
WIP Event Detection System at TAC KBP 2016 Event Nugget Track

Ying Zeng and Bingfeng Luo and Yansong Feng and Dongyan Zhao
Institute of Computer Science and Technology, Peking University

{ying.zeng, bf luo, fengyansong, zhaody}@pku.edu.cn

Abstract

Event detection aims to extract events with
specific types from unstructured data, which
is the crucial and challenging task in event re-
lated applications, such as event coreference
resolution and event argument extraction. In
this paper, we propose an event detection sys-
tem that combines traditional feature-based
methods and novel neural network (NN) mod-
els. Experiments show that our ensemble ap-
proaches can achieve promising performance
in the Event Nugget Detection task.

1 Introduction

Event detection, also called trigger labelling, aims
to identify the mentions of some predefined event
types. In this paper, we focus on the event extrac-
tion task proposed by TAC KBP 2016 competition
(Song et al., 2016). An event nugget, as defined
by the competition annotation guidelines, includes
a word or a phrase of multiple words that instanti-
ates an event, a classification of event type and sub-
type, and an indication of the REALIS value (AC-
TUAL, GENERIC, or OTHER) of the event. Be-
low are some examples of event nuggets. The words
underlined and in bold face are event nuggets that
represent a single event.

• Hillary Clinton was not elected president in
2008. [Personnel Elect, OTHER]

• The police investigated the murder incident.1
[Conflict Attack, ACTUAL]

1This is an example of multi-word event nugget.

• Correa was even accused without any evi-
dences of murder.2 [Conflict Attack, OTHER;
Life Die, OTHER]

• Kennedy was shot dead by Oswald.3 [Con-
flict Attack, ACTUAL], [Life Die, ACTUAL]

In the remaining parts of this paper, we first pro-
vide an overview of our system in Section 2. The
following three sections describe the models we pro-
posed in each subtask in detail. Section 6 discusses
the experimental results, and Section 7 concludes
the paper.

2 System Overview

Existing event extraction approaches can be divided
into feature-based and NN-based methods.

Traditional approaches (Ahn, 2006; Chen and
NG, 2012; Li et al., 2013; Li et al., 2014) usu-
ally rely on a series of NLP tools to extract lexi-
cal features (e.g., part-of-speech tagging, named en-
tity recognition) and sentence-level features (e.g.,
dependency parsing). Although they achieve high
performance, they often suffer from hard feature en-
gineering and error propagation from those external
tools. Recently, neural network models have been
proved to show competitive performance against
traditional models in event extraction. Chen et
al. (2015) propose a convolutional neural network
(CNN) to capture lexical features, with a dynamic
multi-pooling layer to encode sentence-level clues.

2This is an example of multi-type event nugget.
3There are some cases where multiple event nuggets appear

in the same sentence.



While Ghaeini et al. (2016) utilize a recurrent neu-
ral network (RNN) to solve the multi-word event
nugget issue. Methods based on neural networks
keep improving the performance on event extrac-
tion, and yield state-of-art.

Inspired by previous work, our system combines
the feature-based method and neural-network-based
method. To be specific, we first preprocess the
raw text using Stanford CoreNLP tools (Manning
et al., 2014), including sentence splitting, tokeniza-
tion, POS tagging, lemmatization and named entity
recognition. Then we input these sentences into dif-
ferent types of models, and ensemble their outputs
at last.

3 Feature-based Method

Our feature-based method follows the standard
pipeline paradigm, which divide event nugget detec-
tion into three subtasks:

1. trigger identification: recognize the event trig-
ger, which is the main word or phrase that most
clearly expresses the occurrence of an event.

2. trigger classification: assign an event type and
subtype for an identified trigger

3. REALIS classification: assign a REALIS value
for an identified trigger.

3.1 Trigger Identification
In the first step, we consider event trigger identifi-
cation as a sequence labelling task. Sentences are
tagged in the BIO scheme, where each token is la-
beled as B if it is the beginning of an event trigger, or
I if it is inside a trigger, or O otherwise. We use two
traditional classifiers, a Max Entropy model (Berger
et al., 1996) and a Conditional Random Field (CRF)
model (Lafferty et al., 2001). The feature templates
used for trigger identification in different models are
listed in Table 1.

Max Entropy Model We only keep those features
that appear more than 3 times in the training set. For
example, if a bigram feature appears 4 times in the
training set, then we will keep it. Otherwise, we will
discard this feature if it appeared less than 4 times
in the training set. We use the implementation of Le
Zhang 4 for all max entropy classifiers in our system.

