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Abstract

This paper describes a new slot filler ensem-
bling component we developed as part of our
Knowledge Resolver relation extraction and
knowledge base population toolkit (KRes),
and its performance on the TAC-KBP 2016
ensembling task. At the core of our approach
is a process of anti-error compounding which
identifies likely redundant extractions that are
based on at least partially independent evi-
dence, and aggregates them into more reliable
results exploiting the redundancies. We use
mention overlap, string matching and within
and cross-document coreference provided by
an EDL system to determine likely equivalent
extractions. We also exploit relative system
performance estimates based on preliminary
scoring or past performance where available.
Our system does not require any training. By
merging the top-5 recall KBs created by dif-
ferent teams based on preliminary score es-
timates distributed with the TAC-KBP 2016
SFV evaluation package, our system improved
the best overall English SF-All-Micro f1 score
for Hop-0 queries from 0.319 to 0.350, and
for Hop-0+1 queries from 0.270 to 0.286. For
Spanish and Chinese we could not create any
improvements due to a lack of run diversity
for Spanish and a token-based name and value
matcher that was not working sufficiently for
Chinese.

1 Introduction

This paper describes a new slot filler ensembling
component we developed as part of our Knowl-
edge Resolver relation extraction and knowledge

base population toolkit (KRes) (Chalupsky, 2012;
Chalupsky, 2013; Chalupsky, 2014; Chalupsky,
2015), and its performance on the TAC-KBP 2016
ensembling task. At the core of our approach is a
process of anti-error compounding which identifies
likely redundant extractions that are based on at least
partially independent evidence, and aggregates them
into more reliable results exploiting the redundan-
cies. We use mention overlap, string matching and
within and cross-document coreference provided by
an EDL system to determine likely equivalent ex-
tractions. We also exploit relative system perfor-
mance estimates based on preliminary scoring or
past performance where available. Our system does
not require any training. By merging the top-5 re-
call KBs created by different teams based on prelim-
inary score estimates distributed with the TAC-KBP
2016 Slot Filler Validation (SFV) evaluation pack-
age, our system improved the best overall English
SF-All-Micro f1 score for Hop-0 queries from 0.319
to 0.350, and for Hop-0+1 queries from 0.270 to
0.286. For Spanish and Chinese we could not create
any improvements due to a lack of run diversity for
Spanish and a token-based name and value matcher
that was not working sufficiently for Chinese.

2 Approach

2.1 Anti-Error Compounding

At the core of our approach is a process of anti-error
compounding which identifies likely redundant ex-
tractions that are based on at least partially indepen-
dent evidence, and aggregates them into more reli-
able results exploiting the redundancies. The intu-



ition behind our approach is as follows. Suppose
we have two independent relation extractions such
as these:

P1 per:employee_or_member_of O1, c1
P2 per:employee_or_member_of O2, c2

c1 and c2 are probabilities of correctness (or con-
fidence scores) for the particular relation. Suppose
we have additional evidence that O1 equals O2 with
probability c3, then we can chain the two relations
to conclude that P1 and P2 work in the same or-
ganization. The probability of correctness of this
chained result is c1 ∗ c2 ∗ c3 (assuming these proba-
bilities are independent), leading to the well-known
phenomenon of error-compounding when combin-
ing multiple noisy extractions, since now the error
probability is 1 − cni which increases rapidly with
increasing n. For example, combining three extrac-
tions with ci = 0.7 leads to an error probability of
0.66 for the combined result.

Error compounding occurs for the probability that
all of the chained relations are correct. However, the
probability that at least one of two relation extrac-
tions is correct is 1 − (1 − c1) ∗ (1 − c2), that is
that they are not both incorrect, which is the anti-
probability of the product of the error probabilities,
therefore we call this anti-error compounding.

