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The KBP Cold Start Task 
and Common Approaches

• The KBP Cold Start task builds a knowledge base from 
scratch using a given document collection and a 
predefined schema for the entities and relations 

• Common approaches 

• Hand-written rules (Grishman and Min, 2010) 

• Supervised relation classifiers 

• Weakly supervised classifiers: distant supervision 
(Mintz et al., 2009; Surdeanu et al., 2012), active 
learning / crowd sourcing (Angeli et al., 2014)
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Focus this year: NLP Novices
• Current approaches often require NLP expertise 

• NYU rules are tuned every summer for 7 years 

• Supervised systems: annotation and algorithm 
design 

• Crowdsourcing: secret documents? 

• Can a domain expert construct an in-house 
knowledge base from scratch, by herself, (using 
tools)?
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Entity Type and Relation 
Construction with ICE

• ICE [Integrated Customization Environment for 
Information Extraction] 

• easy tool for non-NLP experts to rapidly build 
customized IE systems for a new domain 

• Entity set construction 

• Relation extraction
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Constructing Entity Sets
• New entity class (e.g. DISEASE 

in per:cause_of_death) by 
dictionary 

• users are not likely to do a 
good job assembling such a 
list 

• users are much better at 
reviewing a system-
generated list 

• Entity set expansion: start from 
2 seeds, offer more to review
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Ranking Entities
• Entities are represented with context vectors  

• Contexts are dependency paths from and to the 
entity 

• Vheroin:{dobj_sell:5, nn_plant:3, dobj_seize:4, …} 

• Vheart_attack:{prep_from_suffer:4, prep_of_die:3, …} 

• Entities ranked by distance to the cluster centroid 
(Min and Grishman, 2011)
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Constructing Relations: 
Challenges

• Handle new entity types in relation (solved by entity 
set expansion: ICE recognizes DISEASE after it is 
built) 

• Capture variations in linguistic constructions 

• ORGANIZATION leader PERSON vs. 
ORGANIZATION revived under PERSON (’s 
leadership) 

• User comprehendible rules
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Rules: Dependency Path
• Lexicalized dependency paths (LDPs) extractors 

• Simple, transparent approach; no feature engineering 

• Straightforward for bootstrapping 

• Most important component in NYU’s slot-filling / cold start 
submissions (Sun et al. 2011; Min et al. 2012)
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LDP
ORGANIZATION — dobj-1:revived:prep_under — PERSON

Can user understand this?



Comprehendible Rules: 
Linearized LDPs

• Linearize LDP into English phrases 

• User reviews linearized English 
phrases 

• Based on word order in original 
sentence 

• Insert syntactic elements for 
fluency: indirect objects, 
possessives etc. 

• Lemmatize words except passive 
verbs

11



Bootstrapping: Finding 
Varieties in Rules

• Dependency path acquisition with the classical (active) 
Snowball bootstrapping (Agichtein and Gravano, 2000) 

• Algorithm skeleton
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ORGANIZATION leader PERSON

Conservative_Party:Cameron

ORGANIZATION revived under PERSON

Microsoft:Nadela

ORGANIZATION ceo PERSON

1. User provide seeds
2. Collect arguments 

from seeds
3. New paths for review

4. Iterate



Experiments
• Entity set expansion and relation bootstrapping on Gigaword AP newswire 2008 

data 

• Construct DISEASE entity type 

• Bootstrap all relations, only using seeds from slot descriptions 

• CoreTagger: only use the core tagger which tags NP internal relations 

• Setting 1: 5 iterations of bootstrapping, review 20 instances per iteration - 553 
dependency path rules 

• Setting 2: 5 iterations of bootstrapping, review as many phrases as possible, 
bootstrap with coreference (Gabbard et al., 2011) - 1,559 dependency path rules 

• “Proteus”: NYU submission that uses 1,402 dependency patterns, 2,495 lexical 
patterns, and an add-on distantly supervised relation classifier
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Experiments
• Entity set expansion and relation bootstrapping on Gigaword AP newswire 

2008 data 

• Construct DISEASE entity type 

• Bootstrap all relations, only using seeds from slot descriptions 

• CoreTagger: only use the core tagger which tags NP internal relations 

• Setting 1: 5 iterations of bootstrapping, review 20 instances per iteration - 553 
dependency path rules 

• Setting 2: 5 iterations of bootstrapping, review as much as possible, bootstrap 
with coreference (Gabbard et al., 2011) - 1,559 dependency path rules 

• “Proteus”: NYU submission that uses 1,402 dependency patterns, 2,495 
lexical patterns, and an add-on distantly supervised relation classifier
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Results: Hop0
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P R F

