
TAC 2008 Update Summarization Task of ICL
Su

jian Li, Wei Wang, Chen Wang
Inst. of Computational Linguistics, Peking University

{lisujian, wwei, goldeneagle}@pku.edu.cn

Abstract
The update task of multi-document
summarization aims at automatically generating
the summaries of some event developing with
time going. Based on our previous system of
multi-document summarization, we summarize
the document sets with or without history. In our
previous system, the design of features is the
important part. Here, in order to adapt to the
updating task we introduce a new ‘filtering’
feature. With history, filtering features are
calculated to exclude those sentences which are
similar to the “history”. The principle of
designing filtering features is to distinguish the
current documents from the previous documents,
and reflect the main idea of current documents.
In this work, we combine two kinds of similarity
metrics and two computing strategies to get the
filtering feature value. The experimental results
will show which combination is more effective
to catch the developing process of an event.

1. Introduction
The TAC1 2008 update summarization task is
similar to that in DUC 2007 [Hoa 2007], which
aims at generating short (not more than 100
words) fluent multi-document summaries of
news articles under the assumption that the user
has already read some earlier articles. The
earlier articles are called the “history” in this
paper. The only difference is that TAC 2008
divides the articles of one topic into two sets
while DUC 2007 divides into three sets. For

1http://www.nist.gov/tac/

each topic, the first document set is summarized
just like the main summarization task in DUC
2007, except that the document number and the
summary length limit are different. The second
document set needs to be summarized with
consideration of its history, that is, the first
document set. Our previous system for DUC
main task is designed with feature-based
sentence-extractive framework. In this paper, we
adopt the same system framework and introduce
a new ‘filter’ feature to adapt to the update task.

In our feature-based system, various
features in the sentence are used to judge
whether the sentence should be appropriately
included in the summary. Feature weights can be
tuned with machine learning methods [Li 2007]
or manually [Li 2006], which depends on
whether the training data is available. Then for
the update summarization task, the key is to
design a new feature to reflect that the summary
is summarized with the history known. That is,
the function of the feature is to avoid selecting
those sentences which are similar to the history.
Thus, we call the feature as ‘filtering’ feature,
which is the focus of this paper.

The rest of the paper is organized as
follows. Section 2 briefly describes our system
design and some features used in previous
system. Section 3 emphasizes on the design of
the ‘filtering’ feature, which includes four kinds
of designing methods. Section 4 presents the
evaluation results of different designing
methods. Section 5 shows the future work and
concludes the paper.

2. System overview
In this section, we first formalize the update task
of summarization. For a given topic, all the
articles are separated into several sets T1, T2, …,
Tn. The articles in T1, T2, …, Ti-1 are seen as the
history of Ti (i≥2). When the articles in T1 need
to be summarized, there is no history. Then, the
summarization task is just like the main
summarization task of DUC. However, the
articles in Ti (i≥2) are summarized with the
assumption that the content in the history has
been known. No matter whether the articles
summarized have history, we adopt a uniform
feature-based summarization framework. For
the possible effect of history on the
summarization result, we design a “filtering”
feature for every sentence. When summarizing
T1, the values of filter feature are the same (=0)
for all the sentences in T1. When summarizing
other set Ti (i≥2), the filtering feature is
calculated to represent the different degrees of
each sentence overlapping with the history.
 Our summarization system is designed with
the extractive framework. Important sentences
are extracted and re-organized to form a
summary. Thus, the whole system is mainly
divided into three modules: text preprocessing,
sentence extraction and post-processing. In text
preprocessing, query and documents are
segmented into sentences, and then we conduct
POS tagging and named entity recognition for
each sentence, preparing for the next feature
extraction. The focus of sentence extraction
module is on which feature to extract and how
to rank the importance of each sentence with
reference to their features. In the
post-processing module, sentences with higher
scores are extracted to compose of the summary
with MMR method. In the following subsections,
we will overview the ranking method and the

features used in the system.

2.2 Ranking method

Here we rank the sentences with a linear
combination of features. That is, each sentence
is assigned a score which cumulates the impacts
of each feature. The impact of each feature is
represented by its weight, which are tuned by
experience. The formula is as follows.

 sScore i iw f= ∑
Where s means a sentence, fi means the feature
value while wi indicates the weight of the
feature fi set experimentally.

