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Abstract

This paper describes the Emory system for recognizing
textual entailment as used for the RTE4 track at the
TAC 2008 competition. We use a supervised machine
learning approach to train a classifier over a variety
of lexical, syntactic, and semantic metrics. We treat
the output of each metric as a feature, and train a
classifier on the provided data from the previous RTE
tracks. As a result, our system is general, easily exten-
sible, and naturally supports both two-way and three-
way versions of the entailment task, as well as confi-
dence estimation for the predictions. The results on
both the training and the official data are promising,
placing our system within the top 30% of all submis-
sions.

1 Introduction and Overview

Our submission to the TAC 2008 RTE track relied
on the analysis of shallow semantic and syntactic fea-
tures. Our approach focused on designing and com-
bining appropriate semantic and syntactic features
from the annotated data set, and using the Machine
Learning tools in WEKA [4] to train classifiers over
theses features.

The overview of our system is shown in Figure. Our
framework allows for pre-processing steps to be ap-
plied to both the text and the hypothesis, and the
intermediate results stored for re-use by all the sub-
sequent processing steps. The output of all the com-
ponents for each pair are converted to corresponding
feature vectors, which are in turn used to train (or
test) the classifier.

Figure 1: Overview of the Emory RTE system.

2 Features

First, the data is pre-processed with optional steps,
as described next. Then, we compute three different
families of similarity metrics, which could be roughly
categorized as Lexical, Syntactic features, and Seman-
tic metrics. The complete list of features is reported
in Table 1.



2.1 Pre-processing

Stemming First, all the terms in the hypothesis
and the text are stemmed using the Stanford Parser’s
stemmer, which is based on a finite-state transducer
algorithm.

Anaphora Resolution We used the JavaRap [5]
Anaphora Resolution tool over the text/ hypothesis
pairs. Unfortunately, we found that JavaRap did not
work as well as we hoped on the hypothesis/text pairs,
perhaps due to the interactions with the stemming
and other pre-processing.

Translation As an attempt to simplify the provided
text, we experimented with translating the text to
Russian, and then back to English, using Google Lan-
guage Tools [3]. The intuition was that translating
the text and hypothesis into foreign languages, and
then back into English, might reduce the complexity
of some of the sentences, making the RTE task easier.

Task The ’task’ attribute provided in the XML for
each text/hypothesis pair is used as a feature.

2.2 Lexical similarity

The following describes the different features we col-
lected from the text/hypothesis pairs. Note that some
of the features are created as results of sophisticated
linguistic analysis.

Word Overlap The first metric we analyzed was
the simplest. The word overlap metric computes how
similar the text is to the hypothesis by comparing
how many of the same words appear in both the text
and the hypothesis. Recall that the words in the
text and the hypothesis are stemmed during the pre-
processing. The word overlap is then computed as
below:

Word Overlap =
words(text) ∪ words(hypothesis)
length(hypothesis) + length(text)

(1)

Text Hypothesis Length Ratio The ratio be-
tween the lengths of the text and hypothesis strings
(in words), computed as:

T H Ratio =
Length of Text

Length of Hypothesis

Hypothesis Length The length of hypothesis
string (in words).

Text Length The length of the text string (in
words).

Cosine Similarity We tokenize and stem the text
and hypothesis, then compute the cosine similarity
between the term vectors.

cosine similarity = cosineθ =
A×B

|A||B|

Substring Similarity This technique is use-
ful because the text is usually longer than the
hypothesis. First, all of the substrings of text
which have the same word length as hypothesis
are calculated. Then the cosine similarity is calcu-
lated between each substring and the hypothesis.

Algorithm:SubstringSimilarity
Data:
len t = length of Text;
len h = length of Hypothesis;
p = 0;
max = 0.0;
while p < ( len t - len h +1 ) do

S = substring(Text, p, len h) //return substr
of len h chars from P;
sim = the cosine similarity between Text and
S;
if max < sim then

max = sim;
end

end
return max;

Algorithm 1: Computing Substring Similarity be-
tween Text and Hypothesis

Median Substring Similarity This metric is sim-
ilar to Substring Similarity, but returns the median
cosine similarity between the substrings of text and
the hypothesis.

Minimum Substring Similarity Same as Median
Substring Similarity, but returns the min cosine sim-
ilarity between the substrings of the text and the hy-
pothesis.
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Negative terms We detected negative terms in
the text and hypothesis. The algorithm first scans
through the text and hypothesis and text to detect
words that imply negation such as ’not’, ’no,’ etc.
Then a value is reported representing the existence
of these negation terms in the text and hypothesis.
Each value represents one of four distinct combina-
tions of discovered negation terms. More advanced de-
tection of negation, perhaps combined with our other
features, would be more useful.

