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Abstract

This paper describes the YorkNRM sys-
tems submitted to the Trilingual Entity De-
tection and Linking (EDL) track in 2016
TAC Knowledge Base Population (KBP)
contests. Here, we have studied a novel
approach for for trilingual entity discov-
ery and mention detection (MD). Instead
of treating NER as a sequence labelling
problem, we propose to use a new lo-
cal detection approach, which rely on the
recent fixed-size ordinally forgetting en-
coding (FOFE) method to fully encode
each sentence fragment and its left/right
contexts into a fixed-size representation.
Afterwards, a simple feedforward neural
network is used to reject or predict en-
tity label for each individual fragment.
Moreover, we have used the entity linking
system from another participating team
USTC NELSLIP for entity linking and
NIL clustering. Based on these tech-
niques, we have submitted the results to
both EDL1 and EDL2 evaluations.

1 Introduction

In this paper, we describe the main techniques
we have used to build our entity discovery and
mention detection systems for the KBP2016 trilin-
gual EDL tracks. The EDL task requires to detect
named entities and their nominal mentions in the
raw text of three languages (English, Chinese and
Spanish) and further link each detected mention
to the corresponding node in an existing knowl-
edge base, namely Freebase. For NIL mentions
that do not exist in the knowledge base, the EDL
system needs to cluster all NIL mentions and as-
sign a unique ID to each NIL mention cluster.

This year, the EDL task has extended the nom-
inal mention detection to all entity types for all
three languages. As before, there are in total 5
different mention types, denoted as PER, LOC,
ORG, GPE, FAC. During each evaluation window,
a large corpus of 90,000 documents is provided
to each team to process. Each EDL system needs
to be efficient enough to process these documents
within the required evaluation window.

2 Preliminary

In this section, we will briefly review background
techniques used in our KBP2016 EDL systems.

2.1 Fixed-size Ordinally Forgetting Encoding

Feedforward neural network is a fast and power-
ful computation model. However, it requires to
use the fixed-size inputs and lacks of the ability to
capture long-term dependency in sequences. Be-
cause most NLP problems involve variable-length
sequences of words, RNNs/LSTMs are more pop-
ular than regular feedforward NNs in dealing with
these problems. The simple encoding method,
called Fixed-size Ordinally Forgetting Encoding
(FOFE), originally proposed in (Zhang et al.,
2015), nicely overcomes the limitations of DNNs
because it can uniquely encode a variable-length
sequence of words into a fixed-size representation
without losing information.

Give a vocabulary V consisting of |V | distinct
words, each word can be represented by a one-
hot vector. FOFE mimics bag-of-words (BOW)
but incorporates a forgetting factor to capture po-
sitional information. It encodes any sequence of
variable length composed by words in V . Let
S = w1, w2, w3, ..., wT denote a sequence of T
words from V , and et be the one-hot vector of the
t-th word in S, where 1 ≤ t ≤ T . The FOFE of
each partial sequence zt from the first word to the



Figure 1: Illustration of the local detection approach for NER using FOFE codes as input and a feedfor-
ward neural network as model. The window currently examines the fragment of Toronto Maple Leafs.
The window will scan and scrutinize all fragments up to K words.

t-th word is recursively defined as:

zt =

{
0, if t = 0

α · zt−1 + et, otherwise
(1)

where the constant α is called forgetting factor,
and it is chosen between 0 and 1 exclusively. Ob-
viously, the size of zt is |V |, and it is irrelevant to
the length of original sequence, T .

Let us use a simple example to illustrate how to
use FOFE to decode a sequence. Assume that we
have three words in our vocabulary, e.g. A, B, C,
whose one-hot representations are [1, 0, 0], [0, 1, 0]
and [0, 0, 1] respectively. When calculating from
left to right, the FOFE for the sequence “ABC” is
[α2, α, 1] and that of “ABCBC” is [α4, α+α3, 1+
α2].

According to (Zhang et al., 2015), FOFE is ca-
pable of uniquely encoding any sequence of arbi-
trary length, serving as a fixed-size but theoreti-
cally lossless representation for any sequence.

