
Event Nugget Detection Task : UMBC systems

Taneeya Satyapanich and Tim Finin
University of Maryland, Baltimore County

Baltimore, MD, 21250, USA
taneeya1@umbc.edu, finin@umbc.edu

Abstract

This paper described our Event Nugget De-
tection system that we submitted to the TAC
KBP 2016 Event Track. We sent out two runs;
UMBC1 and UMBC2. UMBC1 is a sentence-
level classification system based on Convolu-
tional Neural Network and applied the prob-
ability to select a word as an event nugget.
UMBC2 is the classification model trained
from our features using Weka and filtered out
low confidence prediction output using thresh-
old. For event nugget detection and classi-
fication performance, we got F1 measure of
34.14, 29.50 for UMBC1 and 35.24, 31.57 for
UMBC2.

1 Introduction

Text Analysis Conference Knowledge Base Popu-
lation (TAC KBP) 2016 is an evaluation workshop
in Natural Language Processing. Several tasks had
been launched such as Entity Discovery, Event Ex-
traction, Sentiment analysis. They provided collec-
tions of annotated data such as newswires, discus-
sion forums, including their source text that can be
used as training corpus. Besides, they have evalua-
tion procedure to evaluate all of the participant sys-
tem output. The Event Nugget track (Mitamura and
Hovy, 2016) is one of the two tasks in the Event
track this year. They provided three languages test
data in the Event Nugget Detection task, our sys-
tem focused only the English documents. Event
Nugget Detection goal is to identify all of the event
mentions in document, also classify the event into
an event type/subtype. The event types/subtypes

are defined in the (DEFT Rich ERE Annotation
Guidelines: Events v.2.5.1, 2015). In addition,
systems must identify Realis attribute (ACTUAL,
GENERIC, OTHER), which are also described in
the Rich ERE guidelines.

Event means something that happens or may not
happen at a particular place and time but it is men-
tioned in the document. There have been multi-
ple research that studied the event mention detec-
tion. Supervised machine learning such as (Sam-
mons, et.al., 2014; Grishman, et.al., 2005); (Sam-
mons, et.al., 2014) used supervised machine learn-
ing method plus measuring overlapping of the event
argument and the world knowledge corpus, (Grish-
man, et.al., 2005) used Maximum Entropy based
classifiers to detect trigger word to distinguish event
mentions from non-event-mentions. Unsupervised
machine learning has been used in (Ji and Grishman,
2008). They created some inference rules on statis-
tics value of detected triggers word that are associ-
ated with particular types of events to improve the
cross-document event extraction. (Li et.al., 2013)
proposed structured prediction method and global
features to predict the event mention and its argu-
ment that occur in the same sentence simultane-
ously. (Liu, et.al., 2015) used a discriminatively
trained Conditional Random Field (CRF) model to
detect event mention span and event type. Recently,
deep neural network had been used in (Reimersy and
Gurevychyz, 2015). (Reimersy and Gurevychyz,
2015) trained deep feed forward network with fea-
tures such as subject, object, lemma, part of speech,
and word embeddings to detect event nuggets.

For our systems, we considered the event nugget



detection as the classification problem. Our systems
was built based on an idea that any words or phrases
that mentioned the same event type always has high
semantic similarity. We will described both systems
description about features, classification model pa-
rameters in section 2. The training data and devel-
opment data we used are described in section 3. The
official experimental results are in section 4. Discus-
sions are in section 5. And conclusion is in section
6.

2 System Description

For the Event Nugget Detection task (Mitamura and
Hovy, 2016), we have to detect the event mentioned
in the document and classify the event to its type.
There are eighteen event types; Conflict.Attack,
Conflict.Demonstrate, Contact.Broadcast, Con-
tact.Contact, Contact.Correspondence, Con-
tact.Meet, Justice.Arrestjail, Life.Die, Life.Injure,
Manufacture.Artifact, Movement.TransportArtifact,
Movement.TransportPerson, Personnel.Elect, Per-
sonnel.Endposition, Personnel.Startposition, Trans-
action.Transaction, Transaction.Transfermoney,
Transaction.TransferOwnership. Nuggets of the
eighteen event types have to be identify with
mention span and event type if they appeared in the
document. Besides, the Realis values are ACTUAL,
OTHER, GENERIC has to be chosen for each de-
tected nuggets. We built two classification systems
called UMBC1 and UMBC2. They have difference
procedures and features. Both system used the same
Realis procedure. Details of UMBC1, UMBC2 and
Realis procedures are described in the following
sections.