4https://github.com/lzhang10/maxent

Feature Templates Max Entropy CRF
wi−2wi−1wi

√

wi−1wi
√

wi
√ √

wiwi+1
√

wiwi+1wi+2
√

pi−1pi
√

pi
√

pipi+1
√

li−2li−1li
√

li−1li
√

li
√ √

lili+1
√

lili+1li+2
√

si
√ √

wordnet synseti
√

Table 1: Feature templates used in each model. w, p,
l, s represents word, POS tag, lemma, and stem respec-
tively. wordnet synseti indicates the WordNet synset
that word wi belongs to.

CRF Model The feature templates used in Max
Entropy and CRF are designed to be slightly differ-
ent, in order to obtain complementary contributions
from the two classifiers. We use the CRF implemen-
tation from the CRF++ toolkit 5.

3.2 Trigger Classification
Although the event type system in Rich ERE Anno-
tation Guidelines is a two-level hierarchy, we only
consider the subtype level for classification since no
subtype is shared by two or more first-level types.
We build a Max Entropy model to perform the type
classification task, where the feature templates we
used are listed in Table 2.

However, Max Entropy model is not a flawless so-
lution because it only assign one type for each trig-
ger, while one trigger may possibly have multiple
subtypes. We find that co-occurrence based heuris-
tic rules can help to classify multi-type triggers.

First, we collect all triggers that may have mul-
tiple types, and record their most probable subtype
combinations in the training set. Since most of them
can be both single-type and multi-type with respect
to the context, we need also develop a classifier
to determine whether this appearance of the trigger
should have multiple subtypes or not in the given

5https://taku910.github.io/crfpp/



Feature Description
wifirst∼ilast words in a trigger
sifirst∼ilast stems in a trigger
synsetifirst∼ilast WordNet synsets in a trigger
wi−2wifirst wi−2 and first word of a trigger
wi−1wifirst wi−1 and first word of a trigger
wi+1wilast wi+1 and last word of a trigger
wi+2wilast wi+2 and last word of a trigger
nearest entity the nearest entity to a trigger

Table 2: Feature templates used in our Max Entropy
model for trigger classification. Note that one trigger may
contain multiple words.

Feature Description
wifirst∼ilast words in a trigger
wi−2wifirst wi−2 and first word of a trigger
dwi−1wifirst wi−1 and first word of a trigger
wi+1wilast wi+1 and last word of a trigger
wi+2wilast wi+2 and last word of a trigger
pifirst∼ilast POS tags of words in a trigger
sifirst∼ilast suffixes of words in a trigger
mifirst∼ilast modal auxiliaries of words in a trigger

Table 3: Feature templates used in our Max Entropy
model for REALIS classification.

sentence. Specifically, if the current trigger is in our
collected multi-type trigger list, we will use the Max
Entropy model described in this section to output
prediction scores for each subtype. If the difference
of scores between top 2 subtypes is smaller than 0.5,
then we will consider this trigger as a multi-type
trigger, and assign the most probable subtype com-
bination for this trigger.

3.3 REALIS Classification

Similar to the above subtasks, we build a Max En-
tropy model to perform the REALIS classification,
where the features we use are listed in Table 3.

4 Neural Network Method

Unlike previous feature-based method, we jointly
learn trigger identification and type classification by
one neural network to reduce the error propagation
problem of a pipeline model. Then we assign a RE-
ALIS value for each trigger.

Figure 1: The main architecture of our word-based
model. The local contextual feature ct (grey rectangle)
in Figure 1 for each word wt is computed by the CNN as
Figure 2 illustrated.

4.1 Trigger identification and classification

To address the multi-word trigger and multi-type
trigger issues, we treat this trigger labeling task (in-
cluding trigger identification and classification) as
a sequence labeling problem. For each event type
type, we train a neural network model that labels
each sentence in the BIO scheme. Specifically, a
word is labeled as B if it is the beginning of a trigger
of type type, or I if it is inside a trigger of type type,
or O otherwise. As we train the models for each type
independently, one word can belong to several types.

Figure 1 illustrates the main architecture of our
neural network model, which is a BiLSTM model
with a CNN layer as shown in Figure 2.