2.2 Character-level Models in NLP
Recently, as shown in (Kim et al., 2015), it may
be beneficial to model morphology in the charac-
ter level since this may provide some additional
advantages in dealing with unknown or out-of-
vocabulary (OOVs) words in a language.

The above FOFE method can be easily ex-
tended to model character-level feature in NLP.
Any word, phrase or fragment can be viewed as
a sequence of characters. In this way, based on
a pre-defined set of all possible characters, we
may apply the same FOFE method to encode the
sequence of characters. This always leads to a
fixed-size representation, irrelevant to the number
of characters in question. For example, a word
fragment of ”iFLYTEK” may be viewed as a se-
quence of seven characters: ’i’, ’F’, ’L’, ’Y’, ’T’,
’E’, ’K’. The FOFE codes of this type of charac-
ter sequences are always fixed-sized and they can
be directly fed to a feedforward neural network for
morphology modelling.

In the literature, convolutional neural networks
(CNNs) have been widely used as character-level
models in NLP (Kim et al., 2015).

3 Entity Discovery and Mention
Detection

This year we have used a new FOFE-based local
detection approach to build our systems for en-
tity discovery and mention detection in KBP2016
trilingual EDL tracks. Our systems, called FOFE-
NER hereafter, are motivated by the way how hu-
man actually infers whether a word segment in



text is an entity or mention, where the entity types
of the other entities in the same sentence is not a
must. Particularly, the dependency between ad-
jacent entities is fairly weak in NER problems.
Whether a fragment is an entity or not, and what
class it may belong to, largely depend on the in-
ternal structure of the fragment itself as well as
the left and right contexts in which it appears.
To a large extent, the meaning and spelling of
the underlying fragment are informative to dis-
tinguish named entities from the rest of the text.
Contexts play a very important role in NER or
mention detection when it involves multi-sense
words/phrases or out-of-vocabulary (OOV) words.

As shown in Figure 1, our proposed FOFE-
NER method will examine all possible fragments
in text (up to a certain length) one by one. For each
fragment, it uses the FOFE method to fully encode
the underlying fragment itself, its left context and
right context into some fixed-size representations,
which are in turn fed to a multi-layer feedforward
neural network to predict whether the current frag-
ment is not a valid entity mention (NONE), or its
correct entity type (PER, LOC, ORG and so on).
This method is appealing because the FOFE codes
serves as a theoretically lossless representation of
the hypothesis and its full contexts and the multi-
layer neural networks are used as a universal ap-
proximator to map from text to the entity labels.

In this work, we use FOFE to explore both
word-level and character-level features for each
fragment and its contexts.

3.1 Word-level Features
FOFE-NER generates several word-level features
for each fragment hypothesis and its left and right
contexts as follows:

• Bag-of-word vector of the fragment. For the
example in Figure 1, it is a bag-of-word vec-
tor of ’Toronto’, ’Maple’ and ’Leafs’.

• FOFE code for left context including the
fragment. In Figure 1, it is the FOFE code
of the word sequence of “... puck from space
for the Toronto Maple Leafs ”.

• FOFE code for left context excluding the
fragment. In Figure 1, it is the FOFE code
of the word sequence of “... puck from space
for the”.

• FOFE code for right context including the
fragment. In Figure 1, it is the FOFE code

of the word sequence of “... against opener
home ’ Leafs Maple Toronto”.

• FOFE code for right context excluding the
fragment. In Figure 1, it is the FOFE code
of the word sequence of “... against opener
home ’ ”.

Moreover, all of the above word features are
computed for both case-sensitive words in raw
text as well as case-insensitive words in normal-
ized lower-case text. These FOFE codes are pro-
jected to lower-dimension dense vectors based on
two projection matrices, Ws and Wi, for case-
sensitive and case-insensitive FOFE codes respec-
tively. These two projection matrices are initial-
ized by word embeddings trained by word2vec,
and fine-tuned during the learning of the neural
networks.

Due to the recursive computation of FOFE
codes in eq.(1), all of the above FOFE codes can
be jointly computed for one sentence or document
in a very efficient manner.

