
University of Florida 2016 Slot Filler Validation system

Miguel Rodrı́guez
CISE Department

University of Florida
Gainesville, FL 32611, USA
mer@cise.ufl.edu

Daisy Zhe Wang
CISE Department

University of Florida
Gainesville, FL 32611, USA
daisyw@cise.ufl.edu

Abstract

In this paper we present the University of
Florida 2016 Slot filler Validation (SFV) sys-
tem. This is an on going work that started in
the previous SFV evaluation where we pre-
sented a semi-supervised ensemble learning
approach to aggregate the results from multi-
ple slot fillers from the Cold Start track. In
2016 we introduce two major features. First,
given the computational complexity of jointly
reasoning over the complete set of input KBs,
we present a query driven approach that rea-
sons only over the set of candidate answers to
a specific query. Our query driven approach
also allow our system to be more selective an-
swering 1-hop queries by evaluating only pre-
sumably correct answers from its correspond-
ing 0-hop part. The second feature, is an extra
layer of ensemble that combines signals from
three types of uncertainty: (1) from the extrac-
tors, (2) from source documents and (3) from
users beliefs. In addition to the new main fea-
tures, we also used a distance metric to par-
tially disambiguate shallow entity names from
different slot filler runs.

1 Introduction

In the Cold Start Slot Filler (CSSF) task, teams were
required to construct a knowledge base (KB) by ex-
tracting missing attributes of real world entities from
a large text corpora. CSSF defines two types of
queries, 0-hop and 1-hop, depending on the number
of intermediate queries required to give a final an-
swer. Each participating system should output a cor-
rect slot filler for every query (entity,relation) pair

that can be found in the corpora. The task requires
every slot filler to be accompanied by an extraction
confidence and its provenance in the original corpus.
Table 1 shows various slot fillers for a sample query
and the number of runs that agree on the same ex-
traction.

The results of participating CSSF systems mo-
tivates the Slot Filler Validation (SFV)track. As
shown in Table 1, the collection of slot fillers from
different systems for the same query vary greatly.
Some runs agree and some others conflict in their
answers. Furthermore, when they agree their confi-
dence and provenance may not. SFV aims to auto-
matically validate the result of multiple CSSF sys-
tems. The track gathers results in two formats. Fil-
tering, where the SFV system judges every run in-
dividually discarding wrong fillers and ensemble,
where the output of the SFV system is a new run
that aggregates correct results from the input sub-
missions.

In this paper, we provide an overview of our 2016
Slot Filler Validation system. The rest of the paper is
outlined as follows. Section 2 describes our techinal
approach. In section 3 we describe the evaluation
and submitted SFV runs. In section 4 we discuss
our official results, show examples of incorrect deci-
sions, and comment on the improvements compared
to the original CSSF submissions and our 2015 sys-
tem.

2 Technical Approach

The SFV task can be casted as a binary classification
problem. Given a set of candidate slot fillers for each
query, determine the correctness of each. CSSF runs



Slot Filler Run Count
Thomas 14

Earl Dolby 11
Ray Dolby 10

Dagmar 7
David 6

Musician 5
Ray 5

Inventor/Founder 5
Esther Dolby 3

Emmys 1
Alex Ferguson 1

Table 1: Slot fillers extracted by multiple systems for the
query (Ray Dolby, per:parents). The correct answers in
the ground truth are Earl Dolby and Esther Dolby

themselves are the output of such classifier. If a run
contains a candidate slot filler, it predicted its cor-
rectness with a certain confidence score, otherwise
we represent its absence with zero confidence. The
matrix C = {cij}, i = 1, ..., n, j = 1, ...,m where
n is the total number of candidate slot fillers and m
is the number of participating runs, relates all candi-
date slot filler with its corresponding extractors.

Cij =

{
Conf(j, i) if ci ∈ Rj

0 otherwise
(1)

For instance, C can be used directly by an en-
semble model such as performance weighting (Opitz
and Shavlik, 1996), bayesian combination (Bun-
tine, 1992) or meta-combinations such as Stacking
(Wolpert, 1992). Simpler ensembles such as ma-
joroty voting can be applied. A stacked ensem-
ble approach to aggregate results from CSSF runs
(Viswanathan et al., 2015) uses the assessed queries
of previous years as training data to learn weights
for the best run of each team participating in more
than one year. All other runs are discarded from
this approach. In 2015, we proposed to augment
the stacking model using Consensus Maximization
(Gao et al., 2009). CM is an ensemble model that
combines the output of supervised and unsupervised
classifiers casted as an optimization problem. Our
2015 system accommodated the first k columns of
C as the best run from each system with previ-
ous participations. We trained a number of meta-

Figure 1: SigmaKB system architecture. The novel com-
ponents include incorporation of CM Fusion over multi-
ple KBs.

classifiers to provide diversity in the final ensemble
and combined their output with the raw predictions
from systems with no previous participations. That
is columns k+1, ...,m from C. CM objective func-
tion propagates conditional probabilities over C pe-
nalizing deviations from the initial labels assigned
by supervised methods. The 2015 SFV system rea-
soned jointly over the complete set of queries, that
is performed CM on C.

