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Abstract

We describe UTD’s participating system in
the event nugget detection and coreference
task at TAC-KBP 2016. We designed and
implemented a pipeline system that consists
of three components: event nugget identifi-
cation and subtyping, REALIS value iden-
tification, and event coreference resolution.
We proposed using an ensemble of 1-nearest-
neighbor classifiers for event nugget identifi-
cation and subtyping, an SVM classifier for
REALIS value identification, and a learning-
based multi-pass sieve approach consisting of
1-nearest-neighbor classifiers for event coref-
erence resolution. Though conceptually sim-
ple, our system compares favorably with other
participating systems, achieving F1 scores of
46.99, 39.78, and 30.08 on these three tasks
respectively on the English dataset, and F1
scores of 40.01, 33.68, and 26.43 on the Chi-
nese dataset. In particular, it ranked first
on English event nugget detection as well as
on English and Chinese event nugget corefer-
ence.

1 Introduction

This year UTD participated in the event nugget de-
tection and coreference task at TAC-KBP 2016. The
task aims to identify (1) the explicit mentioning of
events in text for three languages (English, Chinese
and Spanish); (2) the event types/subtypes and three
REALIS values for each event mention following
the Rich ERE annotation standard; and (3) all full
event coreference links. We participated in this task
for English and Chinese.

In this paper, we present the system we devel-
oped for this task. We designed and implemented
a pipeline system that consists of three components:
event nugget identification and subtyping, REALIS
value identification and event coreference. We de-
scribe each of them in detail in Section 2. The results
of official evaluation are shown in Section 3.

2 UTD’s System

In this section, we describe our system, which op-
erates in three steps. First, it performs event nugget
identification and subtyping, which involves detect-
ing all explicit mentioning of events with certain
specified types in text (Section 2.1). Second, it
performs REALIS value identification on the event
mentions extracted in the first step (Section 2.2).
Third, it performs event coreference resolution on
the event mentions extracted in the first step (Sec-
tion 2.3).

2.1 Event nugget Identification and Subtyping

We employ multiple 1-nearest neighbor models for
event nugget identification and subtyping. In each
model, different features are used to represent an in-
stance. To identify event mentions and their sub-
types in a document, we first apply the 1-nearest
neighbor models independently to the document.
Then, we collect the union of event mentions and
their subtypes identified by each model. If an event
mention is classified as subtype A by model i and
subtype B by model j, we collect both subtypes in
the final result. In this way, we can assign multiple
subtypes to each event mention.

To train the English system, we use each single



word as a training instance. Additionally, we use
as training instances those phrases that are true trig-
gers according to the training data. If the word or
phrase is not a trigger, the class label of the corre-
sponding training instance is None. We create test
instances from (1) the words and phrases in the test
documents that also appeared in the training data as
true triggers, as well as (2) all the verbs and nouns
in the test documents. We apply each model to a
test instance as follows. First, we pick the training
instances whose lemmatized triggers are the same
as the lemmatized trigger of the test instance as its
neighbors. Then, we use Jaccard to measure the dis-
tance between the test instance and each of its neigh-
bors identified in the previous step.

We implement four 1-nearest neighbor models
for English system: Model 1: For candidate trig-
gers that are verbs, we use the head words of their
subjects and objects as features, where the sub-
jects and objects are extracted from the dependency
parse trees obtained using the Stanford CoreNLP
toolkit (Manning et al., 2014). For candidate trig-
gers that are nouns, we employ heuristics to extract
their agents and patients and use their head words as
features. Model 2: For candidate triggers that are
verbs, we use the entity types of their subjects and
objects as features. For candidate triggers that are
nouns, we use the entity types of their heuristically
extracted agents and patients as features. These en-
tity types are provided by an entity typing classifier
trained on corpora LDC2015E68 and LDC2015E29,
both of which are annotated with Rich ERE entities.
Model 3: We use the WordNet synset ids of the can-
didate trigger and its hypernym as features. Model
4: We use the unigrams in the sentence in which the
candidate trigger appears as features.

The Chinese system is similar to its English coun-
terpart. We follow the strategy used in Chen and
Ng’s (2012) Chinese event extraction system to gen-
erate training and test instances. Specifically, we use
each single word as a training instance and assign
its class label as its gold subtype or None. To create
test instances, we posit a word in a test document as
a test instance if it appears in a training document
as a true event trigger or if it contains a character
that appears within a verb trigger in the training set.
We implement five 1-nearest neighbor models for
the Chinese system: Models 1 and 2: they are the

same as those used in the English system. The en-
tity types are provided by an entity typing classifier
trained on corpora LDC2015E78, LDC2015E105
and LDC2015E112. Model 3: We use the head
word of the entity that is syntactically/textually clos-
est to the candidate trigger as features. Model 4:
We use the characters of the candidate trigger and
the entry number of the candidate trigger in a Chi-
nese synonym dictionary as features.1 Model 5:
We use the entity type of the entity that is syntacti-
cally/textually closest to the candidate trigger as fea-
tures.