2.1 UMBC1

This system consists of two main procedures: Clas-
sification and Selection. The classification proce-
dures was developed from Sentence Classification
using Convolutional Neural Network (Kim, 2014).
Convolution Neural Network was introduced to do
sentiment analysis for movie review data. Their sys-
tem can predict the sentiment of sentences. They
used word vector to represent each word in the sen-
tence. The word matrix is built for each sentence
by concatenating word vector. The Neural Network
was trained with these word matrix. We applied

their system to classify sentence to one of nineteen
possible events (18 events plus non event). The
pre-trained word vectors trained on part of Google
News dataset (about 100 billion words) called
GoogleNews-vectors-negative300.bin.gz (Mikolov,
et.al., 2013) will be used in any word embeddings
task for UMBC1 system. The model contains 300-
dimensional vectors for 3 million words and phrases.

To train the Convolutional Neural Network, the
training data has to be prepared. Each training
sample is a sentence annotated with an event type.
The preprocessing is as followed. First, stopwords
were filtered out. Then, every sentence in train-
ing documents were cut using window of size 10.
Each window was overlapped three words within the
sentence. If the sentence contains a trigger word,
this sentence will be annotated using the annotation
event. If the sentence has no trigger, this sentence
will be annotated as non-event. The classification
model is trained on this collections of processed sen-
tences.

When testing, every sentence in the test files were
preprocessed with the same step as the training data,
before input to the classification model. The sen-
tence will be classify to be either an event or non
event. If it is classified as an event sentence, the sen-
tence will be continued on Selection procedure.

Selection procedure, the sentence will be tok-
enized. Every single word in the sentence were used
to compute a metric. The metric was used to se-
lect the final trigger word in the next step. The met-
ric comprised of a similarity value, a probability to
be an event P (Eventi|W ), a probability to be non-
event P (Nonevent|W ). Details of three values are:

• The similarity value is the maximum seman-
tic similarity value from word embeddings be-
tween the target word and every trigger in the
training corpus of that event type. The statis-
tical data of the trigger word that has highest
semantic similarity will be used for computing
the following probabilities.

• The probability to be an event of the trigger
word P (Eventi|W ) is the conditional proba-
bility of trigger word is an event given the trig-
ger word. It was computed from number of the
trigger word that appeared in the corpus as the



trigger word of this event divided by frequency
of the trigger word.

• The probability to be non-event of the trig-
ger word P (Nonevent|W ) is the conditional
probability of trigger word is not an event given
the trigger word. It was computed from number
of the trigger word that appeared in the corpus
as non-event divided by frequency of the trig-
ger word.

Note that all statistical values of trigger words were
collected from the training examples.

Every single word has a metric that contains three
values. Only one word will be select to be the trig-
ger word of the sentence. The word will be selected
if the word has highest probability to be an event
and the probability to be an event is higher than the
probability to be non-event. If the word that has the
highest probability to be an event is lower than the
probability to be non-event, the second, the third,
and so on will be checked until the answer is found.

2.2 UMBC2
This system is another classification model built
from features that extracted from training data. We
used Weka(Hall, et.al., 2009) to train the model.
This classification model is also built to classify
19 types of events (18 subtypes plus a non-event).
Event samples are collected from annotation data
in the training corpus. Any words that are not ap-
peared in the same sentence as the trigger words
were collected and annotated as non-event sam-
ples. The pretrained word embeddings from Global
Vector for word representation (GloVe), Common
Crawl (42B tokens, 1.9M vocab, uncased, 300d vec-
tors)(Pennington, et.al., 2014) are used for any word
embeddings task for UMBC2. Features consist of:

• similarity values

• part of speech tag of the target word

• frequencies of each name entity types found in
the same sentence.

• dependency function of the target word

Similarity values are series of semantic similar-
ity that are measured from word embeddings be-
tween representatives of each event type and the

target/trigger word. Representatives of each event
types are set of trigger words from training data.
They were selected by K-mean clustering algorithm.
We used K equals to 20. The K-mean cluster-
ing algorithm is used to cluster all triggers in the
corpus. We used similarity value from word em-
beddings as the distance between each sample in
each cluster. The twenty highest frequency trig-
ger words are used as the initial centroids. Finally,
we have twenty triggers as representatives per event
types. Part of speech tag, name entity detection, and
dependency parser were processed using Stanford
CoreNLP tool(Manning, et.al., 2014).

