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Abstract

This paper reports on the performance of a new 
system for  recognizing  textual  entailment.  We 
present a brief overview of the CERES system 
and  summarize  its  semantic  alignment  method 
for  determining  entailment.  Then,  we  describe 
the experiments that were performed, both offi-
cial  and  subsequently,  against  the  RTE4  test 
dataset.  We  also  report  on  comparison  runs 
against the previous RTE3 development and test 
datasets. 

1 Introduction

Recognizing textual entailment (RTE) involves the 
determination  whether  one piece of text,  the  hy-
pothesis,  logically  follows from another  piece of 
text.   The ability to make such determinations is 
considered essential  for a number of natural lan-
guage processing tasks, such as question answer-
ing,  summarization,  information  extraction,  and 
machine translation (Giampiccolo et al., 2007).

The RTE workshop series1 has served to focus 
research  in this area by providing test data and a 
forum for evaluating entailment systems. For 2008, 
RTE4 has  continued  the  three-way classification 
task that was piloted in RTE3, in which systems 
were asked to determine whether the hypothesis is 
entailed  by  the  text,  or  contradicted  by  it,  or 
whether neither result can be ascribed.

The CERES (“Concept Extraction and Reason-
ing  System”)  system  was  developed  for  making 
such three-way determinations. It implements a se-
mantic alignment framework in which both the hy-
pothesis and text are processed into separate com-

1 Originally sponsored by the PASCAL Network (see 
www.pascal-network.org/Challenges/RTE3), RTE is cur-
rently a track in the Text Analysis Conference (see 
www.nist.gov/tac/tracks/2008/rte/).

mitment sets of semantically role-tagged proposi-
tions,  which  are  then  matched  using  a  semantic 
role-based alignment algorithm. The commitment 
sets  represent  the  propositions  that  are  expressly 
asserted and also implied by the input text and hy-
pothesis. The basic idea behind the approach is that 
if these commitment sets are sufficiently complete, 
then  entailment  should  be  determinable  by 
straightforward  pattern  matching,  or  at  most  by 
small-step inferencing from what may be found in 
the commitment sets.

The  sections  that  follow  present  a  brief 
overview of the CERES system, a description of 
the experiments that were performed, and the re-
sults obtained. In the last section, we offer our con-
clusions  concerning  the  semantic  alignment  ap-
proach.

2 CERES System Overview

The  principal  functional  components  of  the 
CERES system are shown in Figure 1. As shown, 
CERES  employs  a  cascade  of  six  components 
which operate as a pipeline to produce the hypoth-
esis  and  text  commitment  sets.  This  knowledge 
base is then used by the entailment subsystem as 
the  basis  for  entailment  determinations.  Each  of 
these subsystems is discussed below.

2.1   Commitment Set Creation

The input text and hypothesis are transformed into 
their  respective  commitment  sets  by  multi-stage 
pipeline of functions, as follows:

Syntactic Parsing: The inputs are separated into 
sentences  and  run  through  the  Charniak  parser 
(Charniak, 2000) to generate syntactically  tagged 
parse trees.

Syntactic Analysis: The parse trees are decom-
posed  into  chunks  and  assigned  syntactic  roles; 
separate  propositions  are  created for  appositions, 

http://www.pascal-network.org/Challenges/RTE3/
http://www.nist.gov/tac/tracks/2008/rte/


parentheticals,  relative  and  subordinate  clauses, 
and similar constructs.

Semantic Analysis: Semantic arguments and ad-
juncts are identified; all propositions are expressed 
as semantically role-tagged logical structures using 
PropBank categories (Palmer, 2005).

Anaphora  Resolution: Concepts  are  extracted 
from  the  semantic  propositions;  and  pronominal 
and some elliptical references are resolved, where 
possible.

Commitment Set Expansion: Semantic proposi-
tions are manipulated to produce additional propo-
sitions  representing  what  may  be  reasonably  in-
ferred from the input.

Concept Analysis: Concepts are analyzed to pro-
duce additional  propositions;  equivalent  concepts 
are  associated  with  one  another  in  equivalence 
classes.

2.2   Entailment Determination

CERES  employs  a  semantic  alignment  pattern 
matching algorithm for determining entailment. It 
uses  the  propositions  in  the  hypothesis  commit-
ment set as templates to be matched by those in the 
commitment  set  generated  from  the  companion 
text. 

For each hypothesis  proposition, the algorithm 
searches  for  a  text  proposition  whose role  set  is 
compatible with those of the  hypothesis.  All  hy-
pothesis roles must be matched separately. Addi-
tional text proposition roles are ignored.

Individual  roles  are  matched  using  a  string 
matching algorithm which requires that each non-
stopword in the hypothesis phrase for the role be 
matched in the corresponding text phrase. A suc-
cessful match will be found if the words match ex-
actly, or if they have common synonyms or hyper-
nyms,  as  obtained  from  WordNet  (Fellbaum, 
1998). Equivalent concepts for  both text and hy-

pothesis phrases are also examined, if their respec-
tive concept equivalence classes are nonempty.

If any of the hypothesis propositions is success-
fully matched, then an affirmative entailment deci-
sion  is  reported.  But  if  no match  is  found,  then 
contradiction hypotheses are generated from the af-
firmative  hypotheses,  and an  attempt  is  made  to 
match those. If such a match is found, then a con-
tradiction is  reported.  If neither type of match is 
found, then the algorithm reports that entailment is 
unknown for the input pair.