Why is this useful? In the above example we
know the probability of at least one extraction be-
ing correct, but not which one. Suppose we have
(perfect for now) evidence as before that O1 equals
O2 and now also that P1 equals P2, thus, now both
extractions do in fact express the same relation. If
we again assume independent individual extraction
probabilities of 0.7, the probability that at least one
of them is correct is now 0.9, and, since they are both
the same, we now know which one (both of them),
and we now magically boosted our extraction prob-
ability of correctness. Another matching relation
would boost this further to 0.97, which shows how
the error now exponentially decreases in the same
way it increased before.

Unfortunately, of course, reality is much more
complex. Evidence of equality between relation ar-
guments is itself associated with noise generally re-
quiring some form of coreference resolution, and
that error probability multiplies into the boosted ex-
traction probability from above. Nevertheless, there

are cases where we can be highly confident of argu-
ment equality, for example, if arguments come from
the same or highly overlapping text spans in a doc-
ument. In such cases we will still get boosted re-
lation confidence even though somewhat moderated
by coreference probabilities.

Another problem is that probabilities of cor-
rectness are either not available or imperfect esti-
mates, making it difficult to assess the correctness
of an ensembled result. For example, rule-based or
clustering-based coreference algorithms often do not
provide confidence estimates. When confidences are
available, they are estimated based on training data
which makes them unreliable on test data that might
be highly different from what was encountered in
training.

Finally, relation extraction confidences and errors
are generally not independent in the sense we as-
sumed above. Redundant extractions might come
from the same extractors and/or similar language
and/or use similar tools or preprocessing, etc., there-
fore, the compounding effect from combining them
will be less pronounced or possibly even worse than
the individual correctness probabilities. For these
various reasons we simply strive for maximizing
independent pieces of evidence for particular slot
fillers, but we do not attempt to calculate a more
precise probability of correctness of an ensembled
result to use as the basis for our ensembling deci-
sions.

2.2 Slot Value Ensembling
Figure 1 shows the overall architecture of our 2016
TAC-KBP ensembling system. It exploits anti-error
compounding to ensemble a number of different
Cold Start Slot-Filling runs as follows:

(1) Run selection: in this stage we select a num-
ber of most promising input runs either based on a
team or component’s past performance and/or per-
formance estimates based on a small manually eval-
uated sample. This part is not automatically sup-
ported by our approach, we simply select a fixed
number of high-performing runs based on these per-
formance indicators. Only a relative ranking of runs
is required, we do not need or make use of absolute
performance metrics. Since we are looking for max-
imally independent extractions, we combine runs
from all different teams. Moreover, since our ap-
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Figure 1: System architecture

proach requires multiple pieces of evidence for each
ensembled extraction, we look for runs with max-
imum recall to increase the chance of multiple in-
dependent extractions. For the 2016 evaluation we
picked 3, 5 or 10 runs from different teams ranked
by preliminary recall estimates provided by linguists
of the Linguistic Data Consortium (LDC) based on a
manual assessment of a small sample of queries (for
English 85 out of 1351 queries (6.3%) were in this
sample assessed by LDC).

(2) Query and filler clustering: here we cluster
plausibly equivalent relation arguments starting with
query entities, leading to Hop-0 slot fillers and fur-
ther leading from Hop-0 filler clusters to Hop-1 filler
clusters. This process exploits a number of indica-
tors such as text span identity and overlap, partial
match between normalized token sequences (prefix,
postfix, and permuted match) as well as within and
cross-document coreference information provided
by an entity linking and discovery (EDL) system.
Note that this equivalence clustering is easier than
solving a full within or cross document coreference

problem, since we are constrained to the slot fillers
starting from a specific query entity as opposed to
all entities in a document or corpus. For exam-
ple, assuming “director” and “associate director” as
equivalent fillers for the per:title slot of “John
Smith” is highly plausible, while the same might
not be true in general. Moreover, over-merging at
this stage is not too problematic, since that only
provides possibly unwarranted additional evidence
which will generally hurt precision but can also im-
prove recall.