3.2 Character-level Features

On top of the above word-level features, we also
augment character-level features for the underly-
ing segment hypothesis to further model its mor-
phological structure. For the example in Figure 1,
the current fragment, Toronto Maple Leafs, is con-
sidered as a sequence of case-sensitive characters,
i.e. “{ ’T’, ’o’, ..., ’f’ , ’s’ }”, we then add the fol-
lowing character-level features for this fragment:

• Left-to-right FOFE code of the character se-
quence of the underlying fragment. That is
the FOFE code of the sequence, “’T’, ’o’, ...,
’f’ , ’s’ ”.

• Right-to-left FOFE code of the character se-
quence of the underlying fragment. That is
the FOFE code of the sequence, “’s’ , ’f’ , ...,
’o’, ’T’ ”.

These case-sensitive character FOFE codes are
also projected by another character embedding
matrix, which is randomly initialized and fine-
tuned during model training.

Alternatively, we may use the character CNNs,
as described in Section 2.2, to generate character-
level features for each fragment hypothesis as
well.



3.3 Training and Decoding Algorithm
Obviously, the above FOFE-NER model will take
each sentence of words, S = [w1, w2, w3, ..., wm],
as input, and examine all continuous sub-
sequences [wi, wi+1, wi+2, ..., wj ] up to n words
in S for possible entity types. All sub-sequence
longer than n words are considered as non-entity
in this work.

When we train the model, based on the entity
labels of all sentences in the training set, we will
generate many sentence fragments up to n words.
These fragments fall into three categories:

• Exact-match with an entity label, e.g., the
fragment “Toronto Maple Leafs” in the pre-
vious example.

• Partial-overlap with an entity label, e.g., “for
the Toronto”.

• Disjoint with all entity label, e.g. “from space
for”.

For all exact-matched fragments, we generate
the corresponding outputs based on the types of
the matched entities in the training set. For both
partial-overlap and disjoint fragments, we intro-
duce a new output label, NONE, to indicate that
these fragments are not a valid entity. Therefore,
the output nodes in the neural networks contains
all entity types plus a rejection option denoted as
NONE.

During training, we implement a produce-
consumer software design such that a thread
fetches training examples, compute all FOFE
codes and packs them as a mini-batch while the
other thread feeds the mini-batches to neural net-
works and adjusts the model parameters and all
projection matrices. Since “partial-overlap” and
“disjoint” significantly outnumber “exact-match”,
they are down-sampled so as to balance the data
set. During inference, all fragments not longer
than n words are all fed to FOFE-NER to com-
pute their scores over all entity types. In practice,
these fragments can be packed as one mini-batch
so that we can compute them in parallel on GPUs.
As the NER result, the FOFE-NER model will re-
turn a subset of fragments only if: i) they are rec-
ognized as a valid entity type (not NONE); AND
ii) The NN scores exceed a global pruning thresh-
old.

Occasionally, some partially-overlapped or
nested fragments may occur in the above pruned

prediction results. We can use one of the following
simple post-processing methods to remove over-
lappings from the final results:

1. highest-first: We check every word in a sen-
tence. If it is contained by more than one
fragment in the pruned results, we only keep
the one with the maximum NN score and dis-
card the rest.

2. longest-first: We check every word in a sen-
tence. If it is contained by more than one
fragment in the pruned results, we only keep
the longest fragment and discard the rest.

Either of these strategies leads to a collection
of non-nested, non-overlapping, non-NONE entity
labels.

In some tasks, it may require to label all nested
entities. This has imposed a big challenge to the
sequence labelling methods. However, the above
post-processing can be slightly modified to gen-
erate nested entities’ labels. In this case, we first
run either highest-first or longest-first to generate
the round’s result. For every entity survived in
this round, we will recursively run either highest-
first or longest-first on all entities in the original
set, which are completely contained by it. This
will generate more prediction results. This pro-
cess may continue to allow any levels of nesting.
For example, for a sentence of “w1 w2 w3 w4 w5”,
if the model first generates the prediction results
after the global pruning, as [“w2w3”, PER, 0.7],
[“w3w4”, LOC, 0.8], [“w1w2w3w4”, ORG, 0.9],
if we choose to run highest-first, it will gener-
ate the first entity label as [“w1w2w3w4”, ORG,
0.9]. Secondly, we will run highest-first on the
two fragments that are completely contained by
the first one, i.e., [“w2w3”, PER, 0.7], [“w3w4”,
LOC, 0.8], then we will generate the second nested
entity label as [“w3w4”, LOC, 0.8]. Fortunately,
in any real NER and mention detection tasks, it is
pretty rare to have overlapped predictions in the
NN outputs. Therefore, the extra expense to run
this recursive post-processing method is minimal.