2.2 REALIS value identification

This component determines the REALIS value for
each event mention, each of which is created from
a candidate trigger extracted in the previous step.
We train one multi-class SVM classifier using the
SVMmulticlass software package (Tsochantaridis et
al., 2004). We create one instance for each event
mention. To represent each training/test instance,
we use following features, which can be divided into
two groups:

Group 1 (Event Mention features). The three
features encode: the trigger word of the event men-
tion; the part-of-speech (POS) of the trigger; and the
event subtype of the trigger.

Group 2 (Syntactic features). The six features
encode: the path from the leaf node of the trigger
to its governing clause; the main verb within the
clause containing the trigger word and its POS tag; a
Boolean feature indicating whether a negative word
exists in the clause containing the trigger word; the
auxiliary verb of a verb trigger and its POS tag.

2.3 Event Coreference Resolution

We employ a multi-pass sieve approach to event
coreference resolution. Each sieve is composed of
a 1-nearest neighbor model for classifying whether
two event mentions are coreferent or not. Sieves
are ordered by their precision, with the most pre-
cise sieve appearing first. To resolve a set of event
mentions in a document, the resolver makes multi-
ple passes over them: in the i-th pass, it uses only
the 1-nearest neighbor model in the i-th sieve to find

1The Chinese synonym dictionary is HIT-SCIR’s Tongyici
cilin (extended).



an antecedent for each event mention. The candi-
date antecedents are ordered by their positions in the
document. The partial clustering of event mentions
generated in the i-th sieve is then passed to the i+1-
th sieve. Specifically, the i+1-th sieve will not clas-
sify event mention pairs which are already classified
as coreferent in the earlier sieves. In this way, later
passes can exploit the information computed by pre-
vious passes, but the decisions made earlier cannot
be overridden later.

We use the pairs of event mentions that have the
same subtype as training instances. For each test
document, we generate pairs of event mentions that
have the same subtype, where subtype information
was determined by the trigger component described
in Section 2.1. In each sieve, the unigrams of the
two sentences containing the two triggers involved
are used as features. We use Jaccard to measure the
distance between a pair of instances.

In each sieve, we use different strategies to choose
the neighbors of each test instance. The English
resolver and the Chinese resolver both employ the
same three sieves described below:

Sieve 1: Given a test mention pair, we choose as
its neighbors those training mention pairs that sat-
isfy the following conditions: (1) their lemmatized
triggers are the same as the lemmatized trigger pair
of test mention pair; (2) their trigger subtype is the
same as that of the test mention pair; and (3) the sen-
tence distance dtrain between the two mentions in a
training mention pair must be in the range [dtest-m1,
dtest+m1], where dtest is the sentence distance be-
tween the two mentions in the test mention pair, and
m1 is a tunable parameter.

Sieve 2: This sieve only classifies a test mention
pair if the two triggers it contains have the same
lemma. Given a test mention pair, we choose as its
neighbors those training mention pairs where their
triggers have the same lemma, their trigger subtype
is the same as that of the test mention pair, and the
sentence distance dtrain is in the range [dtest-m2,
dtest+m2].

Sieve 3: This sieve utilizes additional positive
training mention pairs across documents that are cre-
ated as follows. For example, suppose an event men-
tion having trigger 1 and an event mention having
trigger 2 are coreferent in document A. In addition,
suppose that an event mention having trigger 2 and

an event mention having trigger 3 are coreferent in
document B. If the event mention having trigger 1
and the event mention having trigger 3 are not coref-
erent in any training document, we create a new pos-
itive training mention pair. Using this augmented
training set, we apply the same strategy to choose
neighbors as in Sieve 1. We tune a different param-
eter m3 for the third condition.

3 Evaluation

3.1 Data

For the English system, we use LDC2015E29,
LDC2015E68, LDC2015E73 and LDC2015E94 as
training datasets. For the Chinese system, we use
LDC2015E78, LDC2015E105 and LDC2015E112
as training datasets. For both systems, 80% of the
documents are used for model training, and the re-
maining 20% are used for development, specifically
for tuning parameters mi in the event coreference
resolution component. All three components are
evaluated on LDC2016E72. We only evaluate on the
18 event subtypes selected by the KBP 2016 orga-
nizers.

3.2 Evaluation Metrics

We report event nugget detection performance in
terms of recall, precision and F-score for four nugget
detection metrics, namely span, mention subtype
only, REALIS value only and joint metric for span,
mention subtype and REALIS value.