(3) Evidence assessment: given the above clus-
tering, we have a set of plausibly equivalent Hop-0
and Hop-1 query results. For each cluster of equiv-
alent fillers, we report a representative if we have
at least two independent pieces of evidence. This
step is somewhat complicated by the fact, that for
Hop-1 queries, we have to ensure that their Hop-0
roots are equally multiply supported. Currently, we
look for equivalent extractions that either come from
two separate teams or from two separate documents.
Runs from different teams increases independence



of errors due to different failure modes, however,
many systems use standard tools for parsing, NER,
etc., decreasing that independence. The intuition for
looking for extractions from separate documents is
that those are more likely to be based on different
textual evidence (even though we are currently not
explicitly testing for that).

(4) Filtering: finally, we perform some filtering to
satisfy output constraints such as single-valuedness,
which might have been violated by the merging pro-
cess.

In its current form, this approach requires a suf-
ficient number of independent input systems that
cover the space of sought slot values reasonably well
in multiple ways. If we have unbalanced coverage as
occurred for the Spanish language condition, where
we had a single team with a much higher score and
coverage than the two other submissions, we will
get a much smaller number of mergable extractions
leading to low ensemble recall. This problem can be
remedied with somewhat different merging strate-
gies, however, currently this is not addressed.

3 Evaluation Results

We submitted a total of eight ensembling runs, four
for English, two for Spanish and two for Chinese.
All our development was done on English-only data
from the 2015 TAC-KBP evaluation. No language-
specific code was added for either Spanish or Chi-
nese. Our best English ensemble run outperformed
the best individual system run by 1.6 f1 points on the
SF-All-Micro score (we use SF-All-Micro scores for
all our comparisons below). Our best Spanish en-
semble run scored better than two of the three teams
that submitted runs, but significantly worse than the
best-performing run. f1 dropped from 15% to 4%,
while precision increased from 14.6% to 23.9%. For
Chinese, our English-centric name matching really
did not work giving us an f1 of 7% at the bottom of
all individual team submissions. We discuss these
results in more detail below.

Table 1 summarizes scores from our four submit-
ted English SFV ensemble runs SAFT ISI 1 to 4,
a number of best team runs A to F based on vari-
ous scoring aspects shown in the Run Characteris-
tics column, and a number of post-evaluation exper-
iments SAFT ISI 9 to 16 we performed after we re-

ceived the final scores and ground truth from LDC.
Each SAFT ISI run uses a number of Cold Start

SF and KB runs as inputs which were selected based
on preliminary scores distributed at the beginning
of the SFV evaluation window. These preliminary
scores were generated from LDC assessments of 85
English evaluation queries out of 1351 total queries,
of which 402 were fully assessed at the end of the
evaluation. That is, preliminary scores were based
on about 20% of the full ground truth that became
available after the evaluation, which in itself is only
a partial assessment of all query outputs. We only
used preliminary scores for relative ranking of sub-
mitted runs, we did not make use of the detailed slot-
value assessments in any way on which the prelimi-
nary scores were based.

Our best-performing Run 1 used the top-5 runs
from all different teams based on Hop-0+1 recall
as input. These runs vary greatly in overall per-
formance with preliminary Hop-0+1 f1 values rang-
ing from 8.7% to 23.1% and final values ranging
from 11% to 26.9%. Our ensemble run achieved
28.64% Hop-0+1 f1 which improves upon the best-
performing Team Run A by about 1.5 points. Later
analysis revealed that our input runs were in fact se-
lected based on their Hop-0 recall only (thus the as-
terisk in the table). We corrected that in post-eval
Run 9 which gives us an additional minor improve-
ment to 28.7%. Input runs for our Run 2 submis-
sion were based on preliminary Hop-0 recall only,
however, due to the mistake these were identical to
those from Run 1 leading to identical results. Run 3
merges inputs from the top-10 runs from all different
teams based on Hop-0+1 recall (this time correctly
so). These runs vary even more, with final f1 values
ranging from 3.7% to 26.9%. The ensemble run has
the same f1 as the best-performing Team Run A, but
it achieves approximately 9 points higher recall and
about 5 points higher recall than the highest recall
Team Run B. For Runs 1 to 3, we used EDL results
from our collaborators at CMU. Run 4 is identical
to Run 1 in its input selection, however, it uses EDL
results from a team that had a top-scoring submis-
sion in 2015. The overall f1 is identical to Run 1, so
using the different EDL results did not make a dif-
ference. Run 4 suffered the same input run selection
mistake as Run 1 which was corrected in post-eval
Run 10 - again with identical results.