BiLSTM Network Recurrent neural networks
maintain a memory based on historical contextual
information, which makes them a natural choice
for processing sequential data. Long Short-Term
Memory (Hochreiter and Schmidhuber, 1997) is ex-
plicitly designed to solve the long-term dependency
problem through purpose-built memory cells. For
the event detection task, if we access to both past
and future contexts for a given time, we can make
use of more sentence-level information and make



Figure 2: Our convolutional neural network learns a rep-
resentation of local context information about the center
word murder. Here the context size is 7 (3 words to the
left and to the right of a center word), and we use a ker-
nel of size 4 with two feature maps. The symbol P in
sentence represents a padding word.

better prediction. This can be done by bidirectional
LSTM networks. A forward LSTM network com-
putes the hidden state

−→
ht of the past (left) context of

the sentence at word wt, while a backward LSTM
network reads the same sentence in reverse and out-
puts
←−
ht given the future (right) context. In our im-

plementation, we concatenate these two vectors to
form the hidden state of a BiLSTM network, i.e.
ht = [

−→
ht ;
←−
ht ].

Convolutional Neural Network We employ a
convolutional neural network as illustrated in Fig-
ure 2 to extract local contextual information for ev-
ery word. Given a sentence containing n words
{w1, w2, ..., wn}, and the current center word wt, a
convolution operation involves a kernel, which is ap-
plied to words surrounding wt in a window to gen-
erate the feature map. We can utilize multiple ker-
nels with different widths to extract local features
of various granularities. Then max pooling is per-
formed over each map so that only the largest num-
ber of each feature map is recorded. One property of
pooling is that it produces a fixed size output vector,
which enables us to apply variable kernel sizes. Fi-
nally, we take the fixed length output vector cwt as a
representation of local contextual information about
center word wt.

The Output Layer We concatenate the hidden
state ht of BiLSTM with contextual feature cwt ex-
tracted by CNN at each time step t. Then [ht; cwt ]
is fed into a softmax layer to produce the log-
probabilities of each label for wt.

Implementation We implement this neural net-
work using Tensorflow library (Abadi et al., 2016).
The 100-dimension word embeddings are pre-
trained on the training set, and fine-tuned during
training. In LSTM, the state size is 100. As for
CNN, the sliding window size is 7 (3 words to the
left and to the right of a center word), and we set the
kernel sizes from 2 to 7 to capture context informa-
tion of various granularities.

4.2 REALIS Classification

In the above section, we present our convolution
BiLSTM model for trigger labeling. The idea of this
neural network architecture is also suitable for RE-
ALIS classification. Next, we will present the main
differences between the models used in these two
tasks.

The Input Layer As a pipeline system, besides
word embeddings, we can use information extracted
from upstream trigger labeling task. Therefore, we
propose four additional types of feature embeddings
to form the input layer of BiLSTM and CNN.

• Trigger position feature: whether a word is in
the current trigger

• Trigger type feature: trigger type of a word, and
a special type NONE for words outside the cur-
rent trigger

• Name entity type feature: entity type of a word,
and a special type NONE type for non-entity
words

• POS tag feature: part-of-speech tag of a word

We then transform these features into vectors by
their lookup tables, and concatenate them with the
original word embeddings, as the final input layer of
BiLSTM and CNN.



The Output Layer It is worth mentioning that
REALIS classification is no longer a sequence la-
belling task, but a classification task. We only need
to assign a REALIS value for each trigger instead
of every word in the whole sentence. For instance,
there are three trigger (bold words) in the following
sentence, which together makes up three words to be
classified.

• Six murders occurred in France, including the
assassination of Bob and the killing of Joe.

We modify the output layers of both CNN and
BiLSTM network to adapt to the the new task. For
BiLSTM, we regard the hidden state of the last word
hn as sentence-level information. And for CNN, we
take all words of the entire sentence as the context,
rather than a shallow window for each center word.
Finally, we feed the concatenation of output vectors
from two networks into a softmax classifier just like
trigger labeling.

5 Ensemble

Since we have more than one predictors in each sub-
task, we need to combine the outputs of each model
to produce more reliable results. Our ensemble strat-
egy follows the same three-step pipeline paradigm as
feature-based method.