2.3 Syntatic similarity

Role Similarity Both this and the following met-
ric use the aforementioned word overlap and WordNet
similarity metrics, but on subsets of the text and hy-
pothesis. This metric uses the Stanford parser [11]
to attempt to identify the roles certain phrases play
in each sentence. We use the parser to identify the
phrases which map to the actor, action or object of
each sentence in the text and hypothesis. The word
overlap and WordNet similarity metrics are then cal-
culated as described above between each of the dis-
covered roles.

Separate features are calculated that measure the ac-
tor, action and object similarity between the text and
hypothesis. The actor action and object are deter-
mined by traversing the parse tree returned by the
Stanford parser.

POS Similarity This measure applies the word
overlap and WordNet similarity metrics onto a dif-
ferent subset of the text and hypothesis. The Stan-
ford Part of Speech tagger [11] is used to determine
the part of speech of each word in both the text and
hypothesis. Then the word overlap and WordNet sim-
ilarity metrics are applied between the same parts of
speech in the text and hypothesis. The set of all the
nouns in the text is compared to the set of all nouns
in the hypothesis, and so on for all parts of speech
detected by the part of speech tagger.

The metric returns a large number of features, ap-
plying the discussed similarity metrics to determine
the similarity between the set of all distinct parts of
speech in the text and hypothesis.

2.4 Semantic Similarity

WordNet Similarity The next metric is some-
what more sophisticated. The similarity of the
text to the hypothesis is computed using Word-

Net [2] to compare the relatedness of the words in
the text and the hypothesis. We used the Natu-
ral Language Toolkit [9] to compute the path dis-
tance, Leacock-Chodorow Similarity [8], Wu-Palmer
Similarity[12], Resnik Similarity[10], Jiang-Conrath
Similarity[6], and Lin Similarity[7] between words in
the text and hypothesis. As each of these metrics
compare the similarity between word senses rather
than words, for each word being compared, we chose
its most commonly occurring word sense to calculate
similarity.

Each similarity metric was averaged per
text/hypothesis pair as:

sim =
Σ Sim(words(hypothesis), words(text))

number of similarities calculated
(2)

where sim is one of the aforementioned WordNet sim-
ilarity metrics and Sim is a function that returns this
similarity metric between two words.

This metric calculates six different features, one for
each similarity metric. Similarity could not be com-
puted for all words in the text and hypothesis, either
because some words, such as proper nouns, do not
appear in WordNet, or because some of these metrics
can only be calculated if an information content value
has already been calculated for the word sense. Infor-
mation content values represent the probability that
a randomly selected word in a corpus is an instance
of a given concept. These probabilities are only avail-
able for nouns and verbs in the NLTK package, and
thus the only metrics available to calculate the simi-
larity between other parts of speech using the NLTK
are the path length and Wu-Palmer metrics, which do
not require information content values.

3 Experiments

We used the same set of features for both the 2-way
and 3-way classification tasks. First we report experi-
mental results on the development data from the RTE
tasks 1, 2, and 3. Then we summarize our official re-
sults on the RTE4 Task as provided by the organizers.

3.1 3-Way Experiments on Development
Data

We first performed the entailment prediction exper-
iment on all the possible features mentioned above,
which contains 119 features and 1600 examples in all
with 3-way labels, namely YES, NO, UNKNOWN.
The accuracy is reported in Table 2.
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Feature \Preprocessing Original Anaphora Translation
Word overlap

√ √

WordNet Similarity
√

Text Hypothesis Length Ratio
√ √

Hypothesis Length
√ √

Text Length
√ √

Cosine Similarity
√ √

Substring Similarity(Max/Min/Medium)
√ √

Task
√

Negative terms
√ √

RoleMatching WordOverlap
√ √

RoleMatching WordNetSim
√

POS WordOverlap
√ √

POS WordNetSim
√

Table 1: Features and their variants used in the final submission system.

Classifier Accuracy
Naive Bayes 0.421
J48 0.519
SMO 0.629
LMT 0.615

Table 2: Different classifiers on all the features with
5 fold cross-validation for 3-way task.

Since there are 119 features in all, and some of these
are computationally expensive, we selected a few fea-
tures which strike a balance between run time and
accuracy. The features we chose to use are reported
in Table 3, and their accuracy is reported in Table
4.

overlap
t h len ratio
h length
t length
similarity
sim shingling min
sim shingling mean
sim shingling max
task:IE,IR,QA,SUM
trans overlap
trans t length
trans t h len ratio
trans similarity
trans sim shingling min
trans sim shingling max

Table 3: Selected features for 3-way task

Classifier Accuracy
Naive Bayes 0.411
J48 0.589
SMO 0.666
LMT 0.654

Table 4: Different classifiers on the selected feature
set with 5 fold cross-validation for 3-way task.

