu et al., 2012), active
learning / crowd sourcing (Angeli et al., 2014)
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~ocus this year: NLP Novices

* Current approaches often require NLP expertise
 NYU rules are tuned every summer for 7 years

e Supervised systems: annotation and algorithm
design

e Crowdsourcing: secret documents?

- Can a domain expert construct an in-house
knowledge base from scratch, by herself, (using

tools)?



NYU Cold Start Pipeline

--------------------------------------------------------------------------------------------------------------------------------------------------------
. L]
. .

4 A g \
Text Core Pattern Distantly Supervised |:
. Processing Tagger . Tagger ME Tagger g
= Y

_ )
NP chunking NP internal relations Lexical and dependency Align Freebase to
. . (titles, relatives) paths TACI 2010 _
=ntity tagging document collection :
Coreference ] :
Single Document

Cross Document

Coref
_ Y,

Based on string matching




NYU Cold Start Pipeline
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Entity Type and Relation
Construction with ICE

|CE [Integrated Customization Environment for
Information Extraction]

e easy tool for non-NLP experts to rapidly build
customized |E systems for a new domain

Entity set construction

Relation extraction



Constructing Entity Sets

. ® 00 \ Expand entity set ]
 New entity class (e.g. DISEASE | ranked entities |
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dICtIOﬂary kldn:yppr:llalems/:\fess [‘ Phrases | Relations |
heart failure / YES embers
[:ea.rt.condltlon /YES | Type DESEASE
] rain injury / YES
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Ranking Entities

* Entities are represented with context vectors

* Contexts are dependency paths from and to the
entity

* Vheroin:{dobj_sell:5, nn_plant:3, dob|_seize:4, ...}
* Vheart attack:{prep_from_suffer:4, prep_of_die:3, ...}

* Entities ranked by distance to the cluster centroid
(Min and Grishman, 2011)
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Constructing Relations:
Challenges

 Handle new entity types in relation (solved by entity
set expansion: ICE recognizes DISEASE after it is

built)
» Capture variations in linguistic constructions

e ORGANIZATION leader PERSON vs.
ORGANIZATION revived under PERSON (s

leadership)

e User comprehendible rules
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Rules: Dependency Path

* |Lexicalized dependency paths (LDPs) extractors
e Simple, transparent approach; no feature engineering
* Straightforward for bootstrapping

 Most important component in NYU's slot-filling / cold start
submissions (Sun et al. 2011; Min et al. 2012)

LDP
ORGANIZATION — dobj-1:revived:prep_under — PERSON

Can user understand this?
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Comprehendible Rules:
| inearized LDPs

O @) \ Bootstrap relations

Linearize LDP into English phrases T —

CICUIAINTE M T IO S vILe Ui eoTur ©F Liawry “ (ICE; vO.2dcmo
ORGANIZATION undersecretary general for PE—
. . . . ORGANIZATION undersecretary, general for P m
° User reviews ||ﬂea|’|zed Eng | |Sh ORGANIZATION movement of PERSON . Stat
ORGANIZATION competition commissioner PER L ‘
ph rases ORGANIZATION leader PERSON gﬂRFRS, 2
ORGANIZATION policy chief PERSON . [ION apw
ORGANIZATION committee chair by PERSON ﬂ S — Cou
ORGANIZATION party of PERSON

| " | ORGANIZATION chief PERSON trail
* Based On Word Order In Orlg I nal ORGANIZATION chief PERSON al ERSON |~ Bac|
sth take sth after ORGANIZATION justice PERS — ac

Se ntence ORGANIZATION founder PERSON y PERSON zg

ORGANIZATION movement lead by PERSON —R
ORGANIZATION , faction run by PERSON L
ORGANIZATION movement lead by PERSON

* |nsert syntactic elements for ORGANIZATION group lead by PERSON ] LE

) . ) ORGANIZATION revived under PERSON sth s Al E:
u L LSS AN o P ol B N LR B e ol Fa ¥ N B N PP B SR =T ol o T N N A L _
ﬂueﬂCy 1N d | reCt ObJeCtS, S'The Liberal Democrats have rekcgntly seen their pro- environment agenda -- and
L many of their supperters -- poached by the [Conservative Party] , which has been

pOSSGSS|VeS etC _ ‘} revived under [David Cameron] , elected leader in 2005.