To evaluate event coreference performance, we
employ four commonly-used coreference scoring
measures as implemented in the official scorer
provided by the KBP 2016 organizers, namely
MUC (Vilain et al., 1995), B3 (Bagga and Baldwin,
1998), CEAFe (Luo, 2005) and BLANC (Recasens
and Hovy, 2011). Each of these evaluation measures
reports results in terms of recall, precision, and F-
score.

3.3 Results and Analysis

Table 1 shows the results of event nugget detection,
which includes the first two steps of our pipeline
system. For nugget identification and subtyping, we
achieve F-scores of 46.99 on the English dataset and
40.01 on the Chinese dataset. When examining the
result of each type, we find that events of types Man-



Metric English Chinese
Prec Rec F1 Prec Rec F1

Span 55.36 53.85 54.59 47.23 43.16 45.10
Subtype 47.66 46.35 46.99 41.90 38.29 40.01
REALIS 40.34 39.23 39.78 35.27 32.23 33.68

All 34.05 33.12 33.58 31.76 29.02 30.33

Table 1: Event Nugget Detection performance on the KBP 2016 official evaluation.

Metric English Chinese
Run 1 Run 2 Run 1 Run 2

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
B3 34.89 39.87 37.22 35.45 39.78 37.49 33.18 32.49 32.83 35.31 30.28 32.60

CEAFe 35.58 32.24 33.83 35.76 32.80 34.21 32.45 29.34 30.82 29.84 30.95 30.39
MUC 24.10 28.73 26.21 24.59 28.42 26.37 25.00 23.59 24.27 23.58 12.37 16.23

BLANC 21.33 23.68 22.10 21.62 23.51 22.25 18.45 17.33 17.80 16.64 12.00 13.83
Average = 29.84 Average = 30.08 Average = 26.43 Average = 23.26

Table 2: Event Coreference Resolution performance on the KBP 2016 official evaluation.

ufacture, Contact and Transaction have lower per-
formance. One source of precision error can be at-
tributed to multi-label classification. For example,
an event mention was labeled as belonging to differ-
ent subtypes of ”Contact” in different passes. How-
ever, given an event of type ”Contact”, only one sub-
type should be correct according to the Rich ERE
annotation standard. The second source of precision
error has to do with the fact that our system tends to
assign the same subtype to all event mentions hav-
ing the same trigger. The third source of precision
error is caused by the fact that our Chinese system
have difficulties with identifying triggers having one
single character. One major source of recall error
can be attributed to the difficulty of correctly extract-
ing features in discussion forum documents owing to
their informal writing style. Another source of recall
error can be attributed to the inability of our system
to identify trigger words/phrases that are unseen or
rarely-occurring in the training data.

For the REALIS value identification component,
we achieve F-scores of 35.27 on the English dataset
and 33.68 on the Chinese dataset. A closer exam-
ination of the results reveals that some conditional
events that should have the value ”Other” are mis-
classified as ”Actual”. Also, some events with sim-
ple present tense should be ”Actual” but are misclas-
sified as ”Other”. Additional work should be per-
formed to disambiguate these cases.

For the event coreference resolution task, we sub-
mitted the following two runs:

Run 1: The resolver employs all three sieves.

Run 2: The resolver employs only the first two
sieves.

Table 2 shows the results of our event corefer-
ence resolution system. The best English result is
obtained from Run 2, where we achieve an aver-
age F-score of 30.08. The best Chinese result is
obtained from Run 1, where we achieve an aver-
age F-score of 26.43. The major source of preci-
sion error can be attributed to the fact that our sys-
tem tends to posit event mentions having the same
trigger word as coreferent. The major source of re-
call error can be attributed to unseen coreferent trig-
ger pairs. Because of the way we choose neigh-
bors in the 1-nearest neighbor model, a test mention
pair will not have any neighbors and will therefore
not be posited as coreferent if its trigger pair is un-
seen in the original training data or the training data
augmented with the cross-document trigger pairs in
Sieve 3. An additional source of recall error has to
do with the fact that our system does not tend to posit
event mentions having different triggers as corefer-
ent. The final source of recall error can be attributed
to the missing triggers. For both languages, the trig-
ger classifier failed to identify trigger words/phrases
that are unseen or rarely-occurring in the training
data. As a result of these missing triggers, many



event coreference links cannot be established.

4 Conclusion

We presented UTD’s participating system in the
2016 TAC-KBP event nugget detection and coref-
erence task. We implemented a pipeline system that
first identified event triggers and their subtypes us-
ing multiple 1-nearest neighbor models, then clas-
sified the REALIS value and finally employed a
multi-pass sieve approach to identify event corefer-
ence links. Our system ranked first in English event
nugget detection as well as in English and Chinese
event nugget coreference.
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