The system we present in 2016 instead of reason-
ing over the whole C, it reasons only over the sub-
set that answers a specific query. Taking this ap-
proach, we make it more similar to a data integra-
tion problem. Figure 1 shows our system’s archi-
tecture. At the bottom there is a data layer were
every CSSF run reside in a relational database. In
the middle layer we have a query processing module
that combined with our fusion model is in charge
of the aggregation process. Finally the top layer
is the input/output layer in charge of taking queries
in SQL, parse it, validate its correctness and pass
it to the lower layer. When results are ready they
can be retrieved as wel from this layer in JSON for-
mat. We named this aggregation system, SigmaKB
(Rodrı́guez et al., 2016).

The Input/Output layer allows the user to sub-
mit queries to SigmaKB using SQL, allowing fu-
ture incorporation of existing relational databases
not in RDF format. The SQL layer can be easily
augmented with additional systems like SEMPRE
(Berant et al., 2013) that enable natural language
queries. Query results are returned in JSON format
sorted by posterior probability. Provenance is also



included in the results set. SigmaKB provides ex-
tractor, document and user provenances.

The query processing layer uses conventional data
integration techniques to rewrite the query for each
KB, and move the results into the Knowledge Fu-
sion module. The KF module is uses the previous
year evaluation data to train meta-combination mod-
els. Off line we create a matrix C using equation (1)
for the previous evaluation dataset and use the first
k (common) systems plus two other signals, the ra-
tio of the total number of documents that provide an
answer for the (entity, relation) pair to the number of
documents that provide the slot filler, and the square
root of the number of documents in the provenance
for the (entity, relation, filler) triple. We use this
models at query time and combine their output with
raw extractions from other systems using our 2015
system CMF.

A new feature added in the 2016 system is the
addition of other sources of uncertainty. We ex-
plored document uncertainty and user belief. Docu-
ment uncertainty aims to provide a confidence value
taking into account the credibility of the documents
where a slot filler was found by the extractors. User
belief aims to provide a perspective from the author
associated with the extraction, this can be the author
of a news article or the user of a web forum. We in-
corporate this two types of uncertainty using another
level of meta-combination that takes extraction, doc-
ument and user uncertainty as input and output a sin-
gle probability of correctness for a given triple.

Similar to the matrix C where each candidate slot
filler is associated to with the confidence score of
its extractors, we create matrices D and U to relate
each slot filler with the documents and users asso-
ciated with the slot filler. Since multiple systems
bay have extracted a slot filler from the same doc-
ument, we take the median value of all confidences
that relate an extractor with its corresponding docu-
ment or user. To fin the posterior probability of each
slot filler given D and U we can’t use CMF as we
did for fusion the extraction confidence since there
is no overlap in documents or users with the previ-
ous evaluations. Therefore we follow the fully un-
supervised approach for aggregating slot filler prob-
abilities by JHU in 2013 (Wang et al., ). We cast an
optimization problem that finds a probability distri-
bution among the slot fillers given the confidences in

U and D respectively.

min
x

n∑
i=1

Wi(xi − yi)
2

s.t
n∑

i=1

xi = 1, xi > 0

(2)

Wi =

m∑
j=1

wj (3)

di =
1

Wi

m∑
j=1

wj
1

2
dj (4)

Where n is the number of candidate slot fillers for
a given query, and m the number of documents or
users that provide at least one answer for the query.
We use the same training strategy to train this meta-
combination model and use it at query time to give
each triple a final posterior probability.

Another minor addition to the 2016 system is
the use of a similarity metric to disambiguate shal-
low entity names extracted by the input CSSF sys-
tems. We used the IDF Token Overlap described
in (Galárraga et al., 2014) to calculate distance be-
tween pairs of candidate slot fillers. In case we find
a confident similarity score between the two strings
we merge the feature vectors and treat them as the
same slot filler.

Finally, we discuss our strategy to fill in 1-hop
query results. First, we obtain answers for the corre-
sponding 0-hop query and use our system to obtain
a posterior probability for the set of extractions. We
then use the highest ranked answers to perform a set
of 1-hop queries using all mentions of the slot filler.
We finally select the slot filler with the max number
of 1-hop correct fillers.

3 Experimental Evaluation

The SFV evaluation is carried out by a scorer pro-
vided for the task that uses a key file which pools all
system responses and a manual assessment by hu-
man judges. The scorer then uses the assessment
as ground truth to calculate precision, recall, and
F1 score. These metrics are computed based on



the correct answers, the total number of system re-
sponses, and the total number of correct responses
in the ground truth. Formally, the metrics are calcu-
lated as follows:

Recall(R) = Correct/Reference (5)

Precision(P ) = Correct/System (6)

F1 = 2
PR

P +R
(7)

The scorer reports results for 0-Hop and 1-Hop
queries individually, and a general score for the
complete submission. Since entities in the proposed
query set may have multiple entry points or men-
tions in the corpora, the reported results are also di-
vided into two types. LDC queries that don’t take
into account the query entry point and CSSF queries
that treats each entry point as as separate query. Fil-
tering and ensemble task are scored separately. For
the filtering task, each filtered output is re-scored
and the best score obtained among all filtered out-
puts is kept. The ensemble output is scored as a
CSSF output.

