

UTD at the KBP 2016 Event Track

Jing Lu and Vincent Ng Human Language Technology Research Institute University of Texas at Dallas

Plan for the Talk

- English/Chinese Event Nugget Detection
- English/Chinese Event Hopper Coreference
- Evaluation

Plan for the Talk

- English/Chinese Event Nugget Detection
- English/Chinese Event Hopper Coreference
- Evaluation

Event Nugget Detection

- Event nugget identification and subtyping
- **REALIS value identification**

Event Nugget Identification and Subtyping

• Ensemble of 1-nearest neighbor models that differ w.r.t. instance representation

- Training instances created from
 - Single word
 - Multi-word phrases that are true triggers in training data
- Features
 - Model 1: head words of subjects and objects
 - Model 2: entity type of subjects and objects
 - Model 3: WordNet synset ids and hypernyms
 - Model 4: unigrams
- Test instances created from
 - Words/Phrases appeared in the training data as true triggers
 - All the verbs and nouns in the test documents.

Chinese Event Nugget Identification and Subtyping

- Training instances
 - each single word
- Features
 - Model 1: head words of subjects and objects
 - Model 2: entity type of subjects and objects
 - Model 3: head word of the entity that is syntactically /textually closest to the trigger
 - Model 4: characters and the entry number in a Chinese synonym dictionary
 - Model 5: type of the entity that is syntactically/textually closest to the trigger
- Testing instances
 - Words appeared in the training data as true triggers
 - Additional words based on compositional semantics
 - 刺伤 [injure by stabbing], 刺[stab], 伤[injure]

AND SOLUTION SOLUTION

REALIS value identification

- Training instances
 - Gold event mentions
 - Labels: ACTUAL, GENERIC or OTHER
- Features:
 - Group 1 (Event Mention features)
 - Group 2 (Syntactic features)
- Multi-class SVM classifier
- Test instances
 - Predicted event mentions

Plan for the Talk

- English/Chinese Event Nugget Detection
- English/Chinese Event Hopper Coreference
- Evaluation

Event Hopper Coreference

- Multi-pass sieve approach
- A sieve is composed of a classifier which finds an antecedent for an event mention
- Sieves are ordered in decreasing order of precision
- Later passes can exploit the decision made by previous passes
 - Errors can propagate

Applying Sieves for Event Coreference

- Resolver makes multiple passes over event mentions
 - in the i-th sieve, it finds an antecedent for each event mention.
 - the partial clustering of event mentions generated in the ith sieve is then passed to the i+1-th sieve.
 - the i+1-th sieve will not reclassify event mention pairs which are already classified as coreferent in the earlier sieves.

Parameter:

Human Language Technology Research Institute

Sieve 1: Lemma Match

- This sieve classifies a test mention pair if the trigger pair appears in the training data
- Step 1: Choose valid neighbors ۲

Sieve 1: Lemma Match

Step 2: Find the nearest neighbor •

Features:

Labels:

unigrams of the two sentences

Parameter:

Human Language Technology Research Institute

Sieve 2: Same Lemma

- This sieve only classifies a test mention pair if the two triggers have the same lemma
 - Step 1: Choose valid neighbors

Labels:

Human Language Technology Research Institute

Sieve 2: Same Lemma

Step 2: Find the nearest neighbor

unigrams of the two sentences

• Goal: automatically increase positive training mention pairs

• Model structure is the same as Sieve 1

Plan for the Talk

- English/Chinese Event Nugget Detection
- English/Chinese Event Hopper Coreference
- Evaluation

Training Datasets

- English: LDC2015E29, LDC2015E68, LDC2015E73 (2015 trainining data), LDC2015E94 (2015 evaluation data)
- Chinese: LDC2015E78, LDC2015E105, LDC2015E112
- 80% for model training, and 20% for development

Training	English			Chinese		
	Newswire	Forum	Total	Newswire	Forum	
Documents	227	319	546	-	383	
Event Mentions	7578	8960	16538	-	4246	
Event Hoppers	5000	4955	9955	-	4238	

Event Mentions, Event Hoppers: all 38 subtypes

Results: Event Nugget Detection

- English Event Nugget Detection
 - 1st in English nugget identification and subtyping
 - 2nd in English realis value identification, type+realis
- Chinese Event Nugget Detection
 - 2nd in all four tasks

	English			Chinese		
	Recall	Precision	F1	Recall	Precison	F1
Plain	55.36	53.85	54.59	47.23	43.16	45.10
Туре	47.66	46.35	46.99	41.90	38.29	40.01
Realis	40.34	39.23	39.78	35.27	32.23	33.68
Type+Realis	34.05	33.12	33.58	31.76	29.02	30.33

Results: Event Hopper Coreference

- Run 1: The resolver employs all three sieves.
- Run 2: The resolver employs only the first two sieves
- 1st in both English and Chinese event hopper coreference
 - 1^{st} in all four metrics and averaged F1 score

	English—Run 2			Chinese—Run 1		
	Recall	Precision	F1	Recall	Precison	F1
MUC	28.42	24.59	26.37	23.59	25.00	24.27
B ³	39.78	35.45	37.49	32.49	33.18	32.83
CEAF _e	32.8	35.76	34.21	29.34	32.45	30.82
BLANC	23.51	21.62	22.25	17.33	18.45	17.80
AVG			30.08			26.43

Error Analysis

- Multi-label errors
 - an event was labeled as belonging to different subtypes of "Contact" in different models
 - Example:
 - Khaled Salih, director of the media office and member of the executive board in the SNC, revealed four major candidates at a press conference.
 - Predicted "contact_meet", "contact_broadcast" for "conference"
- Feature extraction for discussion forum document
 - Informal writing style
 - Example:
 - How long do you think Steve Jobs will remain at apple for? I really have no idea but i think he'll stay for a long time to come... also who will take over if jobs does leave?
 - Wow, I never thought of that. Interesting topic, though. Who would take over? How is <u>Jobs</u> gonna leave? Being fired? Or just resigning.... wow.... cool topic
- Unseen or rarely-occurring words/phrases

Future Work

- Consider more semantic features
 - Current: WordNet, synonym dictionary
 - Future: Semantic roles
- Use entity coreference information and event arguments for event hopper coreference