[ posScore:0.2892
negScore:1.0000
nearestNeighborConfusion:0.2992

* Lemmatize words except passive argCorfusion 0 2992

borderConfusion:0.0000

confusionScore:3.3423
verbs -
, -

Iterate | Save 1 Exit

.
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Bootstrapping: Finding
Varieties in Rules

* Dependency path acquisition with the classical (active)
Snowball bootstrapping (Agichtein and Gravano, 2000)

* Algorithm skeleton

ORGANIZATION leader PERSON 1. User provide seeds

Conservative_Party:Cameron 2. Collect arguments
from seeds

ORGANIZATION revived under PERSON 3. New paths for review

Microsoft:Nadela
4. lterate

ORGANIZATION ceo PERSON
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EXperiments

Entity set expansion and relation bootstrapping on Gigaword AP newswire 2008
data

* Construct DISEASE entity type
» Bootstrap all relations, only using seeds from slot descriptions
CoreTagger: only use the core tagger which tags NP internal relations

Setting 1: 5 iterations of bootstrapping, review 20 instances per iteration - 553
dependency path rules

Setting 2: 5 iterations of bootstrapping, review as many phrases as possible,
bootstrap with coreference (Gabbard et al., 2011) - 1,559 dependency path rules

“Proteus”™: NYU submission that uses 1,402 dependency patterns, 2,495 lexical
patterns, and an add-on distantly supervised relation classifier
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EXperiments

Entity set expansion and relation bootstrapping on Gigaword AP newswire
2008 data

e Construct DISEASE entity type
» Bootstrap all relations, only using seeds from slot descriptions

CoreTagger: only use the core tagger which tags NP internal relations

~20 min

Setting 1: 5 iterations of bootstrapping, review 20 instances per iteration per
dependency path rules relation

Setting 2: 5 iterations of bootstrapping, review as much as possible, bootSEESERET:
with coreference (Gabbard et al., 2011) - 1,659 dependency path rules per

relation

‘Proteus”: NYU submission that uses 1,402 dependency patterns, 2,495

lexical patterns, and an add-on distantly supervised relation classifier -
/ summers
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Results: HopO

CoreTagger

CoreTagger

+Setting

CoreTagger
+Setting2

CoreTagger
+Proteus

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision
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Results: HopO+HOopP

CoreTagger

CoreTagger
+Setting

CoreTagger
+Setting2

CoreTagger
+Proteus

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision
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summary

* Pilot experiments on bootstrapping a KB
constructor from scratch using an open-source tool

* Builds high-precision/modest recall KBs

* Friendly to domain experts who are not familiar
with NLP: user only reviews plain English
examples

* Builds rule-based interpretable models tfor both
entity and relation recognition
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More 1o Be Done

e Better annotation instance selection

e SO that the casual user can perform similarly to a
Serious user

* More expressive rules beyond dependency paths
* Event extraction

* [everage existing KB
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I'hank you

http://nlp.cs.nyu.edu/ice
http://github.com/rgrishman/ice



http://nlp.cs.nyu.edu/ice
http://github.com/rgrishman/ice
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/event/disaster/structures_damaged

Filter options: [ | Include deleted links | Timestamp iYYYY-MM-DD...
View options: | Sort oldest to newest | | Show full timestamp | [ Show full attribution

Links

O o N O ke W
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1
12
13
14
15
16
17
18
19
20
21
22
23
24

Subject
/m/0gg9kfr 2011 Christchurch earthquake
/m/0gg9kfr 2011 Christchurch earthquake

/m/0gg9kfr 2011 Christchurch earthquake

/m/0gtwtw8 Chelyabinsk Event
/m/0gtwtwd Chelyabinsk Event
/m/0gtwtw8 Chelyabinsk Event

/m/0qgtwtw8 Chelyabinsk Event
/m/0j0z2w4 Port Said Stadium disaster

/m/0Ogh6mkc 2011 Tohoku earthguake and
tsunami

/m/0Ogh6mkc 2011 Tohoku earthguake and
tsunami

/m/Obdmlj Katowice Trade Hall roof collapse
/m/01v8cd Summerland disaster

/m/0dc3pc Royal Suspension Chain Pier
/m/05252dm Tay Bridge disaster

/m/098sht Buncefield fire

/m/0d0vp3 September 11 attacks

/m/0807k3 1983 United States Senate bombing
/m/01y23_ 16th Street Baptist Church bombing
/m/0244k8 MGM Grand fire

/m/053zwd 1996 Garley Building fire
/m/07hxss 1992 Windsor Castle fire

/m/0b_94y Whiskey Au Go Go fire

/m/02vnpxc Uphaar Cinema fire

/m/0b27k1 Dee Bridge disaster

Predicate
/event/disaster/structures
/event/disaster/structures

/event/disaster/structures
/event/disaster/structures
/event/disaster/structures
/event/disaster/structures
/event/disaster/structures
Jevent/disaster/structures
/event/disaster/structures

/event/disaster/structures

Jevent/disaster/structures
/event/disaster/structures
/event/disaster/structures
/event/disaster/structures
/event/disaster/structures
Jevent/disaster/structures
/event/disaster/structures
Jevent/disaster/structures
/event/disaster/structures
/event/disaster/structures
Jevent/disaster/structures
fevent/disaster/structures
/event/disaster/structures
/event/disaster/structures

[to| YYYY-MM-DD...

damaged
damaged

damaged
damaged
damaged
damaged
damaged
damaged
damaged

damaged

damaged
damaged
damaged
damaged
damaged
damaged
damaged
damaged
damaged
damaged
damaged
damaged
damaged
damaged