4 Entity Linking and NIL Clustering

In the entity linking task, each detected mention
needs to be linked to a known entity in an existing
knowledge base, namely Freebase in this task. For
all mentions that do not match any existing node in
Freebase, we need to cluster these NIL mentions.



This year, we have used a linking system from an-
other participating team, USTC NELSLIP, (Liu et
al., 2016), to conduct entity linking and NIL clus-
tering. Their entity linking (EL) system consists
of two modules: a rule based candidate generation
and a neural networks probability ranking model.
Moreover, some simple string matching rules are
used for NIL clustering. See (Liu et al., 2016) for
more details.

5 Experimental Results

In KBP2016, the trilingual EDL task is extended
to to detect nominal mentions of all 5 entity types
for all three languages. In our experiments, for
simplicity, we just treat nominal mention types
as some extra entity types and detect them along
with named entities together with a single model.
We have evaluated our proposed FOFE-based
local detection method for Entity Discovery in
KBP2015 dataset and we have used this method to
participate the KBP2016 official tri-lingual EDL
evaluation. In the following, we will report the
our performance on these KBP EDL tasks.

5.1 Training Data

We make use of the following data sets as our
training data to learn the NER and mention detec-
tion models.

• Training and evaluation data in KBP2015:
In previous year’s competition, 335 English
documents, 313 Chinese documents and 296
Spanish documents were annotated for train-
ing and evaluation, totalling 944 documents.
In this data set, all five named mention types
(PER, ORG, GPE, LOC, FAC) and only one
nominal mention type (PER) are labelled.
In KBP2016, nominal mention has been ex-
panded to all 5 classes of named entities.

• Machine-labeled Wikipedia: When terms
or names are first mentioned in a Wikipedia
article they are often linked to the cor-
responding Wikipedia page by hyperlinks,
which clearly highlights the possible named
entities with well-defined boundary in the
text. We have developed a program to auto-
matically map these hyperlinks into KBP an-
notations by exploring the infobox (if exist-
ing) of the destination page and/or examining
the corresponding Freebase types. Nominal
mentions are not labelled by this approach.

In this way, we have created a fairly large
amount of weakly-supervised trilingual train-
ing data for the KBP2016 EDL task.

• iFLYTEK’s in-house dataset: The iFLY-
TEK Research has generously shared with us
about 10,000 in-house English and Chinese
labeled documents (Liu et al., 2016). These
documents are internally labelled by iFLY-
TEK using some annotation rules similar to
the KBP 2016 guidelines.

Additionally, when we generate the machine-
labeled data from Wikipedia, we have also cre-
ated a large gazetteer using the titles of Wikipedia
pages and Freebase nodes. We have used the
gazetteer-related features for the KBP2016 EDL
task.

5.2 Data Preprocessing

Data from both KBP2015 and KBP2016 are in the
XML format. Our preprocessing tools only extract
text surrounded by two adjacent XML tags for
later stages since XML tags tend to be metadata
and irrelevant to our task. The values of all author
attributes are extracted from all post tags, which
are directly labeled as PER. The extracted text is
sent to the Stanford CoreNLP toolkit for sentence
splitting and tokenization. All words containing
digits are mapped to several pre-defined tokens,
e.g. 〈number〉, 〈date〉, using some regular ex-
pression matches.

5.3 Hyperparameter optimization

We normally split the available training data into
training, validation and evaluation sets in a ratio of
90:5:5. We perform grid search on several hyper-
parameters, including initial learning rate, mini-
batch size, initial dropout, number of layers, size
of hidden layer, number of epochs, on the held-out
validation set. Each hyper-parameter typically has
3 to 5 options during the grid search.