2.2 Features Overview

The sentences are ranked and assigned an
importance score according to various features.
This subsection mainly overviews the features
which are designed for a query-focused
summarization system without considering
history.
(1) Word Matching Feature

∑ ∑
∈ ∈

=
st qt

jiword
j i

ttsamesf),()(

where f is the feature value, q is the topic

description. The function if

, and 0 otherwise

1),(=ji ttsame

ji tt =

(2) Name Entity Matching Feature

|)()(|)(qentitysentitysfentity ∩=

where |)()(| qentitysentity ∩ is the number
of the named entities in both s and q. Here
four classes of named entities (person,
organization, location, date) are involved.

(3) Semantics Matching Feature

∑ ∑
∈ ∈

=
st qt

jiwordnet
j i

ttsimilaritysf),()(

where the function is the

lesk similarity function introduced in
[Satanjeev 2002], which is WordNet-based
[Christiane 1998]and scales the semantic
relation between two words.

),(ji ttsimilarity

(4) Document Centroid Feature

∑
∈

=
st

jcentroid
j

ttfidfsf)()(

where is the tf-idf score of in

the whole data set [Radev 2000].

)(jttfidf jt

(5) Named Entity Number Feature

|)(|)(sentitysfentityno =

where is the number of named
entities in s.

|)(| sentity

(6) Stop Word Penalty Feature

|)(|)(sstopwordsf stopword =

where is the number of the
stop words in s.

|)(| sstopword

(7) Sentence Position Feature

n
isf position

11)(−
−=

where n is the total number of the sentences and
s is the ith sentence in the document.

3. Filtering Feature
This year, the focus of our system is how to
choose a new feature to adapt to the update task.
This feature is optional which depends on
whether the articles summarized have a
“history”. When the articles with history are
summarized using a sentence extraction method,
more overlapped with the history a sentence is,

less chance the sentence is selected. That is, a
sentence which is similar to the history content
should be filtered. Thus, we design a filtering
feature for measuring the similar degree.
 When a sentence is compared with the
history, firstly we need consider the similarity of
the sentence with each sentence in the history.
Then it is also considered with which strategy
the similarity values are used as the filtering
feature value.
 We calculate the similarity between two
sentences with two kinds of metrics introduced
as follows.
(1) Complex similarity metric
The first takes into consideration the unigrams,
bigrams and syntactic functions of the words.
 The unigram factor is considered with the
formula:

2 2
AB

A B

UUni
U U

=
+

Where UA and UB represent the length of two
sentences A and B respectively. UAB represents
the number of common words occurring in both
sentences.
 The bigram value is calculated with the
following formula:

2

2 2
AB

A B

BIBi
BI BI

=
+

Where BIAB means the number of common
bigrams occurring in both sentences. In order to
strengthen the effect of common bigrams, the
BIAB is squared. BIA and BIB represents the
number of bigrams respectively in sentence A
and sentence B.
 The syntactic functions of words are
considered with:

2 2
N AB V ABAB AB

A B A B A B A B A B

C NN C VBVB NN NNSyn
VB VB NN NN NB NN VB VB NN NN

× ×
= × + × −

+ + + + +

2

Where VBAB means the number of common

verbs occurring in both sentences, NNAB means
the number of common nouns in both sentences,
VBA and VBB respectively represent the verbs in
two sentences while NNA and NNB represent the
nouns.
 Finally, these three factors are combined
linearly to get the similarity metric:

,A BS Uni Bi Synα β γ= ⋅ + ⋅ + ⋅

Where α, β and γ are the weights of these three
factors respectively. SA,B is the similarity value
of two sentences A and B.
2) Simple similarity metric
The second metric adopts the simple cosine
distance formula. Each sentence is represented
by a vector of tf*idf of the words. Then the
similarity is computed as:

, | |*|
A B

A B
A B

V VS
V V

.
=

|

Where VA and VB are two sentence vectors
respectively.
 Because a sentence is computed the
similarity value with each sentence in the
history documents, it is another problem how to
get the final filtering feature with these
similarity values. Here we use two kinds of
strategies: Maximum and Average. The
maximum strategy means that the filtering
feature takes the maximal value of the similarity
values. That is,

,maxfilter s history ss history
F S −−

=

Where s-history means a sentence in the history
documents, and Ss-history,s represents the
similarity value between s-history and the
current sentence s.
 Using the average strategy, the filtering
feature takes the average of the similarity values.
The formula is:

,filter s history s
s history

F avg S −
−

=

With combining the two similarity metrics with
the two computation strategies, we can get four
kinds of results as in Table 1. Three of them are
our submitted runs which are named Run1,
Run2, Run3. The remaining one is called Run4.

