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Abstract

This paper describes doughnutPRIS system
for two tasks in TAC KBP 2016 track, Cold
Start Slot Filling and Event Argument Extrac-
tion and Linking. Compared with the adopted
systems last year, we continue to use end-to-
end neural networks to tackle these informa-
tion extraction problem; however, some latest
architectures and tricks are integrated into the
presented system. Moreover, we draw a les-
son from the deficiencies of past, and make
some specific adjustments in pre-processing
and post-processing.

1 Introduction

Recently, deep learning techniques are widely used
in various NLP tasks. Consequently, in TAC KBP
2015, we attempted to construct neural network sys-
tems for targeted tasks. Our works in this year are
based on the experience of last year’s system. We
still participate in the Clod Start SF and EAL task.
Notably, for EAL task, the scale of released corpus
is much larger than that of TAC2015. Aimed at this
change, we make the appropriate adjustments.

With respect to network structure, we adopt
multi-layer Convolutional Neural Network(CNN)
and Bidirectional Gated Recurrent Unit(GRU) (Cho
et al., 2014) with attention mechanism (Bahdanau et
al., 2014). Compared with the single layer CNN that
we used in TAC2015, multi-layer structure can ex-
tract higher level feature; moreover, it is conducive
to alleviate noise information in long sentences. At-
tention mechanism is a triumphant achievement in
the field of deep learning and has widely applied in

processing various NLP tasks. It is capable of auto-
matically concentrating on qualitatively informative
words for targeted task, which conforms to the con-
cept of trigger word in relation and event extraction.
The crucial information for determining relation and
event mainly concentrate on the pattern that consists
of trigger word.

In view of network structure, CNN performs bet-
ter on recognizing consecutive pattern; however,
RNN is good at mining long-distance discrete pat-
tern. In order to combine there advantages, for each
task, we build corresponding CNN-based and RNN-
based systems. And the final results are selected by
a predefined threshold.

The remainder of this paper is organized as fol-
low. Section 2 describes some text processing
details to generate normative sentence-level input.
Section 3 and Section 4 respectively present the neu-
ral networks for Cold Start SF and EAL. Finally, in
Section 5, we make a summary of our TAC2016
systems and point out the works that need to be
strengthened in future.

2 Extract candidate sentences

DoughnutPRIS neural networks need sentence-level
input, so the first work is to transform document-
level plain texts to sentence-level neat texts that con-
tain targeted query information. Figure 1 shows the
operation details. It is similar to the process used
in TAC2015. The only difference is that we aug-
ment the scale of external entity dictionary to 16909
items.
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Figure 1: Candidate sentences extraction process
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3 Cold Start Slot Fiiling

We utilize two networks, multi-layer CNN (Zeng et
al., 2014) and Bidirectional GRU (Xu et al., 2015),
to jointly finish Cold Start SF task. The instances
that both two networks have consistent judgements
are naturally selected as final results. However, for
the inconsistent instance, we simply chose the result
with higher softmax probability. The official score
for our SF system is presented in Table 4.

3.1 Muti-layer CNN

Figure 2 depicts the architecture of the multi-layer
CNN. In order to extract more consecutive pat-
tern information, we adopt three kinds of sliding
windows, which represent 3-gram, 4-gram and 5-
gram. After the first convolutional layer, we ob-
tain the phrase-level features. Then, we exert the
same convolution layer on these phrase-level fea-
tures. Through this operation, we increase the length
of consecutive patterns, which is beneficial to the re-
lation expressions with long pattern.

Words in sentence are parametrized into word em-
beddings. The other important input is to point out
the positions of query and candidate filler. Proved
through the experiments that, combining Position
Feature (PF) (Zeng et al., 2014) with Position In-
dicator (PI) (Zhang and Wang, 2015) achieves better
performance than using any one of them. PF trans-
forms the relative distances from context to query
(or candidate filler) into distributed representations.
PF of word that occurs on the left of query (or candi-
date filler) is encoded as the vector of negative num-
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Figure 2: Multi-layer CNN architecture

ber, otherwise positive number. These vectors are
concatenated with the corresponding word embed-
ding. PI adds four position indicators surrounding
query and candidate filler. These indicators are as-
signed to distributed representations with the same
dimension as word embedding.

3.2 Bidirectional GRU with attention

The conventional RNN exists the biased problem.
To overcome this issue, the adaptive gating mecha-
nism is adopted to alleviate this dilemma. Moreover,
in comparison to LSTM, GRU contains less param-
eters to learn. So we select GRU to model sequence
data.