Almost all the classifiers actually performed much
better on the smaller feature set than on the whole
feature set. Thus, for our final submission, we used
only the selected features.

3.2 2-Way Experiments on Development
Data

We have more annotated data for the 2-way task,
2,400 text/hypothesis pairs in all. The accuracy,
which was generated on the same set of selected fea-
tures, is reported below in Table 5:

Classifier Accuracy
Naive Bayes 0.573
J48 0.583
SMO 0.596
LMT 0.593

Table 5: different classifiers on the selected feature set
with 5 fold cross-validation for 2-way task

It can be seen that our methods perform better with
on the 3-way than the 2-way classification task. For
some classifiers such as SMO and LMT, the perfor-
mance drops significantly.
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3.3 Official TAC 2008 Test Results

The results from our submission to the TAC 2008
challenge is reported in Table 6. Our best perform-
ing submission used the LMT classifier, trained by the
feature set described in Table 3, and our best perfor-
mance is reached in 3-way task (also judged as 3-way)
with an average precision of 0.599.

3.4 Analysis of Training Results

Information Gain Feature

0.09023 sim shingling max

0.09023 trans sim shingling max

0.08285 parser sim max

0.07661 overlap

0.07115 similarity

0.07115 trans similarity

0.06433 WordNet Similarity jcn Similarity

0.0542 task

0.04865 sim shingling mean

0.04409 WordNet Similarity path Similarity

Table 7: Top 10 features on the 3-way task with in-
formation gain

Note that there are some features with very low infor-
mation gain that improved performance only slightly.
These features that were deemed to have computa-
tional costs not worth the information gain were not
used in our final run.

The most helpful features in this task are those
that attempt to calculate similarity, as is consistently
shown by analysis from previous RTE tasks. How-
ever, we proposed some variants of simple similarity
computations that seem to improve performance.

Some similarity features from WordNet also have high
information gain and seem useful for this task. How-
ever, they did not improve the performance in prac-
tice. One possibility is that the sim shingling max and
trans sim shingling max, which have very high infor-
mation gain, are also similarity features. Thus, the
gains that would come from WordNet features are
subsumed by the gains from the shingling features.

4 Discussion

There are several areas which could benefit from fu-
ture work.

The role matching features, although they seem intu-
itively valuable, were not as helpful as we had hoped.

We believe this is due to the inherent complex sen-
tence structure of the RTE examples, which are text
from business news domain. Therefore, the Stanford
parser which we used in this task to recognize roles
phrases play in each sentence does not always give us
an accurate parsing.

metric accuracy
Word Overlap 0.513
WordNet Similarity 0.591
Role Word Overlap 0.549
Role WordNet Similarity 0.513

Table 8: results from using the LMT classifier on se-
lect features on the 3-way training data

One counter-intuitive finding from our experiments
is that while the WordNet similarity metrics proved
more valuable than the simpler word overlap measures
when applied to the entirety of the text and hypothe-
sis, they perform worse than the word overlap feature
when role matching is attempted. One possible reason
here might be that, while WordNet Similarity or Role
Similarity can each provide some useful information
for this task, when one is applied first such as Role
Similarity, the inaccurate result of role detection can
not be fully used by Word Similarity.

Another shortcoming of our approach was the inabil-
ity of our classifier to reliably identify text/ hypothesis
pairs as having no entailment relationship (the “No”
class). This deficiency can be seen in the confusion
matrix, which shows that we never predict the “No”
class.

True\Predicted Yes Unknown No
Yes 0.414 0.100 0

Unknown 0.167 0.209 0
No 0.862 0.144 0

Table 9: confusion matrix from all combined features

One possible explanation is that the sparsity of ’No’
values in the training data (161 pairs for No, versus
617 and 822 for Unknown and Yes, respectively) re-
sulted in classifiers that could not reliably predict no
entailment. Whether this is a classifier issue, or our
methodology is simply not useful for detecting ’no en-
tailment’ is not immediately clear.

Using Google language tools to translate a text as a
pre-processing step is an idea that could be explored
more deeply. Due to time constraints, we were only
able to test this pre-processing step with a subset of
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Task Judging accuracy average precision
2-way - 0.588 (top 30%) 0.600 (top 30%)
3-way 2-way 0.583 (top 30%) -

3-way 0.547 (top 30%) 0.599 (ranked 2nd)

Table 6: Accuracy and Average Precision on the RTE4 Test data (including approximate relative standing).

the features, and more work could be done to deter-
mine the optimal use of this approach. Translating
the text from one language to the next, and then per-
haps finally translating it back into English, could po-
tentially simplify the grammatical complexity of some
of the text/ hypothesis pairs and perhaps increase the
effectiveness of classification.
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