CoreTagger 0.71 0.06 0.11

CoreTagger
+Setting1 0.44 0.08 0.13

CoreTagger
+Setting2 0.54 0.13 0.21

CoreTagger
+Proteus 0.46 0.25 0.32

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision



Results: Hop0+Hop1
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P R F

CoreTagger 0.47 0.04 0.07

CoreTagger
+Setting1 0.34 0.05 0.08

CoreTagger
+Setting2 0.37 0.08 0.13

CoreTagger
+Proteus 0.31 0.20 0.24

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision



Summary
• Pilot experiments on bootstrapping a KB 

constructor from scratch using an open-source tool 

• Builds high-precision/modest recall KBs 

• Friendly to domain experts who are not familiar 
with NLP: user only reviews plain English 
examples 

• Builds rule-based interpretable models for both 
entity and relation recognition
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More To Be Done
• Better annotation instance selection 

• So that the casual user can perform similarly to a 
serious user 

• More expressive rules beyond dependency paths 

• Event extraction 

• Leverage existing KB
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Thank you
http://nlp.cs.nyu.edu/ice 

http://github.com/rgrishman/ice

http://nlp.cs.nyu.edu/ice
http://github.com/rgrishman/ice


ICE Overview
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Entity Set Expansion/
Ranking

• In each iteration, present the user with ranked entity list, 
ordered by the distance to the “positive centroid” (Min 
and Grishman, 2011): 

• where c is the positive centroid, P is the set of positive 
seeds (initial seeds and entities accepted by user), and 
N is the set of negative seeds (entities rejected by user) 

• Update centroid for k iterations
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Entity Representation
• Represent each phrase with a context vector, where contexts are 

dependency paths from and to the phrase 

• DRUGS share dobj(sell, X) and dobj(seize, X) contexts 

• DISEASE share prep_of(die, X) and prep_from(suffer) contexts 

• Examples: count vectors of dependency contexts 

• Vheroin:{dobj_sell:5, nn_plant:3, dobj_seize:4, …} 

• Vheart_attack:{prep_from_suffer:4, prep_of_die:3, …} 

• Features weighted by PMI; word embedding on large data sets for 
dimension reduction

23



Entity Representation II
• Using raw vectors cannot provide live response 

• Dimension reduction via word embeddings 

• Skip-gram model with negative sampling, using 
dependency context (Levy and Goldberg, 2014a) 

• Equivalent of factorization of the original* feature 
matrix (Levy and Goldberg, 2014b)
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Experiment of Entity Set 
Expansion

• Finding Drugs in Drug Enforcement Agency news 
releases 

• 10 iterations, review 20 entity candidates per 
iteration 

• Measure recall on a pre-compiled list of 181 drug 
names from 2,132 key phrases 

• DISEASES: ICE 129 diseases; Manual 19 diseases
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Constructing Drugs Type
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Constructing Drugs Type 
(Weighted Result)

27• Recall score weighted by frequency of entities
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Results - Agents

• 84 positive examples from 2,132 candidates28
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Results: Hop0 - w/ FM
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P R F

CoreTagger 0.71 0.06 0.11

CoreTagger
+Setting1 0.44 0.08 0.13

CoreTagger
+Setting2 0.41 0.11 0.18

CoreTagger
+Proteus 0.46 0.25 0.32

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision



Results: Overall - w/ FM
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P R F

CoreTagger 0.47 0.04 0.07

CoreTagger
+Setting1 0.34 0.05 0.08

CoreTagger
+Setting2 0.31 0.10 0.15

CoreTagger
+Proteus 0.31 0.20 0.24

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision
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• Improve recall for small rule sets 

• Also tested in our 2015 KBP Cold Start submission 

• Match two LDPs with edit distance on dependency chains 

• Weight of edit operations set by grid search on dev set 
(substitution: 0.8, insertion: 1.2, deletion: 0.3; feature-
based see paper) 

• Substitution cost determined by word similarity based 
on word embeddings

Fuzzy dependency path 
match for small rule set



Fuzzy dependency path match-
based extraction: example
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0.3 0

0.28*0.8nsubj-1:ditribute

dsubj:END$

nsubj-1:se
ll

dobj:prescription

nn-1:END$

Edit costs 
substitution: 0.8 
insert: 1.2 
delete: 0.3
cost =

weightedDistance

|rule|

=
0.28 ⇤ 0.8 + 0.3
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= 0.17



Official Run Results
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NestedNames+Pattern+DS+FM Pattern+DS

P R F P R F

Hop0 0.44 0.20 0.27 0.51 0.18 0.27

Hop1 0.06 0.09 0.07 0.15 0.09 0.11

MicroAvg 0.17 0.15 0.16 0.30 0.14 0.20

MacroAvg 0.18 0.17

Main goal: testing the fuzzy match paradigm 
False positives on NIL slots from Fuzzy Match in Hop 0 was 
penalized heavily in Hop1