Hop-0 Hop-1 Hop0+1
SFV Run Run Characteristics P R F1 P R F1 P R F1

SAFT_ISI Run 1 top-5 prelim. hop0+1 recall (*) 0.3952 0.3146 0.3503 0.1849 0.1290 0.1520 0.3308 0.2525 0.2864
SAFT_ISI Run 2 top-5 prelim. hop0 recall (= to Run-1) 0.3952 0.3146 0.3503 0.1849 0.1290 0.1520 0.3308 0.2525 0.2864
SAFT_ISI Run 3 top-10 prelim. hop0+1 recall 0.2677 0.3752 0.3124 0.1753 0.1496 0.1614 0.2460 0.2996 0.2702
SAFT_ISI Run 4 top-5 prelim. hop0+1 recall (*) w/ EDL2 0.3952 0.3146 0.3503 0.1849 0.1290 0.1520 0.3308 0.2525 0.2864
CS SF/KB Run

Team Run A best final hop0+1 f1 0.4609 0.2437 0.3188 0.2528 0.1320 0.1734 0.3918 0.2063 0.2703
Team Run B best final hop0+1 recall 0.2903 0.2792 0.2846 0.0524 0.1877 0.0819 0.1351 0.2485 0.1751
Team Run C best final hop1 f1 0.4657 0.2408 0.3174 0.2542 0.1320 0.1737 0.3947 0.2043 0.2693
Team Run D best final hop1 recall 0.2903 0.2792 0.2846 0.0524 0.1877 0.0819 0.1351 0.2485 0.1751
Team Run E best final hop0 f1 0.4609 0.2437 0.3188 0.2528 0.1320 0.1734 0.3918 0.2063 0.2703
Team Run F best final hop0 recall 0.2903 0.2792 0.2846 0.0524 0.1877 0.0819 0.1351 0.2485 0.1751

SAFT_ISI Run 9* top-5 prelim. hop0+1 recall (* Run-1) 0.3943 0.3087 0.3463 0.2047 0.1290 0.1583 0.3396 0.2485 0.2870
SAFT_ISI Run 10* top-5 prelim. hop0+1 recall w/ EDL2 (* Run-4) 0.3943 0.3087 0.3463 0.2047 0.1290 0.1583 0.3396 0.2485 0.2870
SAFT_ISI Run 11 top-5 final hop0+1 recall 0.4133 0.3309 0.3675 0.2440 0.1496 0.1855 0.3662 0.2701 0.3109
SAFT_ISI Run 12 top-5 prelim. hop0+1 f1 0.4057 0.2925 0.3399 0.1880 0.1378 0.1591 0.3320 0.2407 0.2790
SAFT_ISI Run 13 top-5 final hop0+1 f1 0.5152 0.2747 0.3584 0.2815 0.1114 0.1597 0.4516 0.2200 0.2959
SAFT_ISI Run 14 0.4305 0.2378 0.3064 0.2133 0.1408 0.1696 0.3489 0.2053 0.2585
SAFT_ISI Run 15 top-5 prelim. hop0+1 recall, diff. team only 0.4268 0.3058 0.3563 0.2471 0.1261 0.1670 0.3794 0.2456 0.2982
SAFT_ISI Run 16 top-5 prelim. hop0+1 recall, diff. doc. only 0.2956 0.1388 0.1889 0.1951 0.0704 0.1034 0.2676 0.1159 0.1618