Standard GRU is the unidirectional network,
which means current hidden state only have access
to the past context along input sequence in temporal
order. However, relation classification depends on
the overall information of sentence. Future words
equally have impact on the semantic of past con-
tent. To solve this problem, we adopt a bidirectional
architecture as in Figure 3 to summarize informa-
tion for words from both directions. Standard GRU
is regarded as the forward GRU. Backward GRU
is used to process sequences in opposite temporal
order. The corresponding hidden states are com-
bined by concatenation operation. Then, these new
hidden states are weighted by attention layer. The
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Figure 3: The architecture of Bidirectional GRU with attention

weights are calculated through the dot product be-
tween a random-initialized vector and new hidden
states. This random-initialized vector is trained via
system training.

As can be seen from Figure 2 and Figure 3, the
final layer is a binary classifier. Before transmit-
ted into network, the annotated input sentences are
gave a predefined label according to Named Entity
Recognition. The network only need to determine
whether the input belongs to the predefined label or
not. So, different relation types has different set of
network parameters.

4 Event Argument Extraction

We divide EAL task into three parts, trigger identifi-
cation (Nguyen and Grishman, 2015), argument ex-
traction (Chen et al., 2015) and Realis detection. De-
tailed descriptions are presented in the ensuing sub-
sections. Through observing the errors in TAC2015,
we find that most of our submissions are incom-
plete. These standard answers are in phrase level;
however, we only submit word-level answers. So,
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Figure 4: The architecture of Bidirectional GRU for EAL

in TAC2016, we add a chunking process as post-
processing to compensate for this deficiency. Ta-
ble 2, Table 3 and Table 1 give the official score of
our EAL system.

4.1 Trigger identification

We use the same multi-layer CNN structure for trig-
ger identification. Candidate trigger set is composed
of the set selected from training set and the expanded
set extracted from WordNet and FrameNet. The po-
sition information of candidate trigger in input sen-
tence is encoded by PF and PI.

4.2 Argument extraction

Figure 4 presents the RNN-based network structure
for argument extraction. In general, it is similar to
network of SF task. However, attention mechanism
is not adopted. Because, in input instance, trigger
word is known to system. The addition of attention
layer may be reduplicate. The other difference is that
we only transmit the last hidden states of forward
and backward GRU to the next layer. The 5-fold val-
idation on training data shows that this framework
can yield the same performance as Figure 3; more-
over, it has better computational efficiency.

4.3 Realis detection

To solve this problem, we employ the network struc-
ture in Figure 2. Because there are only three la-
bels (Actual, Generic and Other), we treat this sub-
task as multi-class problem. The other difference



System TP FP FN ArgP | ArgR | ArgFl | ArgScore | LinkScore
doughnutPRIS2 | 53.0 | 166.0 | 6450.0 | 24.2 | 0.8 1.6 0.6 0.1
Table 1: Official Score for doughnutPRIS2 submission
System 5% | 50% | 95% pared with our last year’s system, we continue to use
doughnutPRIS2 | 04 | 0.6 | 0.7 neural network to tackle these problems; however,
Max 8.6 | 9.7 | 109 we adopt deeper network structure and make some
Rank 4 25| 30 | 34 specific modifications. There are still some deficien-

Table 2: Document Level Argument Summary Score of dough-
nutPRIS2 submission

System 5% | 50% | 95%
doughnutPRIS2 | 0.0 | 0.1 | 0.2
Max 7.8 1 87 | 9.6
Rank_4 1.3 ] 1.6 | 20

Table 3: The Argument Score of doughnutPRIS2 submission

is that we substitute a pairwise ranking loss func-
tion (dos Santos et al., 2015) for the regular softmax,
which makes it easy to reduce the impact of artificial
classes.

4.4 Extract Phrase-level text

In order to expend the output of neural network,
we utilize the analysis results of Stanford Parser!.
As the parsing tree in Figure 5, we extract the first
NP unit from bottom to top as candidate argument.
However, not all situations are desirable, such as the
NP unit in dotted box. Therefore, we design some
rules to discard noise data.
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Figure 5: The architecture of Bidirectional GRU for EAL

5 Conclusion

This paper presents the doughnutPRIS system for
Cold Start SF and EAL tasks in TAC2016. Com-

lhttp://stanfordnlp.github.io/CoreNLP/

cies. We pay more attention to the improvement of
network structure, but neglect the importance of text
processing, such as coreference resolution. More-
over, some rule-based and feature-based methods
are quite effective and can compensate the shortage
of neural network. So, in future work, we will con-
sider to integrate conventional methods with neural
network. We are confident that it will improve our
performance.
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