3 Experiments and Results

For RTE4, three official runs were submitted: a 2-
way  run  (“CERES1_2W”)  and  two  3-way  runs 
(“CERES1_3W” and “CERES2_3W”). The second 
3-way run  differed  from  the  first  in  that  tighter 
contradiction hypothesis generation was employed, 
resulting in fewer contradiction findings.  

Post-submission,  we also performed a few ex-
periments for comparison. First, we made a num-
ber of minor bug fixes and corrections to the soft-
ware, but did not change its architecture. We also 
ran  the  final  configuration  against  the  previous 
RTE3 test and development 3-way datasets.

To place the results in context, we note first that 
the RTE4 test set consisted of 1,000 text-hypothe-
sis  pairs,  of  which 500 were instances  of  entail-
ment, 150 were instances of contradiction, and 350 
were  instances  of  unknown  entailment.  Since 
CERES defaulted all results to unknown unless ei-
ther entailment or contradiction were affirmatively 
determined, an accuracy value of .350 represents 
baseline  performance.  By comparison,  the  RTE3 
test  set  contained  410  entailment  pairs,  319  un-
knowns, and 72 contradictions.

Table 1 presents the key performance results  for 
these experiments. 
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Figure 1. CERES Functional Components



2-way 3-way
(1)

3-way
(2) 

Post RTE3
Test

RTE3
Dev

2-way
accu-
racy

.521 .526 .526 .575 .546 .596

3-way
accu-
racy

- .405 .416 .460 .471 .512

Preci-
sion

- .708 .744 .806 .805 .847

Re-
call

- .209 .206 .269 .249 .247

F-
score

- .444 .450 .538 .517 .570

Table 1. Experimental Results

The  row  for  “3-way”  accuracy  represents  the 
combined  accuracy  for  all  three  possible  result 
classes, while “2-way” accuracy represents the ac-
curacy value where the outcomes for contradiction 
and unknowns are conflated.

Precision,  recall,  and  F-score  were  computed 
only over entailed and contradiction results, with β 
= 1/3  to emphasize  precision  over recall,  as was 
done for the RTE-3 three-way pilot task.

Viewed in the above context,  we observe first 
that the results are consistent across all runs, with 
an  expected  minor  improvement  in  performance 
for the post-submission bug fix run. We also ob-
serve that overall three-way accuracy is low, which 
is no doubt due to the low recall values. However, 
precision was uniformly high, above 70%.  This is, 
apparently,  a  performance  regime  that  we  share 
with  other  logic-based  systems  (see  MacCartney 
and Manning, 2007).

We note also that for all 3-way runs, the 2-way 
accuracy result is significantly higher than the 3-
way result. We believe this is due the very low re-
call for our contradiction implementation. As ex-
plained  in  (de  Marneffe,  et  al.,  2008,  at  page 
1041), the successful detection of contradiction re-
quires the detection of “contradictions arising from 
the use of factive or modal words, structural and 
subtle  lexical  contrasts,  as  well  as  world  knowl-
edge  (WK),”  which  our  current  implementation 
does not do.

Table 2 decomposes the precision results for the 
runs according to the four NLP applications areas 

from  which  the  test  set  was  drawn:  Information 
Extraction (IE), Information Retrieval (IR), Ques-
tion Answering (QA), and Summarization (SUM). 
For  the  RTE4 test  set,  there  were  300 test  pairs 
each  for  IE  and  IR,  and  200  each  for  QA and 
SUM.  For  the  RTE3 development  and  test  sets, 
there were 200 test pairs for each type. 

3-way
(1)

3-way
(2) 

Post RTE3
Test

RTE3
Dev

IE .727 .731 .736 .757 .738

IR .722 .754 .866 .808 .857

QA .657 .742 .824 .923 .945

SUM .707 .743 .771 .733 .879

Combined .708 .744 .806 .805 .847

Table 2. Precision Results

As  shown in  the  table,  precision  performance 
was approximately the same across all  NLP task 
areas, with the somewhat lower QA precision for 
the first  RTE4 3-way run apparently having been 
corrected  by  the  tighter  contradiction  generation 
used in the second run, which was the only differ-
ence between the two runs. The table also shows 
somewhat higher precision for both of the RTE3 
QA  runs,  indicating  that  the  QA  pairs  in  those 
datasets  may  have  been  “easier”  to  process,  al-
though this has not been investigated in detail.

4 Conclusions and Recommendations

The results above demonstrate the viability of the 
semantic alignment approach for determining tex-
tual entailment. In particular, we have shown that 
the  approach  can  produce  high  precision  entail-
ment determinations in all tested NLP task areas. 
However, in line with other logic based approach-
es, the current implementation suffers from low re-
call,  which  raises  the  question  whether  this  ap-
proach can be extended to achieve higher levels of 
recall. 

We believe that further investigation of this ap-
proach is warranted, not only because the current 
implementation relies on extensible heuristics for 
extending  the  commitment  set,  but  also  because 
the underlying parsing and syntactic analysis tech-
nologies, upon whose outputs the heuristics oper-
ate, are constantly improving.



The results also show a clear need to improve 
contradiction determination. It  is  evident  that  the 
current explicit  contradiction hypothesis approach 
needs to be augmented by methods to infer contra-
diction from the overall context of a passage.
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