Post-Eval Run

5 submitted KBs from Team Run A team

Table 1: Evaluation results for English ensembling, all scores are SF-All-Micro

Above we focused on the discussion of Hop-0+1
results for our submissions. Note, however, that
Hop-0 results show significantly higher improve-
ments. Our Run 1 improves by about 3.1 points over
the best performing Team Run A. Moreover, Run
3 has similar f1 as the best-performing Team Run
A but 13 points higher recall, which is significant,
since from past evaluations it is clear that higher re-
call is generally more difficult to achieve. This is
also about 9.5 points higher than the highest Hop-
0 recall Run F. However, given the scoring strategy
for Hop-0+1 results, it is clear that teams generally
optimize towards higher precision for Hop-0 results
to achieve better overall Hop-0+1 results, therefore,
we are most probably not seeing the highest Hop-0
recall results possible.

Run 11 uses knowledge not available at evalua-
tion time (shown in italics and grayed out), by se-
lecting inputs based on their ranking from the final
Hop-0+1 recall scores. Given this better ranking, we
can improve the overall ensemble score by another
2.3 points to 31.09%, which shows that a better rel-
ative recall estimate of available inputs leads to bet-
ter ensemble run performance. Runs 12 and 13 in-
vestigate how selecting based on f1 instead of recall
affects the results, and both of them perform lower

than their analogues selected based on recall. Run
14 takes all five submitted runs from top-scoring
Team A and treats them as if they had come from
different teams. We do not get any improvements,
in fact results are below the average result of the
five runs, showing that there is a lot less indepen-
dence of results and errors within a team’s submis-
sions than across teams. Finally, Runs 15 and 16
investigate the impact of individual independent ev-
idence aspects, such as two results coming from two
different teams vs. from different documents. Run
15 uses the same inputs as Run 9 (the corrected Run
1) and only outputs results if they are supported by
at least two different teams. The resulting ensem-
ble outperforms our best Run 1 and 9 by another
point. Run 16 again uses the same inputs but only
outputs results that are supported by at least two dif-
ferent documents. This ensemble has a much worse
f1 which is to be expected, since there will gener-
ally be fewer results supported by multiple docu-
ments, leading to significantly lower recall. How-
ever, precision is also significantly lower which sug-
gests that we might get additional coreference errors
from EDL results as well as our value-based match-
ing across documents, thus, suggesting an important
future area of improvement.



Hop-0 Hop-1 Hop0+1
SFV Run Run Characteristics P R F1 P R F1 P R F1

SAFT_ISI Run 1 top-3 prelim. hop0+1 recall 0.2391 0.0374 0.0647 0.0000 0.0000 0.0000 0.2391 0.0220 0.0402
SAFT_ISI Run 2 top-3 prelim. hop0+1 recall w/ EDL2 0.2391 0.0374 0.0647 0.0000 0.0000 0.0000 0.2391 0.0220 0.0402
CS SF/KB Run

Team Run A best final hop0+1 f1 0.1458 0.2653 0.1882 0.0000 0.0000 0.0000 0.1458 0.1557 0.1506
Team Run B best final hop0+1 recall 0.0393 0.3231 0.0701 0.0000 0.0000 0.0000 0.0393 0.1896 0.0651
Team Run C 2nd best final hop0+1 f1 0.1765 0.0102 0.0193 0.0000 0.0000 0.0000 0.1765 0.0060 0.0116
Team Run D 3rd best final hop0+1 f1 0.2222 0.0068 0.0132 0.0000 0.0000 0.0000 0.2222 0.0040 0.0078

Table 2: Evaluation results for Spanish ensembling, all scores are SF-All-Micro

Hop-0 Hop-1 Hop0+1
SFV Run Run Characteristics P R F1 P R F1 P R F1

SAFT_ISI Run 1 top-3 prelim. hop0+1 recall 0.4561 0.0399 0.0733 0.3182 0.0341 0.0617 0.4177 0.0385 0.0705
SAFT_ISI Run 2 top-3 prelim. hop0+1 recall w/ EDL2 0.4561 0.0399 0.0733 0.3182 0.0341 0.0617 0.4177 0.0385 0.0705
CS SF/KB Run