To participate in the 2016 SFV task, we submitted
three runs. Our first run uses the system described in
the previous section, with a small adjustment. There
are cases where some runs don’t contribute slot filler
for a given query, this run discards columns in the
subset of C for a given query that don’t have any
value greater than zero. Our second run, doesn’t use
the second layer of ensemble and reports directly the
posterior probabilities obtained by CMF. The third
submitted run takes into account all columns in C
for every query.

4 Experimental Results

The official SFV scoring metrics for each of the runs
submitted are summarized in Table 2. The best per-
formance of individual runs for each category is also
included for comparison. Overall, our system out-
performed the best individual runs and thus, achiev-
ing the ensemble purpose. Comparing the submit-
ted runs, we can see that the addition of the second
layer of fusion does not influence much the results.
We think the way we used to capture document and
user uncertainty were not appropriate and thus did
not improve the results. The most interesting results

P R F1 Queries
Run 1 0.3667 0.4239 0.3633 0-Hop
Run 2 0.3694 0.4132 0.3575 LDC
Run 3 0.3065 0.3640 0.3044

Best Run 0.2716 0.3016 0.264
Run 1 0.2217 0.2898 0.2340 1-Hop
Run 2 0.1998 0.2683 0.2122 LDC
Run 3 0.2282 0.2319 0.2197

Best Run 0.1567 0.1977 0.1638
Run 1 0.3094 0.3709 0.3122 ALL
Run 2 0.3024 0.3560 0.3001 LDC
Run 3 0.2756 0.3118 0.2710

Best Run 0.2262 0.2605 0.2244
Run 1 0.3716 0.3589 0.3651 0-Hop
Run 2 0.3831 0.3338 0.3567 CSSF
Run 3 0.3689 0.3368 0.3521

Best Run 0.4609 0.2437 0.3188
Run 1 0.1307 0.2786 0.1779 1-Hop
Run 2 0.1279 0.2757 0.1747 CSSF
Run 3 0.4150 0.1789 0.2500

Best Run 0.2528 0.1320 0.1734
Run 1 0.2448 0.3320 0.2818 ALL
Run 2 0.2415 0.3143 0.2732 CSSF
Run 3 0.3778 0.2839 0.3242

Best Run 0.3918 0.2063 0.2703

Table 2: Results obtained by SigmaKB for LDC and
CSSF queries and best run results on each category.

from our runs is the precision gained by our 3rd run
in 1-hop queries at the cost of recall. Since run 1
uses all runs and 1-hop queries are usually answered
by a small number of systems with very low pre-
cision, by running CMF with all systems included,
SigmaKB becomes more selective and avoids in-
cluding incorrect 1-hop fillers that are penalized for
having a wrong 0-hop counterpart.

5 Conclusions

This paper presented our on going work on knowl-
edge fusion and the development of SigmaKB. Our
system approach consists on combining supervised
stacked ensembles with unsupervised ESF outputs,
document and user uncertainties. Our system, was
able to improve upon individual extractors in the ag-
gregate in general and also individual query types.



According to the literature, the proposed approach
is the first one to incorporate document and user
uncertainty in the slot filler validation, nevertheless
we find the extraction method of uncertainty is not
complete and thus doesn’t influence our results com-
pared to a single layer fusion. In our future work we
will find better ways to capture such uncertainties
and effectively add them into our pipeline.

References
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In EMNLP, volume 2, page 6.

Wray Lindsay Buntine. 1992. A theory of learning clas-
sification rules. Ph.D. thesis, Citeseer.

Luis Galárraga, Geremy Heitz, Kevin Murphy, and
Fabian M Suchanek. 2014. Canonicalizing open
knowledge bases. In Proceedings of the 23rd ACM
International Conference on Conference on Informa-
tion and Knowledge Management, pages 1679–1688.
ACM.

Jing Gao, Feng Liang, Wei Fan, Yizhou Sun, and Jiawei
Han. 2009. Graph-based consensus maximization
among multiple supervised and unsupervised models.
In Advances in Neural Information Processing Sys-
tems, pages 585–593.

David W Opitz and Jude W Shavlik. 1996. Actively
searching for an effective neural network ensemble.
Connection Science, 8(3-4):337–354.

Miguel Rodrı́guez, Sean Goldberg, and Daisy Zhe Wang.
2016. Sigmakb: multiple probabilistic knowledge
base fusion. Proceedings of the VLDB Endowment,
9(13):1577–1580.

Vidhoon Viswanathan, Nazneen Fatema Rajani, and Yi-
non Bentor Raymond J Mooney. 2015. Stacked en-
sembles of information extractors for knowledge-base
population. In Proceedings of the 53rd annual meeting
on association for computational linguistics. Associa-
tion for Computational Linguistics.

I-Jeng Wang, Edwina Liu, Cash Costello, and Christine
Piatko. Jhuapl tac-kbp2013 slot filler validation sys-
tem.

David H Wolpert. 1992. Stacked generalization. Neural
networks, 5(2):241–259.