 Maximum strategy Average strategy

Complex

similarity

Run1 Run3

Simple

similarity

Run2 Run4

Table 1: four kinds of results

4 Evaluations

TAC 2008 test datasets comprises
approximately 48 topics. Each topic has a topic
statement (title and narrative) and 20 relevant
documents which have been divided into 2 sets:
Document Set A and Document Set B.
 NIST assessors created 4 reference
summary for each set of articles. All submitted
systems are either manually or automatically
evaluated, including linguistic quality,
responsiveness, ROUGE-2, ROUGE-SU4[Lin
2004], and Pyramid. Each system is required to
submit no more than three runs.
 We submitted three runs: Run1, Run2 and
Run3. The reason we submitted these three runs
is, that our intuition is the maximum strategy is
better and we favor the maximum strategy. Both
Run1 and Run2 adopt the maximum strategy.
The maximum strategy represents that the
importance of a sentence will be reduced only if
it is similar to any sentence in the history, while
the average strategy stresses that the sentence
will be ignored when it is similar to the history
on the whole.
 Table 2 illustrates the automatic evaluation
results of our system and the best submitted
system. From this table, it is surprising to find

that the average strategy gets a better result than
the maximum strategy for the simple similarity
metric. It is the same of the manual evaluation
results, which are listed in Table 3.

 R-2 R-SU4

Top1

system

0.10382 (0.09530-

0.11302)

0.13625 (0.12875-

0.14402)

Run1 0.08312 (0.07480-

0.09194)

0.11893 (0.11240-

0.12609)

Run2 0.08047 (0.07307 -

0.08797)

0.11732 (0.11019-

0.12521)

Run3 0.08278 (0.07463 -

0.09089)

0.11621 (0.10943-

0.12291)

Table 2: Automatic Evaluation in TAC 2008

 Pyramid Ling.

quality

resp

Top 1

system

0.336 3.333 2.667

Run1 0.287 2.031 2.344

Run2 0.284 2.031 2.417

Table 3: Manual Evaluation in TAC 2008

Then we experiment the filtering feature which
combines the complexity similarity metric with
the average strategy. The rouge results are
illustrated in Table 4, compared with Run1 which
adopts the maximum strategy. It follows that that
the results of Run4 are obviously better than Run1,
Run2 and Run3. It proves that the filtering feature
is designed more reasonably when considering
more factors and using the average strategy.

 R-2 R-SU4

Run1 0.08312 (0.07480-

0.09194)

0.11893 (0.11240-

0.12609)

Run4 0.08957 (0.08023

-0.10001)

0.12699 (0.11857 -

0.13645)

Table 4: Maximum strategy vs Average strategy for

the complex similarity metric

5 Conclusions and Future Work
In this paper, we introduce a filtering feature

for the update summarization system. In order to
get the filtering feature, we adopt two similarity
metrics and two kinds of computation strategies.
The experimental results show that a filtering
feature should consider more factors not limited
to the simple statistics of words. It is also
concluded that it is better to take the average
strategy to select sentences.

In our future work, we will focus on
considering more factors to design the filtering
feature. And some machine learning methods
will be experimented on the update task.

Acknowledgements
This work is supported by NSFC programs (No:
60603093 and 60875042), and 973 National
Basic Research Program of China
(2004CB318102).

References
Christiane, F., 1998. WordNet: an Electronic Lexical

Database. MIT Press.

Hoa T. D.. Overview of DUC 2007. Document

Understanding Conference 2007 http://duc.nist.gov,

2007.

Li, S.J. Ouyang, Y., Sun, B, Guo, Z.L., 2006. Peking

University at DUC 2006. In Proceedings of DUC2006.

Li, S.J., OuYang, Y., Wang, W., Sun B., 2007.

Multi-document Summarization Using Support Vector

Regression, In Proceedings of DUC 2007.

Lin.C.Y., 2004. ROUGE: A Package for Automatic

Evaluation of Summaries. In Proceedings of the

Workshop on Text Summarization, Barcelona. ACL.

Radev, D. R., Jing, H.Y., and Budzikowska, M., 2000.

Centroid-Based Summarization of Multiple Documents:

Sentence Extraction, Utility-Based Evaluation, and User

Studies. Proceedings of the 1st Conference of the North

American Chapter of the Association for Computational

Linguistics, Seattle, WA, April 2000.

Satanjeev B., Ted P., 2002. An Adapted Lesk Algorithm

for Word Sense Disambiguation Using WordNet. In

Proceedings of the Third International Conference on

Computational Linguistics and Intelligent Text

Processing (CICLING-02). pages 136-145.

	TAC 2008 Update Summarization Task of ICL
	Sujian Li, Wei Wang, Chen Wang

	Abstract
	1. Introduction
	This work is supported by NSFC programs (No: 60603093 and 60875042), and 973 National Basic Research Program of China (2004CB318102).

	References