We ran Auto-WEKA(Thornton, et.al., 2013) to
find the best configurations and best training func-
tion. The best training model from our experiment
is RandomForest with attribute selection using Cfs-
SubsetEval and Best First Search algorithm.

When testing, every sentence is tokenized into
words. Each word was used to compute feature vec-
tors and put into classification model. This method
we got the large number of prediction output from
the classification model. To reduce the number of
output,the low confidence score outputs were fil-
tered out by using threshold 0.5. Threshold is from
experiment.

2.3 Realis

Realis attribute indicates whether or not the event
is occurred. It has three possible values; AC-
TUAL, GENERAL, OTHER. They provided some
rules in the (DEFT Rich ERE Annotation Guide-
lines: Events v.2.5.1, 2015). To predict the Realis
attribute, we trained a classifier model using Weka.
The features consist of:

• Verb tense

• four name entity types surrounding the verb of
the sentence

• number of habitual occurrence word in the sen-
tence

• number of negation and conditional words i.e.
whether, if in the sentence

• number of modality words in the sentence



Attributes Precision Recall F1
plain 46.38 27.01 34.14

mention type 40.08 23.34 29.50
realis status 32.35 18.84 23.82

mention+realis 27.94 16.27 20.57

Table 1: The performance of UMBC1

When the nuggets are detected by UMBC1 or
UMBC2, these nuggets will be use to compute Re-
alis feature vectors and put into Realis classification
model. The model will predict one of three Realis
values for each nuggets.

3 Corpus

All of training data we selected consist of ACE
2005 Multilingual Training Corpus (LDC2006T06),
DEFT Rich ERE English Training Annotation V2
(LDC2015E29), DEFT Rich ERE English Train-
ing Annotation R2 V2 (LDC2015E68), and DEFT
Rich ERE Chinese and English Parallel Annotation
V2 (LDC2015E78 only English examples). We re-
moved any redundant file off and got total of 1,159
files of source/annotation documents. Total num-
ber of 18 event types used as training data is 12,484
samples. Development data is DEFT Event Nugget
Evaluation Training Data (LDC2014E121). Total
number of 18 event types used as development data
is 2,642 samples.

4 Experimental Results

We processed only English documents of the test
data. English testing data consists of 169 docu-
ments. They can be categorized into 85 newswire
documents and 84 discussion forum threads. We
sent two runs for the Event Nugget Detection task.
One run was from UMBC1 and another run from
UMBC2. The performance of both systems was in
the same range. The best result that we got is F1
measure of 35.24 from UMBC2. It is quite low when
compare with the best system of the event nugget de-
tection task. The details of our system performance
are in Table 1 and Table 2.

The system performance of mention detection
(plain) in Table 1 and Table 2 showed that UMBC1
can produced higher precision but lower recall when
compared to UMBC2. The highest precision we got

Attributes Precision Recall F1
plain 41.70 30.51 35.24

mention type 37.36 27.33 31.57
realis status 28.45 20.81 24.04

mention+realis 25.64 18.76 21.67

Table 2: The performance of UMBC2

from UMBC1 is 46.38. The highest recall is from
UMBC2 equals to 30.51. When measuring men-
tion type, realis, and mention type+realis, the system
got performance as 31.57, 24.04, and 21.67, respec-
tively. We will discuss what reasons are affected our
system to has low performance in the next section.

5 Discussion

To give more details for analyze the system perfor-
mance, the statistical data of our train and develop-
ment data were shown in Table 3. Table 3 showed
our system performance and number of training data
and development data we used to train the classifica-
tion model by each event types. It can be obviously
seen that there are imbalanced of train data, devel-
opment data, and test (Gold) data. Only a few event
types has high number of training samples. In the
development phase, we tried to train the classifica-
tion model with balanced training data 200 samples
and 500 samples per event types. The training sam-
ples were balanced by replicating the small size data
and random sampling the big size data. But they per-
formed worse than the model that was trained with
imbalance data. It may due to the sample size was
too small. Finally, we chose to not balance train-
ing data. This may be a reason that we got low per-
formance. If we can collect more training data, we
have balanced big number of samples for each event
types, we may get higher performance. In addition
to low quality of classification model, small size of
some event types in the training data also yielded to
the performance of selection procedure of UMBC1.
The selection procedure rely on statistical informa-
tion collected from training data. We have small size
of training data, it has high chance that the unseen
and dissimilar sample from testing data will be en-
countered. In this case, the selection procedure will
give the wrong output.