Here we summarize the set of hyper-parameters
used in our experiments: i) Number of epochs:
we normally run 256 epochs if the iFLYTEK data
is not used in training. Otherwise, we only run
64 epochs. ii) Learning rate: it is initially set to
0.128 and it is gradually decreased by multiply-
ing a number at the end of every epoch so that
it reaches 1/16 of the initial value at the end of
the whole training process; iii) Dropout rate: it
is initially set to 0.4 and it is slowly decreased



training data P R F1

KBP2015 0.818 0.600 0.693
KBP2015 + WIKI 0.859 0.601 0.707

KBP2015 + iFLYTEK 0.830 0.652 0.731

Table 1: Entity discovery performance (English
only) in KBP2016 EDL1 evaluation window is
shown as a comparison of three models trained by
different combinations of training data sets.

in the training until it reaches 0.1 at the end. iv)
Network structure: we use a feedforward fully-
connected structure of 3 hidden layers, each of
which has 512 hidden nodes. The ReLU activa-
tion function is used. The network weights are
randomly initialized based on a uniform distribu-
tion between −

√
6

Ni+No
and

√
6

Ni+No
(Glorot et

al., 2011). v) Embedding matrices: case-sensitive
and case-insensitive word embeddings for three
languages are pre-trained from English Gigaword,
Chinese Wikipeida and Spanish Gigaword using
the word2vec tool (Mikolov et al., 2013). Char-
acter embeddings have 128 dimensionare and they
are randomly initialized.

5.4 Effect of various training data

In our first set of experiments, we investigate the
effect of using different training data sets on the fi-
nal entity discovery performance. Different train-
ing runs are conducted on different combinations
of the aforementioned data sources. In Table 1, we
have summarized the official English entity dis-
covery results from three systems we submitted to
KBP2016 EDL1 evaluation. The first system, us-
ing only the KBP2015 data to train the model, has
achieved 0.693 inF1 score in the official KBP2016
English evaluation data. After adding the weakly
labelled data, WIKI, we can see the entity discov-
ery performance is improved to 0.707 in F1 score.
Finally, we can see that it yields the best perfor-
mance by using the KBP2015 data and the iFLY-
TEK in-house data sets to train our models, giving
0.731 in F1 score.

5.5 The official performance in KBP2016
EDL evaluation

After fixing some system bugs, we have used both
the KBP2015 data and iFLYTEK data to re-train
our models for three languages and finally sub-
mitted three systems to the final KBP2016 EDL2
evaluation. The official results of two systems are

summarized in Table 2. In our systems, we treat all
nominal mentions as special types of named enti-
ties and both named and nominal entities are rec-
ognized using one model. Here we have broken
down the system performance according to differ-
ent languages and categories of entities (named
or nominal). In RUN1, we have submitted our
best NER system, achieving about 0.718 in F1

score in the KBP2016 trilingual EDL track. This
is a very strong performance among all KBP2016
participating teams. In RUN3, we have submit-
ted system fusion results by combining our results
with the best results from another KBP2016 par-
ticipating team using CNNs and RNNs (Liu et al.,
2016). The overall trilingual F1 score is improved
to 0.754. It is worth to note that we have obtained
a pretty high recall rate, about 0.735, after the sys-
tem combination because the NER methods used
by these two systems are quite complementary.

At last, using the USTC NELSLIP entity link-
ing system from (Liu et al., 2016), we have sub-
mitted the full EDL results for our run1 during the
EDL2 evaluation window. The official trilingual
EDL results for the above RUN1 are summarized
in Table 3.

6 Conclusions

In this paper, we have described our submitted
systems for Trilingual EDL Track of 2016 TAC
KBP evaluation. We have investigated a new
FOFE-based local detection based approach for
the challenging KBP2016 trilingual EDL tasks.
This method has relied on the recent fixed-size
ordinally forgetting encoding (FOFE) method to
fully encode each fragment and its left/right con-
texts into a fixed-size representation, and a sim-
ple feedforward neural network to reject or pre-
dict entity label for each individual fragment. Our
submitted YorkNRM systems using this method
have achieved a strong performance in the official
KBP2016 trilingual EDL evaluations.
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