In the trigger identification step, we train a Max
Entropy model, a CRF model and a Convolution
BiLSTM (C-BiLSTM) model. The first two models
simply predict whether a word is in a trigger, while
C-BiLSTM models predict the BIO label with re-
spect to different event types. So we first combine
the results of C-BiLSTM models by following rules:

1. If a word is labelled as B by any C-BiLSTM
model, label the word as B

2. If a word is labelled as I by any C-BiLSTM
model, label the word as I

3. If a word is labelled as O by all C-BiLSTM
models, label the word as O

After determining the result of C-BiLSTM mod-
els, we predict the final label by majority voting.

In the second step, for each event type e, we cal-
culate a new score of every word in the sentences
according to the formulas below:

scoree =
1

feature ranke
+NNe (1)

NNe =

{
0.8 when labele = B or I

0 otherwise
(2)

feature ranke is the confidence score rank of
type e among all event types. And labele is the
label output by the C-BiLSTM model trained for
event type e. As an event trigger could be annotated
with multiple event types, the resulting scores are
further enhanced in a multi-type style using the co-
occurrence based heuristic rules introduced in Sec-
tion 3.2.

In the third step, we also calculate a new score for
each REALIS value r with the following formulas:

scorer =
1

feature rankr
+NNr (3)

NNr =

{
0.8 when label = r

0.2 otherwise
(4)

feature ranke is the confidence score rank of
value r, while label is the output of C-BiLSTM
model introduced in Section 4.2. We choose the
value that gets maximum score as final prediction.

6 Experiments

6.1 Setup

We use the training and evaluation data in TAC KBP
2015 from LDC2016E36 dataset for training. There
are 360 documents in this corpus (158 for training,
and 202 for evaluation). We randomly select 60 doc-
uments from evaluation data as validation set, and
the remaining 300 documents as training set. Dur-
ing training, we keep checking performance on the
validation set and pick the parameters that preforms
best for final evaluation.

6.2 Results

The result on the TAC KBP 2016 test set are shown
in Table 4.

7 Conclusion

In this paper, we propose an event detection system
that can detect event triggers and assign both event



Attributes
Micro

Precision Recall F1
plain 57.09 43.28 49.23

mention type 51.43 38.99 44.35
realis status 42.86 32.49 36.96
type+realis 38.38 29.10 33.10

Attributes
Macro

Precision Recall F1
plain 53.71 41.46 46.80

mention type 47.42 36.93 41.52
realis status 39.61 30.87 34.70
type+realis 34.71 27.29 30.56

Table 4: Results on the final test set.

type and event REALIS value. This system incorpo-
rates many effective classifiers and obtains promis-
ing results in the final evaluations. Currently, we
only consider the ensemble of different classifiers
locally, and it would be worth incorporating more
global constraints to further reduce the error propa-
gation in the pipeline.

Acknowledgement

This work was supported by National High
Technology R&D Program of China (Grant No.
2015AA015403), Natural Science Foundation of
China (Grant No. 61672057) and the joint project
with IBM Research. Any correspondence please re-
fer to Yansong Feng.

References
Martın Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.

David Ahn. 2006. The stages of event extraction. In
Proceedings of the Workshop on Annotating and Rea-
soning about Time and Events, pages 1–8. Association
for Computational Linguistics.

Adam L Berger, Vincent J Della Pietra, and Stephen
A Della Pietra. 1996. A maximum entropy approach
to natural language processing. Computational lin-
guistics, 22(1):39–71.

Chen Chen and V Incent NG. 2012. Joint modeling for
chinese event extraction with rich linguistic features.
In In COLING. Citeseer.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Process-
ing, volume 1, pages 167–176.

Reza Ghaeini, Xiaoli Z Fern, Liang Huang, and Prasad
Tadepalli. 2016. Event nugget detection with forward-
backward recurrent neural networks. In The 54th An-
nual Meeting of the Association for Computational
Linguistics, page 369.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Pro-
ceedings of the eighteenth international conference on
machine learning, ICML, volume 1, pages 282–289.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event ex-
traction via structured prediction with global features.
In ACL (1), pages 73–82.

Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014. Construct-
ing information networks using one single model. In
EMNLP, pages 1846–1851.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In ACL (System Demonstrations),
pages 55–60.

Zhiyi Song, Ann Bies, Stephanie Strassel, Joe Ellis,
Teruko Mitamura, Hoa Dong, Yukari Yamakawa, and
Sue Holm. 2016. Event nugget and event coref-
erence annotation. In The 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics-Human Language Technologies
(NAACL HLT 2016). 4th Workshop on EVENTS: Defi-
nition, Detection, Coreference, and Representation.