Team Run A best final hop0+1 f1 0.5200 0.1994 0.2882 0.2905 0.2537 0.2708 0.4242 0.2124 0.2830
Team Run B best final hop0+1 recall 0.5200 0.1994 0.2882 0.2905 0.2537 0.2708 0.4242 0.2124 0.2830
Team Run C 2nd best final hop0+1 f1 0.6667 0.1319 0.2202 0.3103 0.0439 0.0769 0.6013 0.1109 0.1872
Team Run D 3rd best final hop0+1 f1 0.4070 0.0537 0.0949 0.3333 0.0146 0.0280 0.4000 0.0443 0.0798

Table 3: Evaluation results for Chinese ensembling, all scores are SF-All-Micro

Table 2 summarizes scores from our two submit-
ted Spanish SFV ensemble runs SAFT ISI 1 and 2
and a number of best team runs A to D based on var-
ious scoring aspects shown in the Run Characteris-
tics column. The problem with the Spanish language
condition was that there were only submissions from
three different teams available with extremely unbal-
anced performance. The top team run had an over-
all f1 of 0.15 while the best run from the second-
best scoring team only had an overall f1 of 0.01.
This causes a problem for our ensembling strategy
which requires reasonably balanced recall among at
least two of the best-scoring selected runs, and we
therefore have a significant loss in recall in our top-
scoring Run 1. Despite a significant boost in preci-
sion from 0.145 to 0.239, the loss in recall drops our
f1 way below the performance of the best-scoring
run. Our second ensemble Run 2 used a different
EDL system which gave identical performance.

Table 3 summarizes scores from our two submit-
ted Chinese SFV ensemble runs SAFT ISI 1 and 2
and a number of best team runs A to D based on
various scoring aspects shown in the Run Character-
istics column. Our two ensembling runs (the second
one again with a different EDL system) performed
identically but much worse than the best-performing
team runs. The Chinese language condition had
much better team participation and balanced per-
formance compared to Spanish which made it well-

suited for our approach. However, our filler-token-
based value clustering did not work at all for Chinese
characters beyond strict identity which gave us very
low recall. Unfortunately, we did not have time to
do any development or testing specifically for Chi-
nese before the evaluation which might have made
us aware of this problem ahead of time. We expect
the results to improve significantly with a filler clus-
tering component adapted for Chinese.

4 Conclusion

We described a new slot filler ensembling compo-
nent we developed as part of our Knowledge Re-
solver relation extraction and knowledge base pop-
ulation toolkit (KRes), and its performance on the
TAC-KBP 2016 ensembling task. At the core of
our approach is a process of anti-error compounding
which identifies likely redundant extractions that are
based on at least partially independent evidence, and
aggregates them into more reliable results exploit-
ing the redundancies. Our system does not require
any training and only needs some approximate rel-
ative performance ranking of candidate input runs.
By merging the top-5 recall KBs created by differ-
ent teams based on preliminary score estimates dis-
tributed with the TAC-KBP 2016 SFV evaluation
package, our system improved the best overall En-
glish SF-All-Micro f1 score for Hop-0 queries from
0.319 to 0.350, and for Hop-0+1 queries from 0.270



to 0.286. Our approach is language independent,
however, for Spanish and Chinese we could not cre-
ate any improvements due to a lack of run diver-
sity for Spanish and a token-based name and value
matcher that was not working sufficiently for Chi-
nese.

One problem with the current formulation of the
TAC-KBP ensembling task is that it is based on Cold
Start knowledge bases which generally only report
the best extraction of a particular slot filler as op-
posed to all of them above a certain confidence. This
eliminates a significant amount of redundancy that
would otherwise be exploitable by our approach.
An interesting direction for future work is to see
whether preserving such multiple extractions even
if they are lower confidence could boost overall per-
formance of an ensemble run.
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