Object/Value

/m/0j_2yw_ St Luke's Church, Christchurch
/m/0gg7hn1 Hotel Grand Chancellor,
Christchurch

/m/0by116z Christchurch Hospital
/m/0r944hl Ice Palace "Ural Lightning®
/m/0gqzqcvy Chelyabinsk Zinc Factory
/m/0qtx4gt Chelyabinsk Drama Theatre
/m/064pnfg Traktor Ice Arena

/m/0b72I9 Port Said Stadium

/m/02vk_7d Fukushima Daini Nuclear Power Plant

/m/02vkzy2 Fukushima Daiichi Nuclear Power
Plant

/m/02r05rb Katowice International Fair
/m/05bgrid Summeriand Leisure Centre
/m/0dc3pc Royal Suspension Chain Pier
/m/04zjghp The Tay Bridge

/m/098sp5 Buncefield oil depot
/m/08w3b The Pentagon

/m/07vth United States Capitol
/m/0bf9_v 16th Street Baptist Church
/m/033vpy MGM Grand Las Vegas
/m/05bgrkg Garley Building

/m/Ochgsm Windsor Castle

/m/05bgmw Whiskey Au Go Go
/m/05bgrjk Uphaar Cinema

/m/Ocfgmk Olid Dee Bridge



Entity Set Expansion/
Ranking

* |n each iteration, present the user with ranked entity list,

ordered by the distance to the “positive centroid™ (Min
and Grishman, 2011):

— ZPEPP . ZnENn

P 7|

* where c iIs the positive centroid, P is the set of positive
seeds (initial seeds and entities accepted by user), and
N Is the set of negative seeds (entities rejected by user)

 Update centroid for k iterations
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Entity Representation

 Represent each phrase with a context vector, where contexts are
dependency paths from and to the phrase

« DRUGS share dobj(sell, X) and dobj(seize, X) contexts

o DISEASE share prep_of(die, X) and prep_from(sufter) contexts
 Examples: count vectors of dependency contexts

* Vheroin:{dobj_sell:5, nn_plant:3, dobj_seize:4, ...}

* Vieart attack.{pPrep_from_suffer:4, prep_of_die:3, ...}

e Features weighted by PMI; word embedding on large data sets for
dimension reduction
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Entity Representation ||

Using raw vectors cannot provide live response
Dimension reduction via word embeddings

Skip-gram model with negative sampling, using
dependency context (Levy and Goldberg, 2014a)

Equivalent of tactorization of the original® feature
matrix (Levy and Goldberg, 2014Db)

* shifted; PPMI instead of PMIO
24



Experiment of Entity Set
EXpansion

Finding Drugs in Drug Enforcement Agency news
releases

10 iterations, review 20 entity candidates per
iteration

Measure recall on a pre-compiled list of 181 drug
names from 2,132 key phrases

DISEASES: ICE 129 diseases; Manual 19 diseases
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Constructing Drugs Type

Recall of DRUGS

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10

DRUGS using PMI matrix DRUGS using embeddings
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Constructing Drugs Type
(Weighted Result)

Recall of DRUGS (Weighted)

UGS using PMI matrix DRUGS using embeddings

* Recall score weighted by frequency of entities



Results - Agents

Recall of AGENTS

0.9

0.8

0.7

0.6
0.5
0.4
0.3
0.2

0.1

lteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 |Iteration 6 Iteration 7 Iteration 8 Iteration 9 Iteration 10

e AGENTS using PMI matrix e AGENTS using embeddings

e 84 positive examples from 2,132 candidates



Results: HopO - w/ FM

CoreTagger

CoreTagger
+Setting

CoreTagger
+Setting2

CoreTagger
+Proteus

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision
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Results: Overall - w/ FM

CoreTagger

CoreTagger
+Setting

CoreTagger
+Setting2

CoreTagger
+Proteus

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision
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Fuzzy dependency path
match tfor small rule set

* Improve recall tor small rule sets
» Also tested in our 2015 KBP Cold Start submission
 Match two LDPs with edit distance on dependency chains
* \Weight of edit operations set by grid search on dev set
(substitution: 0.8, insertion: 1.2, deletion: 0.3; feature-

based see paper)

e Substitution cost determined by word similarity based
on word embeddings
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Fuzzy dependency path match-
pased extraction: example

Edit costs
dsubj:END$ 0.3 0 supstitution: 0.8

insert: 1.2

nsubj-1:ditribute|0.280.8 delete: 0.3
st — wetghtedDistance

N ‘\OQ N [rulel
A% o </,$<> © 0.28%0.8+0.3
0% @%O A\ - 3
N\ N \ — (.17
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Official Run Results

NestedNames+Pattern+DS+FM

Pattern+DS

P R R
HopO . | | 0.51 0.18
Hop1 . . | 0.15 0.09

MicroAvg . . . 0.30 0.14

MacroAvg

Main goal: testing the fuzzy match paradigm
False positives on NIL slots from Fuzzy Match in Hop O was
penalized heavily in Hop1
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