Another cause of poor performance is because



of our development data cannot reflect the system
performance in a good way. We observed that de-
velopment samples of some event types are miss-
ing such as Contact.Broadcast, Contact.Contact,
Movement.Transport-Artifact. We have no devel-
opment data in these event types. That means the
model is developed in the way that did not concern
any performance on these event types. It yielded to
these event types has very low performance on test
data.

The last observation is about characteristics of the
discussion forum data. It may not relevant only to
the real performance of our system, but it effects the
official result of other systems as well. The discus-
sion forum data always has the redundancy phrases
or sentences in the same document. If the system
detected one of these redundant nuggets, the rest of
the redundant nuggets always were annotated with
the same event types. If the one was found, the
rest will be found. This can exaggerate the perfor-
mance in both way, much better performance if the
nugget was detected or much worse performance if
the nugget was neglected. So in our opinion, the
discussion forum data is not the good example to
measure performance of the event nugget detection
system.

6 Conclusion

We developed two systems; UMBC1 and UMBC2,
to participate in event nugget detection task of
TAC2016. We considered the event nugget detection
task as a classification problem. UMBC1 developed
from Convolutional Neural Network. UMBC2 ex-
tracted features and trained the classification model
on Weka. Both systems got the same level of per-
formances. A lot of flaws were found such as im-
balance training data, incomplete samples of devel-
opment data, small size of training data. These ob-
servations will be used to improve our system in the
future.

References
Ralph Grishman, David Westbrook, and Adam Meyers.

2005. Nyus english ace 2005 system description. In
Proceedings of ACE 2005 Evaluation Workshop.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, Ian H. Witten. 2009.

Event types Train Dev Gold S1 S2
attack 2541 538 499 0.22 0.27

demonstrate 184 88 189 0.38 0.27
broadcast 388 0 581 0.16 0.2
contact 613 0 446 0.07 0.1

correspond 216 0 96 0.07 0.03
meet 542 190 147 0.27 0.29

arrestjail 247 148 92 0.51 0.45
die 1259 394 233 0.41 0.46

injure 254 58 37 0.59 0.5
artifact 120 0 112 0.07 0.11

trnsprtartif 82 0 123 0.07 0.1
trnsprtperson 853 346 444 0.19 0.18

elect 217 25 86 0.28 0.09
endposition 447 108 186 0.31 0.36
strtposition 249 53 72 0.08 0.06
transaction 111 0 36 0 0

transfmoney 1056 247 477 0.12 0.12
transfownship 640 219 299 0.15 0.21

Table 3: Number of train/development data and Per-
formance(F1) of UMBC1(S1), UMBC2(S2) by mention
type

The WEKA Data Mining Software: An Update.
SIGKDD Explorations, Volume 11, Issue 1.

Heng Ji, and Ralph Grishman. 2008. Refining Event Ex-
traction through Cross-Document Inference. In ACL,
pp. 254-262.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pp. 17461751, Doha,
Qatar. Association for Computational Linguistics.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint Event
Extraction via Structured Prediction with Global Fea-
tures. ACL

Zhengzhong Liu, Jun Araki, Dheeru Dua, Teruko Mita-
mura, Eduard Hovy. 2015. CMU-LTI at KBP 2015
Event Track. Eighth Text Analysis Conference.

Christopher D. Manning, Mihai Surdeanu, , John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language Pro-
cessing Toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pp. 55-60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013. Distributed Representations
of Words and Phrases and their Compositionality. In
Proceedings of NIPS.



Teruko Mitamura, and Eduard Hovy. 2016. 2016 TAC
KBP Event Detection and Coreference Tasks, v2.1.
Technical report, Carnegie Mellon University.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global Vectors for Word Rep-
resentation.

Nils Reimersy and Iryna Gurevychyz. 2015. Event
Nugget Detection, Classification and Coreference Res-
olution using Deep Neural Networks and Grandient
Boosted Decision Trees. Eighth Text Analysis Con-
ference.

Mark Sammons, Yangqiu Song, Ruichen Wang, Gourab
Kundu, Chen-Tse Tsai, Shyam Upadhyay, Siddarth
Ancha, Stephen Mayhew, and Dan Roth. 2014.
Overview of UI-CCG Systems for Event Argument Ex-
traction, Entity Discovery and Linking, and Slot Filler
Validation. Urbana 51 (2014): 61801.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin
Leyton-Brown. 2013. Auto-WEKA: Combined selec-
tion and hyperparameter optimization of classification
algorithms. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 847-855.

DEFT Rich ERE Annotation Guidelines: Events v.2.5.1,
Linguistic Data Consortium. February 24, 2015


